Self-diffraction appears when the strong laser goes through two-dimensional material suspension,and this spatial self-phase modulation(SPPM)phenomenon can be used to measure nonlinear optical parameters and achieve op...Self-diffraction appears when the strong laser goes through two-dimensional material suspension,and this spatial self-phase modulation(SPPM)phenomenon can be used to measure nonlinear optical parameters and achieve optical switch.At present,the mechanism of SPPM is still ambiguous.The debate mainly focuses on whether the phenomenon is caused by the nonlinear refractive index of the two-dimensional material or the thermal effect of the laser.The lack of theory limits the dimension of the phase modulation to the radius of the diffraction ring and the vertical imbalance.Therefore,it is urgent to establish a unified and universal SSPM theoretical system of two-dimensional material.展开更多
From Maxwell's equations and Post's formalism, a generalized chiral nonlinear Schr6dinger equation (CNLSE) is obtained for the nonlinear chiral fiber. This equation governs light transmission through a dispersive ...From Maxwell's equations and Post's formalism, a generalized chiral nonlinear Schr6dinger equation (CNLSE) is obtained for the nonlinear chiral fiber. This equation governs light transmission through a dispersive nonlinear chiral fiber with joint action of chirality in linear and nonlinear ways. The generalized CNLSE shows a modu- lation of chirality to the effect of attenuation and nonlinearity compared with the case for a conventional fiber. Simulations based on the split-step beam propagation method reveal the role of nonlinearity with cooperation to chirality playing in the pulse evolution. By adjusting its strength the role of chirality in forming solitons is demonstrated for a given circularly polarized component. The application of nonlinear optical rotation is also discussed in an all-optical switch.展开更多
We report the numerical and experimental studies of the two-dimensional Brillouin gain spectrum(BGS)distribution deformation induced by the self-phase modulation in the Brillouin optical time domain reflectometry(BOTD...We report the numerical and experimental studies of the two-dimensional Brillouin gain spectrum(BGS)distribution deformation induced by the self-phase modulation in the Brillouin optical time domain reflectometry(BOTDR)with a 20.6 km sensing distance.The BGS distribution deformation is investigated by analyzing the evolution of the point spread function along the fiber in the two-dimensional model of the BOTDR.In the simulation and experimental results,the specific deformation degree of the BGS distribution induced by the self-phase modulation is related to the pump pulse profile,pump pulse peak power,BGS demodulation method,and detected scattered light component.By comprehensively analyzing the evolution of the point spread function induced by the self-phase modulation and using the image deconvolution,a typical BOTDR sensor with a 25 ns pump pulse reaches the 20 cm spatial resolution over the 20.6 km sensing fiber.展开更多
Supercontinuum white laser with large bandwidth and high pulse energy would offer incredible versatility and opportunities for basic science and high technology applications. Here, we report the generation of high-eff...Supercontinuum white laser with large bandwidth and high pulse energy would offer incredible versatility and opportunities for basic science and high technology applications. Here, we report the generation of high-efficiency 2.8-octave-spanning ultraviolet- visible-infrared (UV-Vis-IR) (with 350-2500 nm 25 dB bandwidth) supercontinuum white laser from a single chirped periodically poled lithium niobate (CPPLN) nonlinear crystal via synergic high-harmonic generation (HHG) and self-phase modulation (SPM). The CPPLN exhibits multiple controllable reciprocal-lattice bands to simultaneously support the quasi-phase matching (QPM) for simultaneous broadband 2nd-10th HHG via cascaded three-wave mixing against a broadband fundamental pump laser. Due to the efficient second-order nonlinearity (2nd-NL) up-conversion and significant 3rd-NL SPM effect both in the pump and HHG laser pulses, 350-2500 nm supercontinuum white laser is eventually obtained with 17 μJ per pulse under pump of 45 μJ per pulse mid-infrared femtosecond laser corresponding to an average high conversion efficiency of 37%. Our work opens up a route towards creating UV-Vis-IR all-spectrum white lasers through engineering the synergic action of HHG and SPM effects in nonlinear crystals for applications in ultrafast spectroscopy, single-shot remote sensing, biological imaging, and so on.展开更多
An ultrashort 10-GHz pulse generation scheme was successfully demonstrated using a bulk material InGaAsP electroabsorption modulator to generate the seed pulse. A self-phase modulation-based reshaper was used after th...An ultrashort 10-GHz pulse generation scheme was successfully demonstrated using a bulk material InGaAsP electroabsorption modulator to generate the seed pulse. A self-phase modulation-based reshaper was used after the adiabatic soliton compression in a comb-like dispersion profiled fiber. Experiments and simulations confirm that the reshaper effectively removes the pulse pedestal and improves the pulse extinction ratio. As a result, the 10-GHz pulse had no pedestal, a high extinction ratio, and a pulse width of only 1.4 ps.展开更多
An exceptionally high stimulated Raman scattering[SRS]conversion efficiency to the first Stokes component associated with the secondary[low-frequency and low intensity]vibrational mode v2[~330 cm^[-1]]was observed in ...An exceptionally high stimulated Raman scattering[SRS]conversion efficiency to the first Stokes component associated with the secondary[low-frequency and low intensity]vibrational mode v2[~330 cm^[-1]]was observed in a BaWO4 crystal in a highly transient regime of interaction.The effect takes place in the range of pump pulse energy from~0.1 to~0.5μJ with maximum energy conversion efficiency up to 35%at 0.2μJ.The nature of the observed effects is explained by interference of SRS and self-phase modulation,where the latter is related to a noninstantaneous orientational Kerr nonlinearity in the BaWO4 crystal.展开更多
A new unsaturated wind-chime model is proposed for calculating the formation time of the diffraction rings induced by spatial self-phase modulation(SSPM) in molybdenum disulfide suspension.To optimize the traditional ...A new unsaturated wind-chime model is proposed for calculating the formation time of the diffraction rings induced by spatial self-phase modulation(SSPM) in molybdenum disulfide suspension.To optimize the traditional wind-chime model,the concentration variable of 2 D materials was introduced.The results of the unsaturated wind-chime model match quite well with the SSPM experimental results of molybdenum disulfide.Based on this model,the shortest formation time of diffraction rings and their corresponding concentration and light intensity can be predicted using limited data.Theoretically,by increasing the viscosity coefficient of the solution,the response time of the diffraction ring,to reach the maximum value,can be significantly reduced.It has advanced significance in shortening the response time of photonic diodes.展开更多
A novel method to enhance the bandwidth of a chaotic carrier from a delayed feedback semiconductor laser transmitter is pre- sented using self-phase modulation (SPM) in an optical fiber external round cavity. A physic...A novel method to enhance the bandwidth of a chaotic carrier from a delayed feedback semiconductor laser transmitter is pre- sented using self-phase modulation (SPM) in an optical fiber external round cavity. A physical model of the laser dynamics is established under the condition of optical feedback light with the SPM effect in the fiber path. A formula for frequency detuning of the optical dual-feedback under SPM is theoretically deduced. The results show that the nonlinear phase shift caused by SPM has an impact on the gain and bandwidth enhancement factor of the laser. The second-order nonlinear effect of the fiber enriches the variety of the amplitudes and phases of the laser while the nonlinear phase shift produces a number of new frequencies, which can spread the bandwidth. Numerical results reveal that with the SPM effect, the bandwidth can be enhanced 4 times more than the bandwidth without it, and the relaxation oscillation frequency of the chaotic laser is increased to 2.56 times more than that of the laser without the fiber path. The enhancement of the chaotic bandwidth can be extended by increasing the optical fiber length, the coupling-feedback ratio, the mirror reflectance and the second order nonlinear coefficient affect.展开更多
基金Project(6187031976)supported by the National Natural Science Foundation of China
文摘Self-diffraction appears when the strong laser goes through two-dimensional material suspension,and this spatial self-phase modulation(SPPM)phenomenon can be used to measure nonlinear optical parameters and achieve optical switch.At present,the mechanism of SPPM is still ambiguous.The debate mainly focuses on whether the phenomenon is caused by the nonlinear refractive index of the two-dimensional material or the thermal effect of the laser.The lack of theory limits the dimension of the phase modulation to the radius of the diffraction ring and the vertical imbalance.Therefore,it is urgent to establish a unified and universal SSPM theoretical system of two-dimensional material.
基金Supported by the National Natural Science Foundation of China under Grant No 60977032the Program for Innovation Research of Science of Harbin Institute of Technology(PIRS-HIT)under Grant No T201407
文摘From Maxwell's equations and Post's formalism, a generalized chiral nonlinear Schr6dinger equation (CNLSE) is obtained for the nonlinear chiral fiber. This equation governs light transmission through a dispersive nonlinear chiral fiber with joint action of chirality in linear and nonlinear ways. The generalized CNLSE shows a modu- lation of chirality to the effect of attenuation and nonlinearity compared with the case for a conventional fiber. Simulations based on the split-step beam propagation method reveal the role of nonlinearity with cooperation to chirality playing in the pulse evolution. By adjusting its strength the role of chirality in forming solitons is demonstrated for a given circularly polarized component. The application of nonlinear optical rotation is also discussed in an all-optical switch.
基金supported by the National Natural Science Foundation of China(Grant Nos.62105045 and 62205037)the National Science Fund for Distinguished Young Scholars(Grant No.61825501)Chongqing Natural Science Foundation of Innovative Research Groups(Grant No.cstc2020jcyj-cxttX0005).
文摘We report the numerical and experimental studies of the two-dimensional Brillouin gain spectrum(BGS)distribution deformation induced by the self-phase modulation in the Brillouin optical time domain reflectometry(BOTDR)with a 20.6 km sensing distance.The BGS distribution deformation is investigated by analyzing the evolution of the point spread function along the fiber in the two-dimensional model of the BOTDR.In the simulation and experimental results,the specific deformation degree of the BGS distribution induced by the self-phase modulation is related to the pump pulse profile,pump pulse peak power,BGS demodulation method,and detected scattered light component.By comprehensively analyzing the evolution of the point spread function induced by the self-phase modulation and using the image deconvolution,a typical BOTDR sensor with a 25 ns pump pulse reaches the 20 cm spatial resolution over the 20.6 km sensing fiber.
基金National Natural Science Foundation of China(11974119)Science and Technology Project of Guangdong(2020B010190001)+1 种基金Guangdong Innovative and Entrepreneurial Research Team Program(2016ZT06C594)National Key R&D Program of China(2018YFA 0306200).
文摘Supercontinuum white laser with large bandwidth and high pulse energy would offer incredible versatility and opportunities for basic science and high technology applications. Here, we report the generation of high-efficiency 2.8-octave-spanning ultraviolet- visible-infrared (UV-Vis-IR) (with 350-2500 nm 25 dB bandwidth) supercontinuum white laser from a single chirped periodically poled lithium niobate (CPPLN) nonlinear crystal via synergic high-harmonic generation (HHG) and self-phase modulation (SPM). The CPPLN exhibits multiple controllable reciprocal-lattice bands to simultaneously support the quasi-phase matching (QPM) for simultaneous broadband 2nd-10th HHG via cascaded three-wave mixing against a broadband fundamental pump laser. Due to the efficient second-order nonlinearity (2nd-NL) up-conversion and significant 3rd-NL SPM effect both in the pump and HHG laser pulses, 350-2500 nm supercontinuum white laser is eventually obtained with 17 μJ per pulse under pump of 45 μJ per pulse mid-infrared femtosecond laser corresponding to an average high conversion efficiency of 37%. Our work opens up a route towards creating UV-Vis-IR all-spectrum white lasers through engineering the synergic action of HHG and SPM effects in nonlinear crystals for applications in ultrafast spectroscopy, single-shot remote sensing, biological imaging, and so on.
基金Supported by the Basic Research Foundation of Tsinghua Na-tional Laboratory for Information Science and Technology (TNList)the National Natural Science Foundation of China (No. 60577033)the Open Fund of the Key Laboratory of Optical Communication and Lightwave Technologies (Beijing University of Posts and Telecommunications), Ministry of Education, China
文摘An ultrashort 10-GHz pulse generation scheme was successfully demonstrated using a bulk material InGaAsP electroabsorption modulator to generate the seed pulse. A self-phase modulation-based reshaper was used after the adiabatic soliton compression in a comb-like dispersion profiled fiber. Experiments and simulations confirm that the reshaper effectively removes the pulse pedestal and improves the pulse extinction ratio. As a result, the 10-GHz pulse had no pedestal, a high extinction ratio, and a pulse width of only 1.4 ps.
基金funded by the Russian Science Foundation(No.22-79-10068)。
文摘An exceptionally high stimulated Raman scattering[SRS]conversion efficiency to the first Stokes component associated with the secondary[low-frequency and low intensity]vibrational mode v2[~330 cm^[-1]]was observed in a BaWO4 crystal in a highly transient regime of interaction.The effect takes place in the range of pump pulse energy from~0.1 to~0.5μJ with maximum energy conversion efficiency up to 35%at 0.2μJ.The nature of the observed effects is explained by interference of SRS and self-phase modulation,where the latter is related to a noninstantaneous orientational Kerr nonlinearity in the BaWO4 crystal.
基金financially supported by the National Natural Science Foundation of China (Nos. 61875232, 61874141, and 11904239)the China Postdoctoral Science Foundation (No. 2021M690169)
文摘A new unsaturated wind-chime model is proposed for calculating the formation time of the diffraction rings induced by spatial self-phase modulation(SSPM) in molybdenum disulfide suspension.To optimize the traditional wind-chime model,the concentration variable of 2 D materials was introduced.The results of the unsaturated wind-chime model match quite well with the SSPM experimental results of molybdenum disulfide.Based on this model,the shortest formation time of diffraction rings and their corresponding concentration and light intensity can be predicted using limited data.Theoretically,by increasing the viscosity coefficient of the solution,the response time of the diffraction ring,to reach the maximum value,can be significantly reduced.It has advanced significance in shortening the response time of photonic diodes.
基金supported by the Academic Natural Science Basic Item of the Education Department of Jiangsu Province of China (Grant No. 08KJ510019)
文摘A novel method to enhance the bandwidth of a chaotic carrier from a delayed feedback semiconductor laser transmitter is pre- sented using self-phase modulation (SPM) in an optical fiber external round cavity. A physical model of the laser dynamics is established under the condition of optical feedback light with the SPM effect in the fiber path. A formula for frequency detuning of the optical dual-feedback under SPM is theoretically deduced. The results show that the nonlinear phase shift caused by SPM has an impact on the gain and bandwidth enhancement factor of the laser. The second-order nonlinear effect of the fiber enriches the variety of the amplitudes and phases of the laser while the nonlinear phase shift produces a number of new frequencies, which can spread the bandwidth. Numerical results reveal that with the SPM effect, the bandwidth can be enhanced 4 times more than the bandwidth without it, and the relaxation oscillation frequency of the chaotic laser is increased to 2.56 times more than that of the laser without the fiber path. The enhancement of the chaotic bandwidth can be extended by increasing the optical fiber length, the coupling-feedback ratio, the mirror reflectance and the second order nonlinear coefficient affect.