Ferroelectric thin/thick films with large electrocaloric(EC)effect are critical for solid state cooling technologies.Here,large positive EC effects with two EC peaks in a broad temperature range(~100 K)were obtained i...Ferroelectric thin/thick films with large electrocaloric(EC)effect are critical for solid state cooling technologies.Here,large positive EC effects with two EC peaks in a broad temperature range(~100 K)were obtained in 0.95Pb_(0.92)La_(0.08)(Zr_(0.70)Ti_(0.30))_(0.98)O_(3)-0.05BiFeO_(3)(BFO-La-codoped PZT)epitaxial thin films deposited on the(100),(110)and(111)oriented SrTiO_(3)(STO)substrates by a sol-gel method.The thin film deposited on the(111)oriented STO substrate exhibited a stronger EC effect(~20.6 K at 1956 kV/cm)near room temperature.However,the thin films deposited on the(100)and(110)oriented STO substrates exhibited a stronger EC effect(~18.8 K at 1852 kV/cm and~20.8 K at 1230 kV/cm,respectively)around the peak of the dielectric permittivity(T_(m),~375 K).Particularly,as the direction of the applied electric field was switched(E<0),the DT of the(100)-oriented thin films around T_(m) was enhanced significantly from 18.8 K to 38.1 K.The self-induced-poling during the preparing process maybe plays a key role on the magic phenomenon.It can be concluded that the BFO-La-codoped PZT epitaxial thin films are promising candidates for application in the next solid-state cooling devices.展开更多
基金supported by the National Natural Science Foundation of China(51402196,51973170)the Innovation Project of Guangxi Graduate Education(YCSW2020047)+3 种基金the Guangxi Natural Science Foundation(2017GXNSFFA198015)the open Foundation of Guangxi Key Laboratory of Optical and Electronic Materials and Devices(20KF-6)the Natural Science Foundation of Shaanxi Province(Grant No.2019JCW-17,2020JCW-15)the Development and Planning Guide Foundation of Xidian University(Grant No.21103200005).
文摘Ferroelectric thin/thick films with large electrocaloric(EC)effect are critical for solid state cooling technologies.Here,large positive EC effects with two EC peaks in a broad temperature range(~100 K)were obtained in 0.95Pb_(0.92)La_(0.08)(Zr_(0.70)Ti_(0.30))_(0.98)O_(3)-0.05BiFeO_(3)(BFO-La-codoped PZT)epitaxial thin films deposited on the(100),(110)and(111)oriented SrTiO_(3)(STO)substrates by a sol-gel method.The thin film deposited on the(111)oriented STO substrate exhibited a stronger EC effect(~20.6 K at 1956 kV/cm)near room temperature.However,the thin films deposited on the(100)and(110)oriented STO substrates exhibited a stronger EC effect(~18.8 K at 1852 kV/cm and~20.8 K at 1230 kV/cm,respectively)around the peak of the dielectric permittivity(T_(m),~375 K).Particularly,as the direction of the applied electric field was switched(E<0),the DT of the(100)-oriented thin films around T_(m) was enhanced significantly from 18.8 K to 38.1 K.The self-induced-poling during the preparing process maybe plays a key role on the magic phenomenon.It can be concluded that the BFO-La-codoped PZT epitaxial thin films are promising candidates for application in the next solid-state cooling devices.