期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于TV正则化约束的Self2Self地震数据插值去噪一体化方法
1
作者 张蕴 杨锴 王本锋 《地球物理学报》 北大核心 2025年第9期3575-3587,共13页
实际采集的地震数据不可避免地受到随机噪声的干扰,并常常伴随着数据缺失,严重降低了地震数据的信噪比与横向连续性,继而降低后续地震数据处理及反演的精度.本文基于Self2Self无监督学习框架,针对含噪非规则地震数据,设计无监督地震数... 实际采集的地震数据不可避免地受到随机噪声的干扰,并常常伴随着数据缺失,严重降低了地震数据的信噪比与横向连续性,继而降低后续地震数据处理及反演的精度.本文基于Self2Self无监督学习框架,针对含噪非规则地震数据,设计无监督地震数据插值去噪一体化方法,并基于地震道之间的相关性优化数据采样策略,对含噪的非规则地震数据进行整道伯努利采样,构建训练数据集;为降低随机噪声对插值重建的负面影响,在损失函数中引入全变分正则化项,确保恢复地震信号具有良好的横向连续性.针对异常噪声干扰,探讨了异常噪声识别-剔除策略,结合插值去噪一体化方法可以有效提高地震数据质量.不同数值算例验证了无监督Self2Self方法在地震数据插值重建及噪声衰减中的有效性,为后续地震数据处理和解释提供良好的数据支撑. 展开更多
关键词 随机噪声衰减 数据重建 无监督学习 self2self方法 TV正则化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部