A flexible air electrode with excellent activity and stability is essential for flexible zinc-air batteries.In this study,we report the rational design of nitrogen-doped carbon nanotube-encapsulated Co9S8 nanopar-ticl...A flexible air electrode with excellent activity and stability is essential for flexible zinc-air batteries.In this study,we report the rational design of nitrogen-doped carbon nanotube-encapsulated Co9S8 nanopar-ticles on carbon cloth(Co9S8/NCNTs/CC),serving as self-supporting air electrodes for both liquid-state and flexible zinc-air batteries.The Co9S8/NCNTs/CC-1 exhibited a half-wave potential of 0.86 V for oxygen re-duction reaction(ORR)and achieved a current density of 10 mA cm-2 for oxygen evolution reaction(OER)at a voltage of only 1.52 V.The well-constructed nanotube on carbon cloth facilitates mass diffu-sion and electron transfer,while enhancing the mechanical flexibility of the material.Density functional theory(DFT)calculations suggested that the synergistic interaction between Co9S8 and NCNTs effectively enhanced the bifunctional electrocatalytic performance of the material.Liquid-state and flexible zinc-air batteries assembled with Co9S8/NCNTs/CC-1 demonstrated outstanding charge-discharge capabilities and long-term stability.展开更多
Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among...Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among them,flexible solid-state zinc-air batteries have received widespread attention because of their high energy density,good safety,and stability.Efficient bifunctional oxygen electrocatalysts are the primary consideration in the development of flexible solid-state zinc-air batteries,and self-supported air cathodes are strong candidates because of their advantages including simplified fabrication process,reduced interfacial resistance,accelerated electron transfer,and good flexibility.This review outlines the research progress in the design and construction of nanoarray bifunctional oxygen electrocatalysts.Starting from the configuration and basic principles of zinc-air batteries and the strategies for the design of bifunctional oxygen electrocatalysts,a detailed discussion of self-supported air cathodes on carbon and metal substrates and their uses in flexible zinc-air batteries will follow.Finally,the challenges and opportunities in the development of flexible zinc-air batteries will be discussed.展开更多
Developing efficient and stable electrocatalysts has always been the focus of electrochemical research.Here,sea urchin-like nickel-molybdenum bimetallic phosphide nickel-molybdenum alloy(Ni_(4)Mo)and(Ni-Mo-P)were succ...Developing efficient and stable electrocatalysts has always been the focus of electrochemical research.Here,sea urchin-like nickel-molybdenum bimetallic phosphide nickel-molybdenum alloy(Ni_(4)Mo)and(Ni-Mo-P)were successfully synthesized by hydrothermal,annealing and phosphating methods on nickel foam(NF).The unusual shape of the sea urchin facilitates gas release and mass transfer and increases the interaction between catalysts and electrolytes.The Ni_(4)Mo/NF and Ni-Mo-P/NF electrodes only need overpotentials of 72 and 197 mV to reach 50 mA·cm^(−2) under alkaline conditions for hydrogen evolution reaction and oxygen evolution reaction,respectively.The Ni_(4)Mo/NF and Ni-Mo-P/NF asymmetric electrodes were used as anode and cathode for the overall water splitting,respectively.In 1.0 M KOH,at a voltage of 1.485 V,the electrolytic device generated 50 mA·cm^(−2) current density,maintaining for 24 h without reduction.The labor presents a simple method to synthesize a highly active,low-cost,and strongly durable self-supporting electrode for over-water splitting.展开更多
Transition metal-based electrocatalysts are a promising alternative to noble metal catalysts for electrochemical upgrading of biomass-derived 5-hydroxymethylfurfural(HMF)into high-value 2,5-furandicarboxylic acid(FDCA...Transition metal-based electrocatalysts are a promising alternative to noble metal catalysts for electrochemical upgrading of biomass-derived 5-hydroxymethylfurfural(HMF)into high-value 2,5-furandicarboxylic acid(FDCA).However,the rational design of efficient electrocatalysts with precisely tailored structure-activity correlations remains a critical challenge.Herein,we report a hierarchically structured self-supporting electrode(Vo-NiCo(OH)_(2)-NF)synthesized through in situ electrochemical reconstruction of NiCo-Prussian blue analogue(NiCo-PBA)precursor,in which oxygen vacancy(Vo)-rich Co-doped Ni(OH)_(2)nanosheet arrays are vertically aligned on nickel foam(NF),creating an interconnected conductive network.When evaluated for the HMF oxidation reaction(HMFOR),Vo-NiCo(OH)_(2)-NF exhibits exceptional electrochemical performance,achieving near-complete HMF conversion(99%),ultrahigh FDCA Faradaic efficiency(97.5%),and remarkable product yield(96.2%)at 1.45 V,outperforming conventional Co-doped Ni(OH)_(2)(NiCo(OH)_(2)-NF)and pristine Ni(OH)_(2)(Ni(OH)_(2)-NF)electrodes.By combining in situ spectroscopic characterization and theoretical calculations,we elucidate that the synergistic effects of Co-doping and oxygen vacancy engineering effectively modulate the electronic structure of Ni active centers,favor the formation of high-valent Ni^(3+)species,and optimize HMF adsorption,thereby improving the HMFOR performance.This work provides valuable mechanistic insights for catalyst design and may inspire the development of advanced transition metal-based electrodes for efficient biomass conversion systems.展开更多
To meet the practical demand of wearable/portable electronics, developing high-efficiency and durable multifunctional catalyst and in-situ assembling catalysts into electrodes with flexible features are urgently neede...To meet the practical demand of wearable/portable electronics, developing high-efficiency and durable multifunctional catalyst and in-situ assembling catalysts into electrodes with flexible features are urgently needed but challenging. Herein, we report a simple route to fabricate bendable multifunctional electrodes by in-situ carbonization of metal ion absorbed polyaniline precursor. Alloy nanoparticles encapsulated in graphite layer are uniformly distributed in the N-doping carbon nanorod skeleton. Profiting from the favorable free-standing structure and the cooperative effect of metallic nanoparticles, graphitic layer and N doped-carbon architecture, the trifunctional electrodes exhibit prominent activities and stability toward HER, OER and ORR. Notably, due to the protection of carbon layer, the electrocatalysts show the reversible catalytic HER/OER properties. The overall water splitting device can continuously work for 12 h under frequent exchanges of cathode and anode. Importantly, the bendable metal air batteries fabricated by self-supported electrode not only displays the outstanding battery performance,achieving a decent peak power density(125 mW cm^(-2)) and exhibiting favorable charge-discharge durability of 22 h, but also holds superb flexible stability. Specially, a lightweight self-driven water splitting unit is demonstrated with stable hydrogen production.展开更多
Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poi...Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poisoning of air electrodes,causing substantial degradation in electrochemical performance and compromising the longterm stability of SOCs.This mini-review examines the mechanism of Cr deposition and poisoning in air electrodes under both fuel-cell and electrolysis modes.Furthermore,emphasis is placed on the recent advancements in strategies to mitigate Cr poisoning,offering insights into the rational design and development of active and Cr-tolerant air electrodes for SOCs.展开更多
Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage p...Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC.展开更多
Membrane electrode assembly(MEA)is widely considered to be the most promising type of electrolyzer for the practical application of electrochemical CO_(2) reduction reaction(CO_(2)RR).In MEAs,a square-shaped cross-sec...Membrane electrode assembly(MEA)is widely considered to be the most promising type of electrolyzer for the practical application of electrochemical CO_(2) reduction reaction(CO_(2)RR).In MEAs,a square-shaped cross-section in the flow channel is normally adopted,the configuration optimization of which could potentially enhance the performance of the electrolyzer.This paper describes the numerical simulation study on the impact of the flow-channel cross-section shapes in the MEA electrolyzer for CO_(2)RR.The results show that wide flow channels with low heights are beneficial to the CO_(2)RR by providing a uniform flow field of CO_(2),especially at high current densities.Moreover,the larger the electrolyzer,the more significant the effect is.This study provides a theoretical basis for the design of high-performance MEA electrolyzers for CO_(2)RR.展开更多
Improvements in aero-engine performance have made the structures of the aero-engine components increasingly complex.To better adapt to the processing requirements of narrow twisted channels such as an integral shroude...Improvements in aero-engine performance have made the structures of the aero-engine components increasingly complex.To better adapt to the processing requirements of narrow twisted channels such as an integral shrouded blisk,this study proposes an innovative method of electrochemical cutting in which a flexible tube electrode is controlled by online deformation during processing.In this study,the processing principle of electrochemical cutting with a flexible electrode for controlled online deformation(FECC)was revealed for the first time.The online deformation process of flexible electrodes and the machining process of profiles were analysed in depth,and the corresponding theoretical models were established.Conventional electrochemical machining(ECM)is a multi-physical field-coupled process involving electric and flow fields.In FECC,classical mechanics are introduced into the tool cathode,which must be loaded at all times during the machining process.Therefore,in this study,before and after the deformation of the flexible electrode,a corresponding simulation study was conducted to understand the influence of the online deformation of the flexible electrode on the flow and electric fields.The feasibility of flexible electrodes for online deformation and the validity of the theoretical model were verified by deformation measurements and in situ observation experiments.Finally,the method was successfully applied to the machining of nickel-based high-temperature alloys,and different specifications of flexible electrodes were used to complete the machining of the corresponding complex profiles,thereby verifying the feasibility and versatility of the method.The method proposed in this study breaks the tradition of using a non-deformable cathode for ECM and adopts a flexible electrode that can be deformed during the machining process as the tool cathode,which improves machining flexibility and provides a valuable reference to promote the ECM of complex profiles.展开更多
High-entropy materials represent a new category of high-performance materials,first proposed in 2004 and extensively investigated by researchers over the past two decades.The definition of high-entropy materials has c...High-entropy materials represent a new category of high-performance materials,first proposed in 2004 and extensively investigated by researchers over the past two decades.The definition of high-entropy materials has continuously evolved.In the last ten years,the discovery of an increasing number of high-entropy materials has led to significant advancements in their utilization in energy storage,electrocatalysis,and related domains,accompanied by a rise in techniques for fabricating high-entropy electrode materials.Recently,the research emphasis has shifted from solely improving the performance of high-entropy materials toward exploring their reaction mechanisms and adopting cleaner preparation approaches.However,the current definition of high-entropy materials remains relatively vague,and the preparation method of high-entropy materials is based on the preparation method of single metal/low-or medium-entropy materials.It should be noted that not all methods applicable to single metal/low-or medium-entropy materials can be directly applied to high-entropy materials.In this review,the definition and development of high-entropy materials are briefly reviewed.Subsequently,the classification of high-entropy electrode materials is presented,followed by a discussion of their applications in energy storage and catalysis from the perspective of synthesis methods.Finally,an evaluation of the advantages and disadvantages of various synthesis methods in the production process of different high-entropy materials is provided,along with a proposal for potential future development directions for high-entropy materials.展开更多
Sodium(Na)and magnesium(Mg)are becoming important for making energy-storage batteries and structural materials.Herein,we develop a liquid-metal-electrode-assisted electrolysis route to producing Na and Mg with low-car...Sodium(Na)and magnesium(Mg)are becoming important for making energy-storage batteries and structural materials.Herein,we develop a liquid-metal-electrode-assisted electrolysis route to producing Na and Mg with low-carbon emissions and no chlorine gas evolution.The clean production stems from the choice of a molten NaCl-Na_(2)CO_(3) electrolyte to prevent chlorine gas evolution,an inert nickel-based anode to produce oxygen,and a liquid metal cathode to make the cathodic product sit at the bottom of the electrolytic cell.We achieve a current efficiency of>90%for the electrolytic production of liquid Na-Sn alloy.Later,Mg-Sn alloy is prepared using the obtained Na-Sn alloy to displace Mg from molten NaCl-MgCl_(2) with a displacement efficiency of>96%.Further,Na and Mg are separated from the electrolytic Na-Sn and displaced Mg-Sn alloys by vacuum distillation with a recovery rate of>92%and Sn can be reused.Using this electrolysisdisplacement-distillation(EDD)approach,we prepare Mg from seawater.The CO_(2)emission of the EDD approach is~20.6 kg CO_(2)per kg Mg,which is less than that of the Australian Magnesium(AM)electrolysis process(~25.0 kg CO_(2)per kg Mg)and less than half that of the Pidgeon process(~45.2 kg CO_(2)per kg Mg).展开更多
This study explores the potential of Michelia champaca wood as a sustainable and locally available precursor for the fabrication of high-performance supercapacitor electrodes.Activated carbons were synthesized through...This study explores the potential of Michelia champaca wood as a sustainable and locally available precursor for the fabrication of high-performance supercapacitor electrodes.Activated carbons were synthesized through single-step carbonization at 400℃ and 500℃(SSC-400℃ and SSC-500℃) and double-step carbonization at 400℃(DSC-400℃),with all samples activated using H_(3)PO_(4).The effects of carbonization stratergy on the structural,morphological,and electrochemical characteristics of the resulting carbon materials were systematically evaluated,using techniques such as BET,SEM,TEM,XRD,Raman scattering,FTIR,CV,GCD and EIS.Among the samples,SSC-400℃ exhibited the best electrochemical performance,achieving a specific capacitance of 292.2 Fg^(-1),an energy density of 6.4 Wh kg^(-1),and a power density of 198.4 W kg^(-1).This superior performance is attributed to its optimized pore structure,improved sur-face functionality and enhanced conductivity.SSC-500℃showed marginally lower performance,whereas,DSC-400℃ displayed the least favorable results,indicating that double-step carbonization process may negatively affect material quality by disrupting the pore network.This work highlights a strong correlation between synthesis methodology and electrochemical efficiency,directly reinforcing the importance of process optimization in electrode material develop-ment.The findings contribute to the broader goal of developing cost-effective,renewable and environmentally friendly energy storage systems.By valorizing biomass waste,the study supports global movements toward green energy technologies and circular carbon economies,offering a viable pathway for sustainable supercapacitor development and practical applications in energy storage devices.展开更多
With the continuous development of wearable electronics,wireless sensor networks and other micro-electronic devices,there is an increasingly urgent need for miniature,flexible and efficient nanopower generation techno...With the continuous development of wearable electronics,wireless sensor networks and other micro-electronic devices,there is an increasingly urgent need for miniature,flexible and efficient nanopower generation technology.Triboelectric nanogenerator(TENG)technology can convert small mechanical energy into electricity,which is expected to address this problem.As the core component of TENG,the choice of electrode materials significantly affects its performance.Traditional metal electrode materials often suffer from problems such as durability,which limits the further application of TENG.Graphene,as a novel electrode material,shows excellent prospects for application in TENG owing to its unique structure and excellent electrical properties.This review systematically summarizes the recent research progress and application prospects of TENGs based on graphene electrodes.Various precision processing methods of graphene electrodes are introduced,and the applications of graphene electrode-based TENGs in various scenarios as well as the enhancement of graphene electrodes for TENG performance are discussed.In addition,the future development of graphene electrode-based TENGs is also prospectively discussed,aiming to promote the continuous advancement of graphene electrode-based TENGs.展开更多
Graphite-silicon species(Gr-Si)hybrid anodes have merged as potential candidates for high-energy lithium-ion batteries(LIBs),yet long been plagued by rapid capacity fading due to their unstable mechano-electrochemistr...Graphite-silicon species(Gr-Si)hybrid anodes have merged as potential candidates for high-energy lithium-ion batteries(LIBs),yet long been plagued by rapid capacity fading due to their unstable mechano-electrochemistry.The dominant approach to enhance electrochemical stability of the Gr-Si hybrid anodes typically involves the optimization of the electrode material structures and the employment of low active Si species content in electrode(<10 wt%in most instances).However,the electrode structure design,a factor of equal importance in determining the electrochemical performance of Gr-Si hybrid anodes,has received scant attention.In this study,three Gr-Si hybrid anodes with the identical material composition but distinct electrode structures are designed to investigate the mechanoelectrochemistry of the electrodes.It is revealed that the substantial volume change of Si species particles in Gr-Si hybrid anodes led to the local lattice stress of Gr at their contact interface during the charge/discharge processes,thereby increasing thermodynamic and kinetic barrier of Li-ion migration.Furthermore,the huge disparity in volume change of Si species and Gr particles trigger the separate agglomeration of these two materials,resulting in a considerable electrode volume change and increased electrochemical resistance.An advanced Gr/Si hybrid anode with upper Gr and lower Si species layer structure design addresses the above challenges using photovoltaic waste silicon sources under high Si species content(17 wt%)and areal capacity(2.0 mA h cm^(-2))in Ah-level full pouch cells with a low negative/positive(N/P)ratio of 1.09.The cell shows stable cycling for 100 cycles at 0.3 C with an impressively low capacity decay rate of 0.0546%per cycle,outperforming most reported Gr-Si hybrid anodes.展开更多
Fully implanted brain-computer interfaces(BCIs)are preferred as they eliminate signal degradation caused by interference and absorption in external tissues,a common issue in non-fully implanted systems.To optimize the...Fully implanted brain-computer interfaces(BCIs)are preferred as they eliminate signal degradation caused by interference and absorption in external tissues,a common issue in non-fully implanted systems.To optimize the design of electroencephalography electrodes in fully implanted BCI systems,this study investigates the penetration and absorption characteristics of microwave signals in human brain tissue at different frequencies.Electromagnetic simulations are used to analyze the power density distribution and specific absorption rate(SAR)of signals at various frequen-cies.The results indicate that lower-frequency signals offer advantages in terms of power density and attenuation coeffi-cients.However,SAR-normalized analysis,which considers both power density and electromagnetic radiation hazards,shows that higher-frequency signals perform better at superficial to intermediate depths.Specifically,at a depth of 2 mm beneath the cortex,the power density of a 6.5 GHz signal is 247.83%higher than that of a 0.4 GHz signal.At a depth of 5 mm,the power density of a 3.5 GHz signal exceeds that of a 0.4 GHz signal by 224.16%.The findings suggest that 6.5 GHz is optimal for electrodes at a depth of 2 mm,3.5 GHz for 5 mm,2.45 GHz for depths of 15-20 mm,and 1.8 GHz for 25 mm.展开更多
Multicomponent Gd_(1−x)Sm_(x)Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)double perovskites are optimized for application in terms of chemical composi-tion and morphology for the use as oxygen electrodes in solid oxide cells.Structur...Multicomponent Gd_(1−x)Sm_(x)Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)double perovskites are optimized for application in terms of chemical composi-tion and morphology for the use as oxygen electrodes in solid oxide cells.Structural studies of other physicochemical properties are con-ducted on a series of materials obtained by the sol-gel method with different ratios of Gd and Sm cations.It is documented that changing the x value,and the resulting adjustment of the average ionic radius,have a significant impact on the crystal structure,stability,as well as on the total conductivity and thermomechanical properties of the materials,with the best results obtained for the Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)composition.Oxygen electrodes are prepared using the selected compound,allowing to obtain low polarization resistance values,such as 0.086Ω·cm^(2)at 800℃.Systematic studies of electrocatalytic activity are conducted using La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(_(0.2))O_(3−δ)as the electrolyte for all electrodes,and Ce_(0.8)Gd_(0.2)O_(2−δ)electrolyte for the best performing Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)electrodes.The electrochemical data are analyzed using the distribution of relaxation times method.Also,the influence of the preparation method of the electrode material is in-ve`stigated using the electrospinning technique.Finally,the performance of the Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)electrodes is tested in a Ni-YSZ(yttria-stabilized zirconia)anode-supported cell with a Ce_(0.8)Gd_(0.2)O_(2−δ)buffer layer,in the fuel cell and electrolyzer operating modes.With the electrospun electrode,a power density of 462 mW·cm^(−2)is obtained at 700℃,with a current density of ca.0.2 A·cm^(−2)at 1.3 V for the electrolysis at the same temperature,indicating better performance compared to the sol-gel-based electrode.展开更多
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)is a highly successful conductive polymer utilized as an electrode material in energy storage units for portable and wearable electronic de-vices.Neve...Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)is a highly successful conductive polymer utilized as an electrode material in energy storage units for portable and wearable electronic de-vices.Nevertheless,employing PEDOT:PSS in supercapacitors(SC)in its pristine state presents challenges due to its suboptimal electrochemical performance and operational instability.To surmount these limita-tions,PEDOT:PSS has been integrated with carbon-based materials to form flexible electrodes,which ex-hibit physical and chemical stability during SC operation.We developed a streamlined fabrication process for high-performance SC electrodes composed of PEDOT:PSS and carbon quantum dots(CQDs).The CQDs were synthesized under microwave irradiation,yielding green-and red-light emissions.Through optimiz-ing the ratios of CQDs to PEDOT:PSS,the SC electrodes were prepared using a spray-coating technique,marking a significant improvement in device performance with a high volumetric capacitance(104.10 F cm-3),impressive energy density(19.68 Wh cm^(-3)),and excellent cyclic stability,retaining~85% of its original volumetric capacitance after 15,000 repeated GCD cycles.Moreover,the SCs,when utilized as a flexible substrate,demonstrated the ability to maintain up to~85% of their electrochemical performance even after 3,000 bending cycles(at a bending angle of 60°).These attributes render this hybrid composite an ideal candidate for a lightweight smart energy storage component in portable and wearable electronic technologies.展开更多
For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models...For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models and physical models,each offering unique advantages but also facing limitations.Physics-informed neural networks(PINNs)provide a robust framework to integrate data-driven models with physical principles,ensuring consistency with underlying physics while enabling generalization across diverse operational conditions.This study introduces a PINN-based approach to reconstruct open circuit voltage(OCV)curves and estimate key ageing parameters at both the cell and electrode levels.These parameters include available capacity,electrode capacities,and lithium inventory capacity.The proposed method integrates OCV reconstruction models as functional components into convolutional neural networks(CNNs)and is validated using a public dataset.The results reveal that the estimated ageing parameters closely align with those obtained through offline OCV tests,with errors in reconstructed OCV curves remaining within 15 mV.This demonstrates the ability of the method to deliver fast and accurate degradation diagnostics at the electrode level,advancing the potential for precise and efficient battery health management.展开更多
Developing highly active and stable air electrodes remains challenging for reversible solid oxide cells(R-SOCs).Herein,we re-port an A-site high-entropy engineered perovskite oxide,La_(0.2)Pr_(0.2)Nd_(0.2)Ba_(0.2)Sr_(...Developing highly active and stable air electrodes remains challenging for reversible solid oxide cells(R-SOCs).Herein,we re-port an A-site high-entropy engineered perovskite oxide,La_(0.2)Pr_(0.2)Nd_(0.2)Ba_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF),and its electrocatalytic activity and stability property are systematically probed for tubular R-SOCs.The HE-LSCF air electrode exhibits excellent oxygen reduction reac-tion(ORR)activity with a low polarization resistance of 0.042Ω·cm^(2)at 700℃,which is much lower than that of La0.6Sr0.4Co_(0.8)Fe_(0.2)O_(3−δ)(LSCF),indicating the excellent catalytic activity of HE-LSCF.Meanwhile,the tubular R-SOCs with HE-LSCF shows a high peak power density of 1.18 W·cm^(−2)in the fuel cell mode and a promising electrolysis current density of−0.52 A·cm^(−2)at 1.5 V in the electrolysis mode with H_(2)(~10%H_(2)O)atmosphere at 700℃.More importantly,the tubular R-SOCs with HE-LSCF shows favorable stability under 180 h reversible cycling test.Our results show the high-entropy design can significantly enhance the activity and robustness of LSCF electrode for tubular R-SOCs.展开更多
In order to address the current inability of screen printing to monitor printing pressure online,an online printing pressure monitoring system applied to screen printing machines was designed in this study.In this stu...In order to address the current inability of screen printing to monitor printing pressure online,an online printing pressure monitoring system applied to screen printing machines was designed in this study.In this study,the consistency of printed electrodes was measured by using a confocal microscope and the pressure distribution detected by online pressure monitoring system was compared to investigate the relationship.The results demonstrated the relationship between printing pressure and the consistency of printed electrodes.As printing pressure increases,the ink layer at the corresponding position becomes thicker and that higher printing pressure enhances the consistency of the printed electrodes.The experiment confirms the feasibility of the online pressure monitoring system,which aids in predicting and controlling the consistency of printed electrodes,thereby improving their performance.展开更多
基金supported by the Natural Sci-ence Foundation of Xinjiang Uygur Autonomous Region(Nos.2022D01E36 and 2022D01E38)the National Natural Science Foun-dation of China(Nos.22369016 and 22065034)the Outstand-ing Doctoral Student Innovation Project of Xinjiang University(No.XJU2024BS055).
文摘A flexible air electrode with excellent activity and stability is essential for flexible zinc-air batteries.In this study,we report the rational design of nitrogen-doped carbon nanotube-encapsulated Co9S8 nanopar-ticles on carbon cloth(Co9S8/NCNTs/CC),serving as self-supporting air electrodes for both liquid-state and flexible zinc-air batteries.The Co9S8/NCNTs/CC-1 exhibited a half-wave potential of 0.86 V for oxygen re-duction reaction(ORR)and achieved a current density of 10 mA cm-2 for oxygen evolution reaction(OER)at a voltage of only 1.52 V.The well-constructed nanotube on carbon cloth facilitates mass diffu-sion and electron transfer,while enhancing the mechanical flexibility of the material.Density functional theory(DFT)calculations suggested that the synergistic interaction between Co9S8 and NCNTs effectively enhanced the bifunctional electrocatalytic performance of the material.Liquid-state and flexible zinc-air batteries assembled with Co9S8/NCNTs/CC-1 demonstrated outstanding charge-discharge capabilities and long-term stability.
基金supported by the National Natural Science Foundation of China(22072107,21872105)the Natural Science Foundation of Shanghai(23ZR1464800)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Science&Technology Commission of Shanghai Municipality(19DZ2271500)。
文摘Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among them,flexible solid-state zinc-air batteries have received widespread attention because of their high energy density,good safety,and stability.Efficient bifunctional oxygen electrocatalysts are the primary consideration in the development of flexible solid-state zinc-air batteries,and self-supported air cathodes are strong candidates because of their advantages including simplified fabrication process,reduced interfacial resistance,accelerated electron transfer,and good flexibility.This review outlines the research progress in the design and construction of nanoarray bifunctional oxygen electrocatalysts.Starting from the configuration and basic principles of zinc-air batteries and the strategies for the design of bifunctional oxygen electrocatalysts,a detailed discussion of self-supported air cathodes on carbon and metal substrates and their uses in flexible zinc-air batteries will follow.Finally,the challenges and opportunities in the development of flexible zinc-air batteries will be discussed.
基金supported by the Natural Science Research Project of Jiangsu Higher Education Institutions(No.23KJD150005)the Scientific Research Project of Nanjing Xiaozhuang University(No.2022NXY29).
文摘Developing efficient and stable electrocatalysts has always been the focus of electrochemical research.Here,sea urchin-like nickel-molybdenum bimetallic phosphide nickel-molybdenum alloy(Ni_(4)Mo)and(Ni-Mo-P)were successfully synthesized by hydrothermal,annealing and phosphating methods on nickel foam(NF).The unusual shape of the sea urchin facilitates gas release and mass transfer and increases the interaction between catalysts and electrolytes.The Ni_(4)Mo/NF and Ni-Mo-P/NF electrodes only need overpotentials of 72 and 197 mV to reach 50 mA·cm^(−2) under alkaline conditions for hydrogen evolution reaction and oxygen evolution reaction,respectively.The Ni_(4)Mo/NF and Ni-Mo-P/NF asymmetric electrodes were used as anode and cathode for the overall water splitting,respectively.In 1.0 M KOH,at a voltage of 1.485 V,the electrolytic device generated 50 mA·cm^(−2) current density,maintaining for 24 h without reduction.The labor presents a simple method to synthesize a highly active,low-cost,and strongly durable self-supporting electrode for over-water splitting.
基金financial support of the National Natural Science Foundation of China(NSFC)(22372039 and 22305247)the Natural Science Foundation of Fujian Province of China(2021J06010)the Fuzhou University Testing Fund of Precious Apparatus(2025T022)。
文摘Transition metal-based electrocatalysts are a promising alternative to noble metal catalysts for electrochemical upgrading of biomass-derived 5-hydroxymethylfurfural(HMF)into high-value 2,5-furandicarboxylic acid(FDCA).However,the rational design of efficient electrocatalysts with precisely tailored structure-activity correlations remains a critical challenge.Herein,we report a hierarchically structured self-supporting electrode(Vo-NiCo(OH)_(2)-NF)synthesized through in situ electrochemical reconstruction of NiCo-Prussian blue analogue(NiCo-PBA)precursor,in which oxygen vacancy(Vo)-rich Co-doped Ni(OH)_(2)nanosheet arrays are vertically aligned on nickel foam(NF),creating an interconnected conductive network.When evaluated for the HMF oxidation reaction(HMFOR),Vo-NiCo(OH)_(2)-NF exhibits exceptional electrochemical performance,achieving near-complete HMF conversion(99%),ultrahigh FDCA Faradaic efficiency(97.5%),and remarkable product yield(96.2%)at 1.45 V,outperforming conventional Co-doped Ni(OH)_(2)(NiCo(OH)_(2)-NF)and pristine Ni(OH)_(2)(Ni(OH)_(2)-NF)electrodes.By combining in situ spectroscopic characterization and theoretical calculations,we elucidate that the synergistic effects of Co-doping and oxygen vacancy engineering effectively modulate the electronic structure of Ni active centers,favor the formation of high-valent Ni^(3+)species,and optimize HMF adsorption,thereby improving the HMFOR performance.This work provides valuable mechanistic insights for catalyst design and may inspire the development of advanced transition metal-based electrodes for efficient biomass conversion systems.
基金financially supported by the National Natural Science Foundation of China (Grants Nos. 51972349, U1801255 and 91963210)。
文摘To meet the practical demand of wearable/portable electronics, developing high-efficiency and durable multifunctional catalyst and in-situ assembling catalysts into electrodes with flexible features are urgently needed but challenging. Herein, we report a simple route to fabricate bendable multifunctional electrodes by in-situ carbonization of metal ion absorbed polyaniline precursor. Alloy nanoparticles encapsulated in graphite layer are uniformly distributed in the N-doping carbon nanorod skeleton. Profiting from the favorable free-standing structure and the cooperative effect of metallic nanoparticles, graphitic layer and N doped-carbon architecture, the trifunctional electrodes exhibit prominent activities and stability toward HER, OER and ORR. Notably, due to the protection of carbon layer, the electrocatalysts show the reversible catalytic HER/OER properties. The overall water splitting device can continuously work for 12 h under frequent exchanges of cathode and anode. Importantly, the bendable metal air batteries fabricated by self-supported electrode not only displays the outstanding battery performance,achieving a decent peak power density(125 mW cm^(-2)) and exhibiting favorable charge-discharge durability of 22 h, but also holds superb flexible stability. Specially, a lightweight self-driven water splitting unit is demonstrated with stable hydrogen production.
基金supported by National Natural Science Foundation of China(22279018)National Natural Science Foundation of China(22005055)Natural Science Foundation of Fujian Province(2022J01085).
文摘Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poisoning of air electrodes,causing substantial degradation in electrochemical performance and compromising the longterm stability of SOCs.This mini-review examines the mechanism of Cr deposition and poisoning in air electrodes under both fuel-cell and electrolysis modes.Furthermore,emphasis is placed on the recent advancements in strategies to mitigate Cr poisoning,offering insights into the rational design and development of active and Cr-tolerant air electrodes for SOCs.
基金supported by Fundamental Research Funds for the Central Universities(2023KYJD1008)the Science Research Projects of the Anhui Higher Education Institutions of China(2022AH051582).
文摘Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC.
基金the National Key R&D Program of China(No.2021YFA1501503)the National Natural Science Foundation of China(Nos.22250008,22121004,22108197)+3 种基金the Haihe Laboratory of Sustainable Chemical Transformations(No.CYZC202107)the Natural Science Foundation of Tianjin City(No.21JCZXJC00060)the Program of Introducing Talents of Discipline to Universities(No.BP0618007)the Xplorer Prize for financial support。
文摘Membrane electrode assembly(MEA)is widely considered to be the most promising type of electrolyzer for the practical application of electrochemical CO_(2) reduction reaction(CO_(2)RR).In MEAs,a square-shaped cross-section in the flow channel is normally adopted,the configuration optimization of which could potentially enhance the performance of the electrolyzer.This paper describes the numerical simulation study on the impact of the flow-channel cross-section shapes in the MEA electrolyzer for CO_(2)RR.The results show that wide flow channels with low heights are beneficial to the CO_(2)RR by providing a uniform flow field of CO_(2),especially at high current densities.Moreover,the larger the electrolyzer,the more significant the effect is.This study provides a theoretical basis for the design of high-performance MEA electrolyzers for CO_(2)RR.
基金supported by the National Natural Science Foundation of China(52375443)the Innovative Research Group Project of the National Natural Science Foundation of China(51921003).
文摘Improvements in aero-engine performance have made the structures of the aero-engine components increasingly complex.To better adapt to the processing requirements of narrow twisted channels such as an integral shrouded blisk,this study proposes an innovative method of electrochemical cutting in which a flexible tube electrode is controlled by online deformation during processing.In this study,the processing principle of electrochemical cutting with a flexible electrode for controlled online deformation(FECC)was revealed for the first time.The online deformation process of flexible electrodes and the machining process of profiles were analysed in depth,and the corresponding theoretical models were established.Conventional electrochemical machining(ECM)is a multi-physical field-coupled process involving electric and flow fields.In FECC,classical mechanics are introduced into the tool cathode,which must be loaded at all times during the machining process.Therefore,in this study,before and after the deformation of the flexible electrode,a corresponding simulation study was conducted to understand the influence of the online deformation of the flexible electrode on the flow and electric fields.The feasibility of flexible electrodes for online deformation and the validity of the theoretical model were verified by deformation measurements and in situ observation experiments.Finally,the method was successfully applied to the machining of nickel-based high-temperature alloys,and different specifications of flexible electrodes were used to complete the machining of the corresponding complex profiles,thereby verifying the feasibility and versatility of the method.The method proposed in this study breaks the tradition of using a non-deformable cathode for ECM and adopts a flexible electrode that can be deformed during the machining process as the tool cathode,which improves machining flexibility and provides a valuable reference to promote the ECM of complex profiles.
基金supported by the National Natural Science Foundation of China(22378431,52004338,51622406,21673298)Hunan Provincial Natural Science Foundation(2023JJ40210,2022JJ20075)+3 种基金the Science and Technology Innovation Program of Hunan Province(2023RC3259)the Key R&D plan of Hunan Province(2024JK2096)Scientifc Research Fund of Hunan Provincial Education Department(23B0699)Central South University Innovation-Driven Research Programme(2023CXQD008).
文摘High-entropy materials represent a new category of high-performance materials,first proposed in 2004 and extensively investigated by researchers over the past two decades.The definition of high-entropy materials has continuously evolved.In the last ten years,the discovery of an increasing number of high-entropy materials has led to significant advancements in their utilization in energy storage,electrocatalysis,and related domains,accompanied by a rise in techniques for fabricating high-entropy electrode materials.Recently,the research emphasis has shifted from solely improving the performance of high-entropy materials toward exploring their reaction mechanisms and adopting cleaner preparation approaches.However,the current definition of high-entropy materials remains relatively vague,and the preparation method of high-entropy materials is based on the preparation method of single metal/low-or medium-entropy materials.It should be noted that not all methods applicable to single metal/low-or medium-entropy materials can be directly applied to high-entropy materials.In this review,the definition and development of high-entropy materials are briefly reviewed.Subsequently,the classification of high-entropy electrode materials is presented,followed by a discussion of their applications in energy storage and catalysis from the perspective of synthesis methods.Finally,an evaluation of the advantages and disadvantages of various synthesis methods in the production process of different high-entropy materials is provided,along with a proposal for potential future development directions for high-entropy materials.
基金support from the National Natural Science Foundation of China(No’s.U22B2071,51874211,52031008)the Chilwee Group(CWDY-ZH-YJY-202101-001).
文摘Sodium(Na)and magnesium(Mg)are becoming important for making energy-storage batteries and structural materials.Herein,we develop a liquid-metal-electrode-assisted electrolysis route to producing Na and Mg with low-carbon emissions and no chlorine gas evolution.The clean production stems from the choice of a molten NaCl-Na_(2)CO_(3) electrolyte to prevent chlorine gas evolution,an inert nickel-based anode to produce oxygen,and a liquid metal cathode to make the cathodic product sit at the bottom of the electrolytic cell.We achieve a current efficiency of>90%for the electrolytic production of liquid Na-Sn alloy.Later,Mg-Sn alloy is prepared using the obtained Na-Sn alloy to displace Mg from molten NaCl-MgCl_(2) with a displacement efficiency of>96%.Further,Na and Mg are separated from the electrolytic Na-Sn and displaced Mg-Sn alloys by vacuum distillation with a recovery rate of>92%and Sn can be reused.Using this electrolysisdisplacement-distillation(EDD)approach,we prepare Mg from seawater.The CO_(2)emission of the EDD approach is~20.6 kg CO_(2)per kg Mg,which is less than that of the Australian Magnesium(AM)electrolysis process(~25.0 kg CO_(2)per kg Mg)and less than half that of the Pidgeon process(~45.2 kg CO_(2)per kg Mg).
文摘This study explores the potential of Michelia champaca wood as a sustainable and locally available precursor for the fabrication of high-performance supercapacitor electrodes.Activated carbons were synthesized through single-step carbonization at 400℃ and 500℃(SSC-400℃ and SSC-500℃) and double-step carbonization at 400℃(DSC-400℃),with all samples activated using H_(3)PO_(4).The effects of carbonization stratergy on the structural,morphological,and electrochemical characteristics of the resulting carbon materials were systematically evaluated,using techniques such as BET,SEM,TEM,XRD,Raman scattering,FTIR,CV,GCD and EIS.Among the samples,SSC-400℃ exhibited the best electrochemical performance,achieving a specific capacitance of 292.2 Fg^(-1),an energy density of 6.4 Wh kg^(-1),and a power density of 198.4 W kg^(-1).This superior performance is attributed to its optimized pore structure,improved sur-face functionality and enhanced conductivity.SSC-500℃showed marginally lower performance,whereas,DSC-400℃ displayed the least favorable results,indicating that double-step carbonization process may negatively affect material quality by disrupting the pore network.This work highlights a strong correlation between synthesis methodology and electrochemical efficiency,directly reinforcing the importance of process optimization in electrode material develop-ment.The findings contribute to the broader goal of developing cost-effective,renewable and environmentally friendly energy storage systems.By valorizing biomass waste,the study supports global movements toward green energy technologies and circular carbon economies,offering a viable pathway for sustainable supercapacitor development and practical applications in energy storage devices.
基金supported by the National Natural Science Foundation of China(grant No.52422511,U20A6004)the Guangdong Basic and Applied Basic Research Foundation(grant No.2022B1515120011)Guangzhou Basic and Applied Basic Research Foundation(grant No.2024A04J6362).
文摘With the continuous development of wearable electronics,wireless sensor networks and other micro-electronic devices,there is an increasingly urgent need for miniature,flexible and efficient nanopower generation technology.Triboelectric nanogenerator(TENG)technology can convert small mechanical energy into electricity,which is expected to address this problem.As the core component of TENG,the choice of electrode materials significantly affects its performance.Traditional metal electrode materials often suffer from problems such as durability,which limits the further application of TENG.Graphene,as a novel electrode material,shows excellent prospects for application in TENG owing to its unique structure and excellent electrical properties.This review systematically summarizes the recent research progress and application prospects of TENGs based on graphene electrodes.Various precision processing methods of graphene electrodes are introduced,and the applications of graphene electrode-based TENGs in various scenarios as well as the enhancement of graphene electrodes for TENG performance are discussed.In addition,the future development of graphene electrode-based TENGs is also prospectively discussed,aiming to promote the continuous advancement of graphene electrode-based TENGs.
基金the financial support by the National Natural Science Foundation of China(52072137)the National Natural Science Foundation of China(22205068)the"CUG Scholar"Scientific Research Funds at China University of Geosciences(Wuhan)(2022118)。
文摘Graphite-silicon species(Gr-Si)hybrid anodes have merged as potential candidates for high-energy lithium-ion batteries(LIBs),yet long been plagued by rapid capacity fading due to their unstable mechano-electrochemistry.The dominant approach to enhance electrochemical stability of the Gr-Si hybrid anodes typically involves the optimization of the electrode material structures and the employment of low active Si species content in electrode(<10 wt%in most instances).However,the electrode structure design,a factor of equal importance in determining the electrochemical performance of Gr-Si hybrid anodes,has received scant attention.In this study,three Gr-Si hybrid anodes with the identical material composition but distinct electrode structures are designed to investigate the mechanoelectrochemistry of the electrodes.It is revealed that the substantial volume change of Si species particles in Gr-Si hybrid anodes led to the local lattice stress of Gr at their contact interface during the charge/discharge processes,thereby increasing thermodynamic and kinetic barrier of Li-ion migration.Furthermore,the huge disparity in volume change of Si species and Gr particles trigger the separate agglomeration of these two materials,resulting in a considerable electrode volume change and increased electrochemical resistance.An advanced Gr/Si hybrid anode with upper Gr and lower Si species layer structure design addresses the above challenges using photovoltaic waste silicon sources under high Si species content(17 wt%)and areal capacity(2.0 mA h cm^(-2))in Ah-level full pouch cells with a low negative/positive(N/P)ratio of 1.09.The cell shows stable cycling for 100 cycles at 0.3 C with an impressively low capacity decay rate of 0.0546%per cycle,outperforming most reported Gr-Si hybrid anodes.
基金The Open Project of State Key Laboratory of Smart Grid Protection and Operation Control in 2022(No.SGNR0000KJJS2302150).
文摘Fully implanted brain-computer interfaces(BCIs)are preferred as they eliminate signal degradation caused by interference and absorption in external tissues,a common issue in non-fully implanted systems.To optimize the design of electroencephalography electrodes in fully implanted BCI systems,this study investigates the penetration and absorption characteristics of microwave signals in human brain tissue at different frequencies.Electromagnetic simulations are used to analyze the power density distribution and specific absorption rate(SAR)of signals at various frequen-cies.The results indicate that lower-frequency signals offer advantages in terms of power density and attenuation coeffi-cients.However,SAR-normalized analysis,which considers both power density and electromagnetic radiation hazards,shows that higher-frequency signals perform better at superficial to intermediate depths.Specifically,at a depth of 2 mm beneath the cortex,the power density of a 6.5 GHz signal is 247.83%higher than that of a 0.4 GHz signal.At a depth of 5 mm,the power density of a 3.5 GHz signal exceeds that of a 0.4 GHz signal by 224.16%.The findings suggest that 6.5 GHz is optimal for electrodes at a depth of 2 mm,3.5 GHz for 5 mm,2.45 GHz for depths of 15-20 mm,and 1.8 GHz for 25 mm.
基金funded by the National Science Centre,Poland,on the basis of the decision number UMO-2020/37/B/ST8/02097supported by the program“Excellence Initiative-Research University”for the AGH University of Krakow(IDUB AGH,No.501.696.7996,Action 4,ID 9880).
文摘Multicomponent Gd_(1−x)Sm_(x)Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)double perovskites are optimized for application in terms of chemical composi-tion and morphology for the use as oxygen electrodes in solid oxide cells.Structural studies of other physicochemical properties are con-ducted on a series of materials obtained by the sol-gel method with different ratios of Gd and Sm cations.It is documented that changing the x value,and the resulting adjustment of the average ionic radius,have a significant impact on the crystal structure,stability,as well as on the total conductivity and thermomechanical properties of the materials,with the best results obtained for the Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)composition.Oxygen electrodes are prepared using the selected compound,allowing to obtain low polarization resistance values,such as 0.086Ω·cm^(2)at 800℃.Systematic studies of electrocatalytic activity are conducted using La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(_(0.2))O_(3−δ)as the electrolyte for all electrodes,and Ce_(0.8)Gd_(0.2)O_(2−δ)electrolyte for the best performing Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)electrodes.The electrochemical data are analyzed using the distribution of relaxation times method.Also,the influence of the preparation method of the electrode material is in-ve`stigated using the electrospinning technique.Finally,the performance of the Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)electrodes is tested in a Ni-YSZ(yttria-stabilized zirconia)anode-supported cell with a Ce_(0.8)Gd_(0.2)O_(2−δ)buffer layer,in the fuel cell and electrolyzer operating modes.With the electrospun electrode,a power density of 462 mW·cm^(−2)is obtained at 700℃,with a current density of ca.0.2 A·cm^(−2)at 1.3 V for the electrolysis at the same temperature,indicating better performance compared to the sol-gel-based electrode.
基金supported by the National Research Foundation of Korea(NRF)through a grant provided by the Korean government(No.NRF-2021R1F1A1063451).
文摘Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)is a highly successful conductive polymer utilized as an electrode material in energy storage units for portable and wearable electronic de-vices.Nevertheless,employing PEDOT:PSS in supercapacitors(SC)in its pristine state presents challenges due to its suboptimal electrochemical performance and operational instability.To surmount these limita-tions,PEDOT:PSS has been integrated with carbon-based materials to form flexible electrodes,which ex-hibit physical and chemical stability during SC operation.We developed a streamlined fabrication process for high-performance SC electrodes composed of PEDOT:PSS and carbon quantum dots(CQDs).The CQDs were synthesized under microwave irradiation,yielding green-and red-light emissions.Through optimiz-ing the ratios of CQDs to PEDOT:PSS,the SC electrodes were prepared using a spray-coating technique,marking a significant improvement in device performance with a high volumetric capacitance(104.10 F cm-3),impressive energy density(19.68 Wh cm^(-3)),and excellent cyclic stability,retaining~85% of its original volumetric capacitance after 15,000 repeated GCD cycles.Moreover,the SCs,when utilized as a flexible substrate,demonstrated the ability to maintain up to~85% of their electrochemical performance even after 3,000 bending cycles(at a bending angle of 60°).These attributes render this hybrid composite an ideal candidate for a lightweight smart energy storage component in portable and wearable electronic technologies.
基金supported by the Beijing Natural Science Foundation(Grant No.L223013)。
文摘For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models and physical models,each offering unique advantages but also facing limitations.Physics-informed neural networks(PINNs)provide a robust framework to integrate data-driven models with physical principles,ensuring consistency with underlying physics while enabling generalization across diverse operational conditions.This study introduces a PINN-based approach to reconstruct open circuit voltage(OCV)curves and estimate key ageing parameters at both the cell and electrode levels.These parameters include available capacity,electrode capacities,and lithium inventory capacity.The proposed method integrates OCV reconstruction models as functional components into convolutional neural networks(CNNs)and is validated using a public dataset.The results reveal that the estimated ageing parameters closely align with those obtained through offline OCV tests,with errors in reconstructed OCV curves remaining within 15 mV.This demonstrates the ability of the method to deliver fast and accurate degradation diagnostics at the electrode level,advancing the potential for precise and efficient battery health management.
基金support provided by the National Key R&D Program of China(No.2024YFE0101500)the National Natural Science Foundation of China(No.52272257)the Natural Science Foundation of Jiangsu Province(No.BK20240109).
文摘Developing highly active and stable air electrodes remains challenging for reversible solid oxide cells(R-SOCs).Herein,we re-port an A-site high-entropy engineered perovskite oxide,La_(0.2)Pr_(0.2)Nd_(0.2)Ba_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF),and its electrocatalytic activity and stability property are systematically probed for tubular R-SOCs.The HE-LSCF air electrode exhibits excellent oxygen reduction reac-tion(ORR)activity with a low polarization resistance of 0.042Ω·cm^(2)at 700℃,which is much lower than that of La0.6Sr0.4Co_(0.8)Fe_(0.2)O_(3−δ)(LSCF),indicating the excellent catalytic activity of HE-LSCF.Meanwhile,the tubular R-SOCs with HE-LSCF shows a high peak power density of 1.18 W·cm^(−2)in the fuel cell mode and a promising electrolysis current density of−0.52 A·cm^(−2)at 1.5 V in the electrolysis mode with H_(2)(~10%H_(2)O)atmosphere at 700℃.More importantly,the tubular R-SOCs with HE-LSCF shows favorable stability under 180 h reversible cycling test.Our results show the high-entropy design can significantly enhance the activity and robustness of LSCF electrode for tubular R-SOCs.
文摘In order to address the current inability of screen printing to monitor printing pressure online,an online printing pressure monitoring system applied to screen printing machines was designed in this study.In this study,the consistency of printed electrodes was measured by using a confocal microscope and the pressure distribution detected by online pressure monitoring system was compared to investigate the relationship.The results demonstrated the relationship between printing pressure and the consistency of printed electrodes.As printing pressure increases,the ink layer at the corresponding position becomes thicker and that higher printing pressure enhances the consistency of the printed electrodes.The experiment confirms the feasibility of the online pressure monitoring system,which aids in predicting and controlling the consistency of printed electrodes,thereby improving their performance.