Self-Explaining Autonomous Systems(SEAS)have emerged as a strategic frontier within Artificial Intelligence(AI),responding to growing demands for transparency and interpretability in autonomous decisionmaking.This stu...Self-Explaining Autonomous Systems(SEAS)have emerged as a strategic frontier within Artificial Intelligence(AI),responding to growing demands for transparency and interpretability in autonomous decisionmaking.This study presents a comprehensive bibliometric analysis of SEAS research published between 2020 and February 2025,drawing upon 1380 documents indexed in Scopus.The analysis applies co-citation mapping,keyword co-occurrence,and author collaboration networks using VOSviewer,MASHA,and Python to examine scientific production,intellectual structure,and global collaboration patterns.The results indicate a sustained annual growth rate of 41.38%,with an h-index of 57 and an average of 21.97 citations per document.A normalized citation rate was computed to address temporal bias,enabling balanced evaluation across publication cohorts.Thematic analysis reveals four consolidated research fronts:interpretability in machine learning,explainability in deep neural networks,transparency in generative models,and optimization strategies in autonomous control.Author co-citation analysis identifies four distinct research communities,and keyword evolution shows growing interdisciplinary links with medicine,cybersecurity,and industrial automation.The United States leads in scientific output and citation impact at the geographical level,while countries like India and China show high productivity with varied influence.However,international collaboration remains limited at 7.39%,reflecting a fragmented research landscape.As discussed in this study,SEAS research is expanding rapidly yet remains epistemologically dispersed,with uneven integration of ethical and human-centered perspectives.This work offers a structured and data-driven perspective on SEAS development,highlights key contributors and thematic trends,and outlines critical directions for advancing responsible and transparent autonomous systems.展开更多
Speeding is one of the primary contributors to rural road crashes.Self-explaining theory offers a solution to reduce speeding,which suggests that well-designed facility environments(i.e.,road facilities and surroundin...Speeding is one of the primary contributors to rural road crashes.Self-explaining theory offers a solution to reduce speeding,which suggests that well-designed facility environments(i.e.,road facilities and surrounding landscapes)can automatically guide drivers to choose appropriate speeds on different road categories.This study proposes an improved lightweight convolutional neural network(LW-CNN)that includes drivers’visual perception characteristics(i.e.,depth perception and dynamic vision)to conduct the self-explaining analysis of the facility environment on 2-lane rural roads.Data for this study are gathered through naturalistic driving experiments on 2-lane rural roads across five Chinese provinces.A total of 3502 visual facility environment images,alongside their corresponding operation speeds and speed limits,are collected.The improved LW-CNN exhibits high accuracy and efficiency in predicting operation speeds with these visual facility environment images,achieving a train loss of 0.05%and a validation loss of 0.15%.The semantics of facility environments affecting operation speeds are further identified by combining this LW-CNN with the gradient-weighted class activation mapping(Grad-CAM)algorithm and the semantic segmentation network.Then,six typical 2-lane rural road categories perceived by drivers with different operation speeds and speeding probability(SP)are sum-marized using k-means clustering.An objective and comprehensive analysis of each category’s semantic composition and depth features is conducted to evaluate their influence on drivers’speeding probability and road category perception.The findings of this study can be directly used to optimize facility environments from drivers’visual perception to decrease speeding-related crashes.展开更多
基金partially funded by the Programa Nacional de Becas y Crédito Educativo of Peru and the Universitat de València,Spain.
文摘Self-Explaining Autonomous Systems(SEAS)have emerged as a strategic frontier within Artificial Intelligence(AI),responding to growing demands for transparency and interpretability in autonomous decisionmaking.This study presents a comprehensive bibliometric analysis of SEAS research published between 2020 and February 2025,drawing upon 1380 documents indexed in Scopus.The analysis applies co-citation mapping,keyword co-occurrence,and author collaboration networks using VOSviewer,MASHA,and Python to examine scientific production,intellectual structure,and global collaboration patterns.The results indicate a sustained annual growth rate of 41.38%,with an h-index of 57 and an average of 21.97 citations per document.A normalized citation rate was computed to address temporal bias,enabling balanced evaluation across publication cohorts.Thematic analysis reveals four consolidated research fronts:interpretability in machine learning,explainability in deep neural networks,transparency in generative models,and optimization strategies in autonomous control.Author co-citation analysis identifies four distinct research communities,and keyword evolution shows growing interdisciplinary links with medicine,cybersecurity,and industrial automation.The United States leads in scientific output and citation impact at the geographical level,while countries like India and China show high productivity with varied influence.However,international collaboration remains limited at 7.39%,reflecting a fragmented research landscape.As discussed in this study,SEAS research is expanding rapidly yet remains epistemologically dispersed,with uneven integration of ethical and human-centered perspectives.This work offers a structured and data-driven perspective on SEAS development,highlights key contributors and thematic trends,and outlines critical directions for advancing responsible and transparent autonomous systems.
基金supported by the National Natural Science Foundation of China(No.52102416)the Natural Science Foundation of Shanghai(No.22ZR1466000)the Fundamental Research Funds for the Central Universities of China(No.22120240159).
文摘Speeding is one of the primary contributors to rural road crashes.Self-explaining theory offers a solution to reduce speeding,which suggests that well-designed facility environments(i.e.,road facilities and surrounding landscapes)can automatically guide drivers to choose appropriate speeds on different road categories.This study proposes an improved lightweight convolutional neural network(LW-CNN)that includes drivers’visual perception characteristics(i.e.,depth perception and dynamic vision)to conduct the self-explaining analysis of the facility environment on 2-lane rural roads.Data for this study are gathered through naturalistic driving experiments on 2-lane rural roads across five Chinese provinces.A total of 3502 visual facility environment images,alongside their corresponding operation speeds and speed limits,are collected.The improved LW-CNN exhibits high accuracy and efficiency in predicting operation speeds with these visual facility environment images,achieving a train loss of 0.05%and a validation loss of 0.15%.The semantics of facility environments affecting operation speeds are further identified by combining this LW-CNN with the gradient-weighted class activation mapping(Grad-CAM)algorithm and the semantic segmentation network.Then,six typical 2-lane rural road categories perceived by drivers with different operation speeds and speeding probability(SP)are sum-marized using k-means clustering.An objective and comprehensive analysis of each category’s semantic composition and depth features is conducted to evaluate their influence on drivers’speeding probability and road category perception.The findings of this study can be directly used to optimize facility environments from drivers’visual perception to decrease speeding-related crashes.