期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
基于互联网和self-training的中文问答模式学习 被引量:2
1
作者 李志圣 孙越恒 +1 位作者 何丕廉 候越先 《计算机应用》 CSCD 北大核心 2008年第6期1575-1577,1581,共4页
在已有的问答模式学习中,模式定义和候选答案评分偏于简单,而且学习过程依赖于人工标定语料。通过挖掘W eb文本中动、名词序列的骨架模式,用以扩充模式定义;将self-train ing学习机制引入问答模式学习:用一对训练语料进行初始学习,通过... 在已有的问答模式学习中,模式定义和候选答案评分偏于简单,而且学习过程依赖于人工标定语料。通过挖掘W eb文本中动、名词序列的骨架模式,用以扩充模式定义;将self-train ing学习机制引入问答模式学习:用一对训练语料进行初始学习,通过互联网搜索,自动选择可靠程度较高的问答对,重新训练;扩充了启发规则,改进候选答案的评分方法。实验结果表明:所提出的问答模式学习方法能有效地提高中文问答系统的性能。 展开更多
关键词 互联网 问答模式 self-training 机器学习
在线阅读 下载PDF
基于Self-training和Web的术语翻译系统
2
作者 李志圣 孙越恒 何丕康 《计算机工程》 CAS CSCD 北大核心 2008年第22期280-282,共3页
现有基于模式的术语翻译系统存在2个主要缺点,即学习过程依赖人工标定语料和缺乏对模式的评分以及对候选术语的评分太简单。该文将self-training学习机制引入术语翻译系统,在一对训练语料上完成初始学习,在实际运行中自动选择可靠程度... 现有基于模式的术语翻译系统存在2个主要缺点,即学习过程依赖人工标定语料和缺乏对模式的评分以及对候选术语的评分太简单。该文将self-training学习机制引入术语翻译系统,在一对训练语料上完成初始学习,在实际运行中自动选择可靠程度较高的术语重新训练,以改进系统性能。该系统中增加了对模式的评分,利用启发规则,扩充了候选术语的评分方法。实验结果表明,改进后系统的性能高于原有系统。 展开更多
关键词 术语翻译 self-training机制 机器学习
在线阅读 下载PDF
Active self-training for weakly supervised 3D scene semantic segmentation
3
作者 Gengxin Liu Oliver van Kaick +1 位作者 Hui Huang Ruizhen Hu 《Computational Visual Media》 SCIE EI CSCD 2024年第3期425-438,共14页
Since the preparation of labeled datafor training semantic segmentation networks of pointclouds is a time-consuming process, weakly supervisedapproaches have been introduced to learn fromonly a small fraction of data.... Since the preparation of labeled datafor training semantic segmentation networks of pointclouds is a time-consuming process, weakly supervisedapproaches have been introduced to learn fromonly a small fraction of data. These methods aretypically based on learning with contrastive losses whileautomatically deriving per-point pseudo-labels from asparse set of user-annotated labels. In this paper, ourkey observation is that the selection of which samplesto annotate is as important as how these samplesare used for training. Thus, we introduce a methodfor weakly supervised segmentation of 3D scenes thatcombines self-training with active learning. Activelearning selects points for annotation that are likelyto result in improvements to the trained model, whileself-training makes efficient use of the user-providedlabels for learning the model. We demonstrate thatour approach leads to an effective method that providesimprovements in scene segmentation over previouswork and baselines, while requiring only a few userannotations. 展开更多
关键词 semantic segmentation weakly supervised self-training active learning
原文传递
基于多重分形和半监督EM的LPI雷达信号识别 被引量:4
4
作者 王星 符颖 +2 位作者 陈游 周一鹏 呙鹏程 《控制与决策》 EI CSCD 北大核心 2018年第11期1941-1949,共9页
针对先验信息不完整的非合作电子对抗背景下的低截获概率雷达信号识别问题,提出一种基于多重分形和半监督最大期望(EM)的识别算法.该算法计算出信号的多重分形谱,提取出信号的多重分形谱参数特征;针对EM算法中全部未标记样本集的加入会... 针对先验信息不完整的非合作电子对抗背景下的低截获概率雷达信号识别问题,提出一种基于多重分形和半监督最大期望(EM)的识别算法.该算法计算出信号的多重分形谱,提取出信号的多重分形谱参数特征;针对EM算法中全部未标记样本集的加入会造成收敛速度缓慢甚至有可能影响到分类精度的缺陷,引入Self-training思想,提出一种基于Self-training的半监督EM算法.该算法通过挑选最为确定的一个或多个未标记样本来更新样本集,使得未标记样本集不断缩小进而加快分类器的训练速度,也可有效避免错误的累加,在一定程度上可提高分类精度.理论分析和仿真结果表明,在LPI雷达信号识别问题上,所提出的算法在不同的信噪比下具有更高的分类识别率和更好的实时性. 展开更多
关键词 多重分形 半监督学习 self-training 信号识别 低截获概率雷达
原文传递
半监督学习研究与应用 被引量:2
5
作者 刘蓉 李红艳 《软件导刊》 2010年第8期6-7,共2页
半监督学习问题在现实社会和数据挖掘中得到运用广泛,半监督学习的理论研究成果部分已经应用于实际问题。首先对于半监督学习进行概述,介绍半监督学习方法的几个思路,给出半监督学习的理论研究和实际应用中的一些问题,然后描述半监督学... 半监督学习问题在现实社会和数据挖掘中得到运用广泛,半监督学习的理论研究成果部分已经应用于实际问题。首先对于半监督学习进行概述,介绍半监督学习方法的几个思路,给出半监督学习的理论研究和实际应用中的一些问题,然后描述半监督学习的几个常用算法,最后阐述半监督学习方法的实际应用。 展开更多
关键词 半监督学习 数据挖掘 CO-TRAINING self-training
在线阅读 下载PDF
基于半监督学习的多源软件缺陷预测模型 被引量:1
6
作者 于龙海 吴晓鸰 +1 位作者 凌捷 许遵鸿 《软件工程与应用》 2020年第2期116-123,共8页
本文研究在不同的软件项目之间,建立通用软件缺陷预测模型的方法。通过分析多源软件的项目信息,本文设计了25维软件特征用于机器学习。为了克服不同软件项目之间的代码区别,实现模型的通用性,使用基于半监督学习Self-training自训练算... 本文研究在不同的软件项目之间,建立通用软件缺陷预测模型的方法。通过分析多源软件的项目信息,本文设计了25维软件特征用于机器学习。为了克服不同软件项目之间的代码区别,实现模型的通用性,使用基于半监督学习Self-training自训练算法生成分类器。最后利用本文设计的25维数据特征建立训练数据,通过Self-training算法生成通用的多源软件缺陷预测模型。 展开更多
关键词 self-training 软件缺陷预测 多源软件
在线阅读 下载PDF
基于区块链技术的绿色证书核发流程实时半监督自训练算法
7
作者 袁昊 杨振伟 +3 位作者 罗发政 赵海萍 李娜 俞芙妍 《信息技术》 2023年第10期129-135,共7页
由于大型数据库存在绿色证书错误核发的现象,导致数据库安全性降低,机密数据存在丢失的风险。为此,提出一种基于区块链技术的绿色证书核发流程实时半监督自训练算法。从访问者身份信息、权限信息、行为信息以及生物信息等四个方面提取... 由于大型数据库存在绿色证书错误核发的现象,导致数据库安全性降低,机密数据存在丢失的风险。为此,提出一种基于区块链技术的绿色证书核发流程实时半监督自训练算法。从访问者身份信息、权限信息、行为信息以及生物信息等四个方面提取用户身份特征,构建自训练(Self-Training)特征库;以特征库中的特征作为对照,利用区块链技术中的智能合约规则认证身份,判断是否给访问者颁发绿色通行证书;给通过认证的访问者,颁发绿色证书,允许其访问数据库,实现安全访问控制。实验结果表明,算法的数据查询平均准确率较高,平均漏报率和误报率较低,能够准确认证访问者身份,提高了数据库安全性,保证了绿色证书核发的准确性。 展开更多
关键词 区块链技术 绿色证书 核发流程 身份认证 半监督self-training算法
在线阅读 下载PDF
Training of clinical pharmacists in psychiatric pharmacy services during the prevention and treatment of COVID-19
8
作者 Yue-Han Guo Chun-Fang Liu +7 位作者 Liang Ma Yong-Li Fu Qian Liu Meng-Meng Shi Xiao-Lu Wang Mao-Sheng Fang Ting Xu Lei Zhang 《Psychosomatic Medicine Research》 2021年第3期88-97,共10页
A series of pharmacy services of clinical pharmacists at the Wuhan Mental Health Center during the prevention and treatment of Coronavirus disease 2019(COVID-19),such as participation in the formulation of COVID-19 pr... A series of pharmacy services of clinical pharmacists at the Wuhan Mental Health Center during the prevention and treatment of Coronavirus disease 2019(COVID-19),such as participation in the formulation of COVID-19 prevention and treatment plans suitable for psychiatric departments,popular science of pharmacy,medical order review,real-time intervention,and medication education are summarized here.Due to the sudden public health incident,the service model of psychiatric clinical pharmacists should be addressed,as clinical pharmacists are an important part of the diagnosis and treatment of psychiatric diseases.Among the majors currently available in the clinical pharmacy training base curriculum,no psychiatry major has been set up in China yet;therefore,in this paper,we provide guidance in psychiatry pharmacy for those who wish to integrate clinical teams. 展开更多
关键词 Psychiatric departments New coronavirus pneumonia Clinical pharmacists Pharmacy services self-training of clinical pharmacists
暂未订购
Robust domain adaptation with noisy and shifted label distribution
9
作者 Shao-Yuan LI Shi-Ji ZHAO +2 位作者 Zheng-Tao CAO Sheng-Jun HUANG Songcan CHEN 《Frontiers of Computer Science》 2025年第3期25-36,共12页
Unsupervised Domain Adaptation(UDA)intends to achieve excellent results by transferring knowledge from labeled source domains to unlabeled target domains in which the data or label distribution changes.Previous UDA me... Unsupervised Domain Adaptation(UDA)intends to achieve excellent results by transferring knowledge from labeled source domains to unlabeled target domains in which the data or label distribution changes.Previous UDA methods have acquired great success when labels in the source domain are pure.However,even the acquisition of scare clean labels in the source domain needs plenty of costs as well.In the presence of label noise in the source domain,the traditional UDA methods will be seriously degraded as they do not deal with the label noise.In this paper,we propose an approach named Robust Self-training with Label Refinement(RSLR)to address the above issue.RSLR adopts the self-training framework by maintaining a Labeling Network(LNet)on the source domain,which is used to provide confident pseudo-labels to target samples,and a Target-specific Network(TNet)trained by using the pseudo-labeled samples.To combat the effect of label noise,LNet progressively distinguishes and refines the mislabeled source samples.In combination with class rebalancing to combat the label distribution shift issue,RSLR achieves effective performance on extensive benchmark datasets. 展开更多
关键词 unsupervised domain adaptation label noise label distribution shift self-training class rebalancing
原文传递
Satellite and instrument entity recognition using a pre-trained language model with distant supervision 被引量:1
10
作者 Ming Lin Meng Jin +1 位作者 Yufu Liu Yuqi Bai 《International Journal of Digital Earth》 SCIE EI 2022年第1期1290-1304,共15页
Earth observations,especially satellite data,have produced a wealth of methods and results in meeting global challenges,often presented in unstructured texts such as papers or reports.Accurate extraction of satellite ... Earth observations,especially satellite data,have produced a wealth of methods and results in meeting global challenges,often presented in unstructured texts such as papers or reports.Accurate extraction of satellite and instrument entities from these unstructured texts can help to link and reuse Earth observation resources.The direct use of an existing dictionary to extract satellite and instrument entities suffers from the problem of poor matching,which leads to low recall.In this study,we present a named entity recognition model to automatically extract satellite and instrument entities from unstructured texts.Due to the lack of manually labeled data,we apply distant supervision to automatically generate labeled training data.Accordingly,we fine-tune the pre-trained language model with early stopping and a weighted cross-entropy loss function.We propose the dictionary-based self-training method to correct the incomplete annotations caused by the distant supervision method.Experiments demonstrate that our method achieves significant improvements in both precision and recall compared to dictionary matching or standard adaptation of pre-trained language models. 展开更多
关键词 Earth observation named entity recognition pre-trained language model distant supervision dictionary-based self-training
原文传递
Active Anomaly Detection Technology Based on Ensemble Learning
11
作者 Weiwei Liu Shuya Lei +3 位作者 Liangying Peng Jun Feng Sichen Pan Meng Gao 《国际计算机前沿大会会议论文集》 2022年第1期53-66,共14页
Anomaly detection is an important problem in various research and application fields.Researchers design reliable schemes to provide solutions for effectively detecting anomaly points.Most of the existing anomaly detec... Anomaly detection is an important problem in various research and application fields.Researchers design reliable schemes to provide solutions for effectively detecting anomaly points.Most of the existing anomaly detection schemes are unsupervised methods,such as anomaly detection methods based on density,distance and clustering.In total,unsupervised anomaly detection methods have many limitations.For example,they cannot be well combined with prior knowledge in some anomaly detection tasks.For some nonlinear anomaly detection tasks,the modeling is complex and faces dimensional disasters,which are greatly affected by noise.Sometimes it is difficult to find abnormal events that users are interested in,and users need to customize model parameters before detection.With the wide application of deep learning technology,it has a good modeling ability to solve linear and nonlinear data relationships,but the application of deep learning technology in the field of anomaly detection has many challenges.If we regard exceptions as a supervised problem,exceptions are a few,and we usually face the problem of too few labels.To obtain a model that performs well in the anomaly detection task,it requires a high initial training set.Therefore,to solve the above problems,this paper proposes a supervised learning method with manual participation.We introduce the integrated learning model and train a supervised anomaly detection model with strong stability and high accuracy through active learning technology.In addition,this paper adopts certain strategies to maximize the accuracy of anomaly detection and minimize the cost of manual labeling.In the experimental link,we will show that our method is better than some traditional anomaly detection algorithms. 展开更多
关键词 Anomaly detection Ensemble learning Artificial anomaly detection Methods to reduce labor cost Model self-training
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部