Gold colloid was prepared by chemical reduction of hydrogen tetrachloroaurate, polyelectrolyte/gold nanoparticle/silica nanoparticie composite films were fabricated via an electrostatic self-assembly multilayer method...Gold colloid was prepared by chemical reduction of hydrogen tetrachloroaurate, polyelectrolyte/gold nanoparticle/silica nanoparticie composite films were fabricated via an electrostatic self-assembly multilayer method, and composite films of gold nanoparticle dispersed in silica matrix were formed by heat-treating the polyelectrolyte/gold nanoparticle/silica nanoparticle composite films to eliminate the polyelectrolyte. The obtained composite films were investigated with UV-vis, TEM, AFM and XRD. The results show that the self-assembly multilayer method is a promising process to produce composite films of gold nanoparticle-dispersed in organic and/or inorganic matrixes.展开更多
The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium...The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium alginate-based multilayer film is fabricated via a layer-by-layer(LBL)self-assembly method.With the help of superior interaction between the layers,the multilayer film possesses excellent mechanical properties(with a tensile strength of 50 MPa).Besides,the film displays outstanding water retention property(blocking moisture of 97.56%)and ultraviolet blocking property.Anthocyanin is introduced into the film to detect the food quality since it is one natural plant polyphenol that is sensitive to the pH changes ranging from 1 to 13 in food when spoilage occurs.It is noted that the film is also bacteriostatic which is desired for food packaging.This study describes a simple technique for the development of advanced multifunctional and fully biodegradable food packaging film and it is a sustainable alternative to plastic packaging.展开更多
The self-assembled nanoparticles(SAN)formed during the decoction process of traditional Chinese medicine(TCM)exhibit non-uniform particle sizes and a tendency for aggregation.Our group found that the p H-driven method...The self-assembled nanoparticles(SAN)formed during the decoction process of traditional Chinese medicine(TCM)exhibit non-uniform particle sizes and a tendency for aggregation.Our group found that the p H-driven method can improve the self-assembly phenomenon of Herpetospermum caudigerum Wall.,and the SAN exhibited uniform particle size and demonstrated good stability.In this paper,we analyzed the interactions between the main active compound,herpetrione(Her),and its main carrier,Herpetospermum caudigerum Wall.polysaccharide(HCWP),along with their self-assembly mechanisms under different p H values.The binding constants of Her and HCWP increase with rising p H,leading to the formation of Her-HCWP SAN with a smaller particle size,higher zeta potential,and improved thermal stability.While the contributions of hydrogen bonding and electrostatic attraction to the formation of Her-HCWP SAN increase with rising p H,the hydrophobic force consistently plays a dominant role.This study enhances our scientific understanding of the self-assembly phenomenon of TCM improved by p H driven method.展开更多
This study proposes a three-dimensional(3D)coupled magneto-electro-elastic problem for the static analysis of multilayered plates embedding piezomagnetic and piezoelectric layers by considering both sensor and actuato...This study proposes a three-dimensional(3D)coupled magneto-electro-elastic problem for the static analysis of multilayered plates embedding piezomagnetic and piezoelectric layers by considering both sensor and actuator configurations.The 3D governing equations for the magneto-electro-elastic static behavior of plates are explicitly show that are made by the three 3D equilibrium equations,the 3D divergence equation for magnetic induction,and the 3D divergence equation for the electric displacement.The proposed solution involves the exponential matrix in the thickness direction and primary variables’harmonic forms in the in-plane ones.A closed-form solution is performed considering simply-supported boundary conditions.Interlaminar continuity conditions are imposed for displacements,magnetic potential,electric potential,transverse shear/normal stresses,transverse normal magnetic induction and transverse normal electric displacement.Therefore,a layerwise approach is adopted.The results section is composed of an assessment part,where the present model is compared to past 3D electro-elastic or magneto-elastic formulations and a new benchmark part.Benchmarks consider sensor and actuator plate configurations for the fully coupled magneto-electro-elastic cases for different thickness ratios.Tabular and graphical results are presented for displacements,stresses,magnetic potential,electric potential,transverse normal magnetic induction and transverse normal electric displacement.For each presented benchmark,magneto-electro-elastic coupling and thickness and material layer effects are discussed in depth.展开更多
Janus films with asymmetric physical/chemical properties have attracted con siderable attention due to their promising applications in personal thermal management,electronic skin s,sensors,actuators,etc.However,tradit...Janus films with asymmetric physical/chemical properties have attracted con siderable attention due to their promising applications in personal thermal management,electronic skin s,sensors,actuators,etc.However,traditional methods for fabricating Janus films conventionally need the assistance of an interface or auxiliary equipment,which are usually complex and time-consuming.Herein,flexible poly(vinyl alcohol)(PVA)/graphene oxide(GO)/h-BN(recorded as PVA/GO/h-BN)Janus films with thermally,optically,and electrically anisotropic properties are fabricated by a simple density deposition self-assem bly method,which just utilizes the density difference between GO and h-BN during water evaporation.Experimental results show that the two sides of the acquired Janus films have obvious asymmetric characteristics.In the original state of the PVA/GO/h-BN Janus films,the thermal conductivity of the GO side(10.06 W·m^(-1)·K^(-1))is generally lower than that of the h-BN side(10.48W·m^(-1)·K^(-1)).But after GO is reduced,the thermal conductivity of the rGO side reaches 12.17 W·m^(-1)·K^(-1),surpassing that of the h-BN side.In addition,the relative reflectance of the h-BN side of Janus film is also significantly higher than that of the rGO side,and the su rface resistance difference between the two sides is about 4 orders of magnitude.The prepared PVA/GO/h-BN Janus films show great application potential in human thermal management,light conversion switches,and electronic skins.This study provides a simple and versatile strategy for fabricating Janus films with multifunctional(such as thermal,optical,and electrical)anisotropies.展开更多
Multilayer thin films of alternately adsorbed layers of polyelectrolytes PDDA and PS-119 were formed on both planar silica substrates and optical fibers through the ionic self-assembly technique. Intrinsic Fabry-Perot...Multilayer thin films of alternately adsorbed layers of polyelectrolytes PDDA and PS-119 were formed on both planar silica substrates and optical fibers through the ionic self-assembly technique. Intrinsic Fabry-Perot cavities were fabricated by stepwise assembling the polyelectrolytes onto the ends of optical fibers for the purposes of fiber optical device and sensor development. Ionically assembled polyelectrolyte multilayer thin films, in which. there are hydrophilic side groups with strong affinity towards water molecules, are a category of humidity-sensitive functional materials. The polyelectrolyte multilayer thin film Fabry-Perot cavity-type fiber optical humidity sensor can work over a wide range from about 0% RH to about 100% RH with a response time less than 1 s.展开更多
With deep mining of coal mines, prospecting multilayer water-filled goaf has become a new content that results from geophysical exploration in coalfields. The central loop transient electromagnetic (TEM) method is f...With deep mining of coal mines, prospecting multilayer water-filled goaf has become a new content that results from geophysical exploration in coalfields. The central loop transient electromagnetic (TEM) method is favorable for prospecting conductive layers because of the coupling relationship between its field structure and formation. However, the shielding effect of conductive overburden would not only require a longer observation time when prospecting the same depth but also weaken the anomalous response of underlying layers. Through direct time domain numerical simulation and horizontal layered earth forward modeling, this paper estimates the length of observation time required to prospect the target, and the distinguishable criterion of multilayer water-filled goal is presented with observation error according to the effect of noise on observation data. The observed emf curves from Dazigou Coal Mine, Shanxi Province can distinguish multilayer water-filled goaf. In quantitative inversion interpretation of observed curves, using electric logging data as initial parameters restrains the equivalence caused by coal formation thin layers. The deduced three-layer and two-layer water-filled goals are confirmed by the drilling hole. The result suggests that when observation time is long enough and with the anomalous situation of underlying layers being greater than the observation error, the use of the central loop TEM method to orosoect a multilaver water-filled goaf is feasible.展开更多
This paper presents the recursive asymptotic hybrid matrix method for acoustic waves in multilayered piezoelectric media. The hybrid matrix method preserves the numerical stability and accuracy across large and small ...This paper presents the recursive asymptotic hybrid matrix method for acoustic waves in multilayered piezoelectric media. The hybrid matrix method preserves the numerical stability and accuracy across large and small thicknesses. For discussion and comparison, the scattering matrix method is also presented in physics-based form and coherent form. The latter form resembles closely that of hybrid matrix method and helps to highlight their relationship and distinction. For both scattering and hybrid matrix methods, their formulations in terms of eigenwaves solution are provided concisely. Making use of the hybrid matrix, the recursive asymptotic method without eigenwaves solution is described and discussed. The method bypasses the intricacies of eigenvalue-eigenvector approach and requires only elementary matrix operations along with thin- layer asymptotic approximation. It can be used to determine Green’s function matrix readily and facilitates the trade-off between computation efficiency and accuracy.展开更多
A Newton learning method for a neural network of multilayer perceptrons is proposed in this paper. Furthermore, a hybrid learning method id legitimately developed in combination of the backpropagation method proposed ...A Newton learning method for a neural network of multilayer perceptrons is proposed in this paper. Furthermore, a hybrid learning method id legitimately developed in combination of the backpropagation method proposed by Rumelhart et al with the Newton learning method. Finally, the hybrid learning algorithm is compared with the backpropagation algorithm by some illustrations, and the results show that this hybrid leaming algorithm bas the characteristics of rapid convergence.展开更多
Starting with the governing equations in terms of displacements of 3D elastic media, the solutions to displacement components and their first derivatives are obtained by the application of a double Fourier transform a...Starting with the governing equations in terms of displacements of 3D elastic media, the solutions to displacement components and their first derivatives are obtained by the application of a double Fourier transform and an order reduction method based on the Cayley-Hamilton theorem. Combining the solutions and the constitutive equations which connect the displacements and stresses, the transfer matrix of a single soil layer is acquired. Then, the state space solution to multilayered elastic soils is further obtained by introducing the boundary conditions and continuity conditions between adjacent soil layers. The numerical analysis based on the present theory is carried out, and the vertical displacements of multilayered foundation with a weak and a hard underlying stratums are compared and discussed.展开更多
Polyelectrolyte multilayers were self-assembled onto planar glass substrates and multimode optic fibers. The multilayer thin films deposited on glass substrates were characterized by using UV-vis spectroscopy and X-ra...Polyelectrolyte multilayers were self-assembled onto planar glass substrates and multimode optic fibers. The multilayer thin films deposited on glass substrates were characterized by using UV-vis spectroscopy and X-ray photoelectron spectroscope. The multilayer thin films containing hydrophilic side-groups possessed are affinity for uwer molecules. The adsorption and desorption of free water vapor gave rise to the changes in the refractive index and in the reflectance of the thin films. A multilayer thin film based fiber optic humidity sensor with an LED light source of 0.85 mum was designed. Under certain conditions, the rejected light intensity of the thin film sensor was a function of the humidity of air. About 30 bilayers was optimal for the multilayer thin film sensor working at wavelength of 0.85 mum. This sensor can work over almost the whole relative humidity range with very good sensitivity.展开更多
We demonstrated a chemical process in the fabrication of a SERS fiber probe with an ultrahigh sensitivity.The synthesis was carried out by preparing Au@Ag core-shell nanorods (Au@Ag-NRs) selfassembled on polyelectroly...We demonstrated a chemical process in the fabrication of a SERS fiber probe with an ultrahigh sensitivity.The synthesis was carried out by preparing Au@Ag core-shell nanorods (Au@Ag-NRs) selfassembled on polyelectrolyte (PE) multilayers,for which Au@Ag-NRs were controlled by adjusting the silver layer thickness.The effect of silver layer thickness of Au@Ag-NRs on the SERS performance of the fiber probe was investigated.The SERS fiber probe shows the best performance when the silver layer thickness is controlled at 8.57 nm.Under the condition of optimizing silver layer thickness,the fiber probe exhibits ultra-high sensitivity (i e,10^(-10) M crystalline violet,CV),good reproducibility (i e,RSD of 3.5%) and stability.Besides,electromagnetic field distribution of the SERS fiber probe was also investigated.The strongest enhancement is found within the core of fiber,whereas a weakened electromagnetic field exists in the fiber cladding layer.The SERS fiber probe can be a good candidate in ultra-trace detection for biomedical and environmental areas.展开更多
Ti O2-organic multilayered nanocomposite films were deposited on a self-assembled monolayer-coated silicon substrate based on layer-by-layer technique and chemical bath deposition method by a hydrolysis of Ti Cl4 in a...Ti O2-organic multilayered nanocomposite films were deposited on a self-assembled monolayer-coated silicon substrate based on layer-by-layer technique and chemical bath deposition method by a hydrolysis of Ti Cl4 in an acid aqueous solution. The chemical compositions, surface morphologies and mechanical properties of the films were investigated by X-ray photoelectron spectrometer(XPS), scanning electron microscopy(SEM) and nanoindentation depth-sensing technique, respectively. The results indicate that the major chemical compositions of the films are Ti and O. The principal mechanism for the nucleation and growth of the films is homogeneous nucleation, and the layer number of films has great influence on the surface morphology and roughness of the films. In addition, mechanical nanoindentation testing presents a significant increase in hardness and fracture toughness of titanium dioxide multilayered films compared with single-layer titanium dioxide thin film.展开更多
Here, large-scale and uniform hexagonal zinc oxide(ZnO) nanosheet films were deposited onto indium tin oxide(ITO)-coated transparent conducting glass substrates via a facile galvanic displacement deposition process. C...Here, large-scale and uniform hexagonal zinc oxide(ZnO) nanosheet films were deposited onto indium tin oxide(ITO)-coated transparent conducting glass substrates via a facile galvanic displacement deposition process. Compared with other commonly used solution methods, this process avoids high temperature and electric power as well as supporting agents to make it simple and cost-effective. The as-fabricated ZnO nanosheet films have uniform hexagonal wurtzite structure. The photoelectrochemical(PEC) cell based on ZnO nanosheet film/ITO photoelectrode was also fabricated and its performance was improved by optimizing the solution concentration. A higher photocurrent density of*500 l A cm^(-2)under AM 1.5 G simulated illumination of 100 m W cm^(-2)with zero bias potential(vs. Ag/AgCl electrode) was obtained, which may ascribe to the increased surface-to-volume ratio of disordered Zn O nanosheet arrays. Our developed method may be used to deposit other oxide semiconductors, and the Zn O nanosheet film/ITO PEC cell can be used to design low-cost optoelectronic and photoelectrochemical devices.展开更多
The analytical layer-elements for a single poroelastic soil layer and the underlying half-space are established using an algebraic manipulation and Hankel trans- form. According to the boundary conditions and adjacent...The analytical layer-elements for a single poroelastic soil layer and the underlying half-space are established using an algebraic manipulation and Hankel trans- form. According to the boundary conditions and adjacent continuity conditions of general stresses and displacements, a global matrix equation in the transform domain for multi- layered saturated soil media is assembled and solved. Solutions in the frequency domain can be further obtained with an inverse Hankel transform. Numerical examples are used to examine accuracy of the present method and demonstrate effects of soil parameters and load conditions on dynamic responses of the multilayered poroelastic saturated soils.展开更多
In this study,the nonlocal strain gradient theory is adopted to investigate the static bending deformation of a functionally graded(FG)multilayered nanoplate made of onedimensional hexagonal piezoelectric quasicrystal...In this study,the nonlocal strain gradient theory is adopted to investigate the static bending deformation of a functionally graded(FG)multilayered nanoplate made of onedimensional hexagonal piezoelectric quasicrystal(PQC)materials subjected to mechanical and electrical surface loadings.The FG materials are assumed to be exponential distribution along the thickness direction.Exact closed-form solutions of an FG PQC nanoplate including nonlocality and strain gradient micro-size dependency are derived by utilizing the pseudo-Stroh formalism.The propagator matrix method is further used to solve the multilayered case by assuming that the layer interfaces are perfectly contacted.Numerical examples for two FG sandwich nanoplates made of piezoelectric crystals and PQC are provided to show the influences of nonlocal parameter,strain gradient parameter,exponential factor,length-to-width ratio,loading form,and stacking sequence on the static deformation of two FG sandwich nanoplates,which play an important role in designing new smart composite structures in engineering.展开更多
Deuterated polymer microspheres can be used as a neutron source in conjunction with lasers because thermonuclear fusion neutrons can be produced efficiently by collisions of the resulting energetic deuterium ions.A ne...Deuterated polymer microspheres can be used as a neutron source in conjunction with lasers because thermonuclear fusion neutrons can be produced efficiently by collisions of the resulting energetic deuterium ions.A new type of solid deuterated polymer microsphere with a carbon hydrogen–carbon deuterium(CH-CD)multilayer has been designed for preparing the target for inertial confinement fusion(ICF)experiments.To fabricate these solid CH-CD multilayer microspheres,CH beads are first fabricated by a microfluidic technique,and the CD coating layer is prepared by a plasma polymerization method.Both polystyrene(PS)and poly(α-methylstyrene)(PAMS)are used as the material sources for the CH beads.The effects of the PS and PAMS materials on the quality of the solid CH beads and the resulting CH-CD multilayer polymer microspheres are investigated.The solid PS beads have better sphericity and a smoother surface,but large vacuoles are observed in solid PS-CD multilayer microspheres owing to the presence of residual fluorobenzene in the beads and a glass transition temperature of the solid PS beads that is lower than the temperature of plasma polymerization.Therefore,solidPAMSbeads are more suitable as a mandrel for fabricating solid CH-CD multilayer polymer microspheres.Solid CH-CD multilayer microspheres with specified size have been successfully prepared by controlling the droplet size and the CD deposition rate and deposition time.Compared with the design value,the diameter deviation of the inner CH beads and the thickness deviation of the CD layer can be controlled within 20μmand 2μm,respectively.Thus,an approach has been developed to fabricate solid CH-CD multilayer microspheres that meet the physical design requirements for ICF.展开更多
A simultaneous high-resolution x-ray backlighting and self-emission imaging method for laser-produced plasma diagnostics is developed in which two Kirkpatrick–Baez imaging channels for high-energy and low-energy diag...A simultaneous high-resolution x-ray backlighting and self-emission imaging method for laser-produced plasma diagnostics is developed in which two Kirkpatrick–Baez imaging channels for high-energy and low-energy diagnostics are constructed using a combination of multilayer mirrors in near-coaxial form.By using a streak or framing camera placed on the image plane,both backlit and self-emission images of a laserproduced plasma with high spatial and temporal resolution can be obtained simultaneously in a single shot.This paper describes the details of the method with regard to its optical and multilayer design,assembly,and alignment method.In addition,x-ray imaging results with a spatial resolution better than 5μm in the laboratory and experimental results with imploding capsules in the SG-III prototype laser facility are presented.展开更多
With the advent of left-handed magnetic materials, it is desirable to develop high-performance wave devices based on their novel properties of wave propagation. This letter reports the special properties of elastic wa...With the advent of left-handed magnetic materials, it is desirable to develop high-performance wave devices based on their novel properties of wave propagation. This letter reports the special properties of elastic wave propagation in magnetoelastic multilayered composites with negative permeability as compared to those in counterpart structures with positive permeability. These novel properties of elastic waves are discerned from the diversified dispersion curves, which represent the propagation and attenuation characteristics of elastic waves. To compute these dispersion curves, the method of reverberation-ray matrix is extended for the analysis of elastic waves in magnetoelastic multilayered composites. Although only the results of a single piezomagnetic and a binary magnetoelastic layers with mechanically free and magnetically short surfaces as well as perfect interface are illustrated in the numerical examples, the analysis is applicable to magnetoelastic multilayered structures with other kinds of boundaries/interfaces.展开更多
基金This work was supported by the Natural Science Foundation of Hubei Province(Project No.2000J002)
文摘Gold colloid was prepared by chemical reduction of hydrogen tetrachloroaurate, polyelectrolyte/gold nanoparticle/silica nanoparticie composite films were fabricated via an electrostatic self-assembly multilayer method, and composite films of gold nanoparticle dispersed in silica matrix were formed by heat-treating the polyelectrolyte/gold nanoparticle/silica nanoparticle composite films to eliminate the polyelectrolyte. The obtained composite films were investigated with UV-vis, TEM, AFM and XRD. The results show that the self-assembly multilayer method is a promising process to produce composite films of gold nanoparticle-dispersed in organic and/or inorganic matrixes.
基金National Undergraduate Training Program for Innovation and Entrepreneurship of China (Grant No.202210288027).
文摘The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium alginate-based multilayer film is fabricated via a layer-by-layer(LBL)self-assembly method.With the help of superior interaction between the layers,the multilayer film possesses excellent mechanical properties(with a tensile strength of 50 MPa).Besides,the film displays outstanding water retention property(blocking moisture of 97.56%)and ultraviolet blocking property.Anthocyanin is introduced into the film to detect the food quality since it is one natural plant polyphenol that is sensitive to the pH changes ranging from 1 to 13 in food when spoilage occurs.It is noted that the film is also bacteriostatic which is desired for food packaging.This study describes a simple technique for the development of advanced multifunctional and fully biodegradable food packaging film and it is a sustainable alternative to plastic packaging.
基金supported by the National Natural Science Foundation of China(Nos.81873092,82174074)。
文摘The self-assembled nanoparticles(SAN)formed during the decoction process of traditional Chinese medicine(TCM)exhibit non-uniform particle sizes and a tendency for aggregation.Our group found that the p H-driven method can improve the self-assembly phenomenon of Herpetospermum caudigerum Wall.,and the SAN exhibited uniform particle size and demonstrated good stability.In this paper,we analyzed the interactions between the main active compound,herpetrione(Her),and its main carrier,Herpetospermum caudigerum Wall.polysaccharide(HCWP),along with their self-assembly mechanisms under different p H values.The binding constants of Her and HCWP increase with rising p H,leading to the formation of Her-HCWP SAN with a smaller particle size,higher zeta potential,and improved thermal stability.While the contributions of hydrogen bonding and electrostatic attraction to the formation of Her-HCWP SAN increase with rising p H,the hydrophobic force consistently plays a dominant role.This study enhances our scientific understanding of the self-assembly phenomenon of TCM improved by p H driven method.
文摘This study proposes a three-dimensional(3D)coupled magneto-electro-elastic problem for the static analysis of multilayered plates embedding piezomagnetic and piezoelectric layers by considering both sensor and actuator configurations.The 3D governing equations for the magneto-electro-elastic static behavior of plates are explicitly show that are made by the three 3D equilibrium equations,the 3D divergence equation for magnetic induction,and the 3D divergence equation for the electric displacement.The proposed solution involves the exponential matrix in the thickness direction and primary variables’harmonic forms in the in-plane ones.A closed-form solution is performed considering simply-supported boundary conditions.Interlaminar continuity conditions are imposed for displacements,magnetic potential,electric potential,transverse shear/normal stresses,transverse normal magnetic induction and transverse normal electric displacement.Therefore,a layerwise approach is adopted.The results section is composed of an assessment part,where the present model is compared to past 3D electro-elastic or magneto-elastic formulations and a new benchmark part.Benchmarks consider sensor and actuator plate configurations for the fully coupled magneto-electro-elastic cases for different thickness ratios.Tabular and graphical results are presented for displacements,stresses,magnetic potential,electric potential,transverse normal magnetic induction and transverse normal electric displacement.For each presented benchmark,magneto-electro-elastic coupling and thickness and material layer effects are discussed in depth.
基金financially supported by the National Natural Science Foundation of China(No.51373059)the Graphene Powder&Composite Materials Research Center of FujianXiamen Key Laboratory of Polymers and Electronic Materials。
文摘Janus films with asymmetric physical/chemical properties have attracted con siderable attention due to their promising applications in personal thermal management,electronic skin s,sensors,actuators,etc.However,traditional methods for fabricating Janus films conventionally need the assistance of an interface or auxiliary equipment,which are usually complex and time-consuming.Herein,flexible poly(vinyl alcohol)(PVA)/graphene oxide(GO)/h-BN(recorded as PVA/GO/h-BN)Janus films with thermally,optically,and electrically anisotropic properties are fabricated by a simple density deposition self-assem bly method,which just utilizes the density difference between GO and h-BN during water evaporation.Experimental results show that the two sides of the acquired Janus films have obvious asymmetric characteristics.In the original state of the PVA/GO/h-BN Janus films,the thermal conductivity of the GO side(10.06 W·m^(-1)·K^(-1))is generally lower than that of the h-BN side(10.48W·m^(-1)·K^(-1)).But after GO is reduced,the thermal conductivity of the rGO side reaches 12.17 W·m^(-1)·K^(-1),surpassing that of the h-BN side.In addition,the relative reflectance of the h-BN side of Janus film is also significantly higher than that of the rGO side,and the su rface resistance difference between the two sides is about 4 orders of magnitude.The prepared PVA/GO/h-BN Janus films show great application potential in human thermal management,light conversion switches,and electronic skins.This study provides a simple and versatile strategy for fabricating Janus films with multifunctional(such as thermal,optical,and electrical)anisotropies.
基金This research was financially supported by the China Scholarship Council and the Natural Science Foundation of Hubei Province (Project 2000J002).
文摘Multilayer thin films of alternately adsorbed layers of polyelectrolytes PDDA and PS-119 were formed on both planar silica substrates and optical fibers through the ionic self-assembly technique. Intrinsic Fabry-Perot cavities were fabricated by stepwise assembling the polyelectrolytes onto the ends of optical fibers for the purposes of fiber optical device and sensor development. Ionically assembled polyelectrolyte multilayer thin films, in which. there are hydrophilic side groups with strong affinity towards water molecules, are a category of humidity-sensitive functional materials. The polyelectrolyte multilayer thin film Fabry-Perot cavity-type fiber optical humidity sensor can work over a wide range from about 0% RH to about 100% RH with a response time less than 1 s.
基金supported by the National Science Foundation of China(No.41374129)Science and Technology Project of Shanxi Province(No.20100321066)Research and Development Project of National Major Scientifi c Research Equipment(No.ZDYZ2012-1-05-04)
文摘With deep mining of coal mines, prospecting multilayer water-filled goaf has become a new content that results from geophysical exploration in coalfields. The central loop transient electromagnetic (TEM) method is favorable for prospecting conductive layers because of the coupling relationship between its field structure and formation. However, the shielding effect of conductive overburden would not only require a longer observation time when prospecting the same depth but also weaken the anomalous response of underlying layers. Through direct time domain numerical simulation and horizontal layered earth forward modeling, this paper estimates the length of observation time required to prospect the target, and the distinguishable criterion of multilayer water-filled goal is presented with observation error according to the effect of noise on observation data. The observed emf curves from Dazigou Coal Mine, Shanxi Province can distinguish multilayer water-filled goaf. In quantitative inversion interpretation of observed curves, using electric logging data as initial parameters restrains the equivalence caused by coal formation thin layers. The deduced three-layer and two-layer water-filled goals are confirmed by the drilling hole. The result suggests that when observation time is long enough and with the anomalous situation of underlying layers being greater than the observation error, the use of the central loop TEM method to orosoect a multilaver water-filled goaf is feasible.
文摘This paper presents the recursive asymptotic hybrid matrix method for acoustic waves in multilayered piezoelectric media. The hybrid matrix method preserves the numerical stability and accuracy across large and small thicknesses. For discussion and comparison, the scattering matrix method is also presented in physics-based form and coherent form. The latter form resembles closely that of hybrid matrix method and helps to highlight their relationship and distinction. For both scattering and hybrid matrix methods, their formulations in terms of eigenwaves solution are provided concisely. Making use of the hybrid matrix, the recursive asymptotic method without eigenwaves solution is described and discussed. The method bypasses the intricacies of eigenvalue-eigenvector approach and requires only elementary matrix operations along with thin- layer asymptotic approximation. It can be used to determine Green’s function matrix readily and facilitates the trade-off between computation efficiency and accuracy.
文摘A Newton learning method for a neural network of multilayer perceptrons is proposed in this paper. Furthermore, a hybrid learning method id legitimately developed in combination of the backpropagation method proposed by Rumelhart et al with the Newton learning method. Finally, the hybrid learning algorithm is compared with the backpropagation algorithm by some illustrations, and the results show that this hybrid leaming algorithm bas the characteristics of rapid convergence.
文摘Starting with the governing equations in terms of displacements of 3D elastic media, the solutions to displacement components and their first derivatives are obtained by the application of a double Fourier transform and an order reduction method based on the Cayley-Hamilton theorem. Combining the solutions and the constitutive equations which connect the displacements and stresses, the transfer matrix of a single soil layer is acquired. Then, the state space solution to multilayered elastic soils is further obtained by introducing the boundary conditions and continuity conditions between adjacent soil layers. The numerical analysis based on the present theory is carried out, and the vertical displacements of multilayered foundation with a weak and a hard underlying stratums are compared and discussed.
基金Funded by the Natural Science Foundation of Hubei Prov-ince (No. 2000J002)
文摘Polyelectrolyte multilayers were self-assembled onto planar glass substrates and multimode optic fibers. The multilayer thin films deposited on glass substrates were characterized by using UV-vis spectroscopy and X-ray photoelectron spectroscope. The multilayer thin films containing hydrophilic side-groups possessed are affinity for uwer molecules. The adsorption and desorption of free water vapor gave rise to the changes in the refractive index and in the reflectance of the thin films. A multilayer thin film based fiber optic humidity sensor with an LED light source of 0.85 mum was designed. Under certain conditions, the rejected light intensity of the thin film sensor was a function of the humidity of air. About 30 bilayers was optimal for the multilayer thin film sensor working at wavelength of 0.85 mum. This sensor can work over almost the whole relative humidity range with very good sensitivity.
基金Funded by National Natural Science Foundation of China (Nos.51372179, 51772224)the Open Projects Foundation of Yangtze Optical Fiber and Cable Joint Stock Limited Company (YOFC)(No.SKLD1705)。
文摘We demonstrated a chemical process in the fabrication of a SERS fiber probe with an ultrahigh sensitivity.The synthesis was carried out by preparing Au@Ag core-shell nanorods (Au@Ag-NRs) selfassembled on polyelectrolyte (PE) multilayers,for which Au@Ag-NRs were controlled by adjusting the silver layer thickness.The effect of silver layer thickness of Au@Ag-NRs on the SERS performance of the fiber probe was investigated.The SERS fiber probe shows the best performance when the silver layer thickness is controlled at 8.57 nm.Under the condition of optimizing silver layer thickness,the fiber probe exhibits ultra-high sensitivity (i e,10^(-10) M crystalline violet,CV),good reproducibility (i e,RSD of 3.5%) and stability.Besides,electromagnetic field distribution of the SERS fiber probe was also investigated.The strongest enhancement is found within the core of fiber,whereas a weakened electromagnetic field exists in the fiber cladding layer.The SERS fiber probe can be a good candidate in ultra-trace detection for biomedical and environmental areas.
基金Projects(51204036,51234009)supported by the National Natural Science Foundation of ChinaProject(2014CB643405)supported by the National Basic Research Program of China
文摘Ti O2-organic multilayered nanocomposite films were deposited on a self-assembled monolayer-coated silicon substrate based on layer-by-layer technique and chemical bath deposition method by a hydrolysis of Ti Cl4 in an acid aqueous solution. The chemical compositions, surface morphologies and mechanical properties of the films were investigated by X-ray photoelectron spectrometer(XPS), scanning electron microscopy(SEM) and nanoindentation depth-sensing technique, respectively. The results indicate that the major chemical compositions of the films are Ti and O. The principal mechanism for the nucleation and growth of the films is homogeneous nucleation, and the layer number of films has great influence on the surface morphology and roughness of the films. In addition, mechanical nanoindentation testing presents a significant increase in hardness and fracture toughness of titanium dioxide multilayered films compared with single-layer titanium dioxide thin film.
基金supported by the National Major Basic Research Project of 2012CB934302the National 863 Program2011AA050518+1 种基金the Natural Science Foundation of China(Grant No.1117419711574203 and 61234005)
文摘Here, large-scale and uniform hexagonal zinc oxide(ZnO) nanosheet films were deposited onto indium tin oxide(ITO)-coated transparent conducting glass substrates via a facile galvanic displacement deposition process. Compared with other commonly used solution methods, this process avoids high temperature and electric power as well as supporting agents to make it simple and cost-effective. The as-fabricated ZnO nanosheet films have uniform hexagonal wurtzite structure. The photoelectrochemical(PEC) cell based on ZnO nanosheet film/ITO photoelectrode was also fabricated and its performance was improved by optimizing the solution concentration. A higher photocurrent density of*500 l A cm^(-2)under AM 1.5 G simulated illumination of 100 m W cm^(-2)with zero bias potential(vs. Ag/AgCl electrode) was obtained, which may ascribe to the increased surface-to-volume ratio of disordered Zn O nanosheet arrays. Our developed method may be used to deposit other oxide semiconductors, and the Zn O nanosheet film/ITO PEC cell can be used to design low-cost optoelectronic and photoelectrochemical devices.
文摘The analytical layer-elements for a single poroelastic soil layer and the underlying half-space are established using an algebraic manipulation and Hankel trans- form. According to the boundary conditions and adjacent continuity conditions of general stresses and displacements, a global matrix equation in the transform domain for multi- layered saturated soil media is assembled and solved. Solutions in the frequency domain can be further obtained with an inverse Hankel transform. Numerical examples are used to examine accuracy of the present method and demonstrate effects of soil parameters and load conditions on dynamic responses of the multilayered poroelastic saturated soils.
基金supported by the National Natural Science Foundation of China(Grant Nos.11862021,12072166)the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(Grant No.NJYT-19-A06)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(Grant Nos.2020MS01006,2019MS01015,2019MS01017).
文摘In this study,the nonlocal strain gradient theory is adopted to investigate the static bending deformation of a functionally graded(FG)multilayered nanoplate made of onedimensional hexagonal piezoelectric quasicrystal(PQC)materials subjected to mechanical and electrical surface loadings.The FG materials are assumed to be exponential distribution along the thickness direction.Exact closed-form solutions of an FG PQC nanoplate including nonlocality and strain gradient micro-size dependency are derived by utilizing the pseudo-Stroh formalism.The propagator matrix method is further used to solve the multilayered case by assuming that the layer interfaces are perfectly contacted.Numerical examples for two FG sandwich nanoplates made of piezoelectric crystals and PQC are provided to show the influences of nonlocal parameter,strain gradient parameter,exponential factor,length-to-width ratio,loading form,and stacking sequence on the static deformation of two FG sandwich nanoplates,which play an important role in designing new smart composite structures in engineering.
基金funding from the National Natural Science Foundation of China(Grant Nos.51703212 and 52073264)the Open Project of the State Key Laboratory of Environment-Friendly Energy Materials(Grant Nos.18kfhg03 and 19kfhg02)a project supported by the CAEP Foundation(Grant No.PY20200117).
文摘Deuterated polymer microspheres can be used as a neutron source in conjunction with lasers because thermonuclear fusion neutrons can be produced efficiently by collisions of the resulting energetic deuterium ions.A new type of solid deuterated polymer microsphere with a carbon hydrogen–carbon deuterium(CH-CD)multilayer has been designed for preparing the target for inertial confinement fusion(ICF)experiments.To fabricate these solid CH-CD multilayer microspheres,CH beads are first fabricated by a microfluidic technique,and the CD coating layer is prepared by a plasma polymerization method.Both polystyrene(PS)and poly(α-methylstyrene)(PAMS)are used as the material sources for the CH beads.The effects of the PS and PAMS materials on the quality of the solid CH beads and the resulting CH-CD multilayer polymer microspheres are investigated.The solid PS beads have better sphericity and a smoother surface,but large vacuoles are observed in solid PS-CD multilayer microspheres owing to the presence of residual fluorobenzene in the beads and a glass transition temperature of the solid PS beads that is lower than the temperature of plasma polymerization.Therefore,solidPAMSbeads are more suitable as a mandrel for fabricating solid CH-CD multilayer polymer microspheres.Solid CH-CD multilayer microspheres with specified size have been successfully prepared by controlling the droplet size and the CD deposition rate and deposition time.Compared with the design value,the diameter deviation of the inner CH beads and the thickness deviation of the CD layer can be controlled within 20μmand 2μm,respectively.Thus,an approach has been developed to fabricate solid CH-CD multilayer microspheres that meet the physical design requirements for ICF.
基金supported by National MCF Energy R&D Program(Grant No.2019YFE03080200)the National Natural Science Foundation of China(Grant No.11805212)the Fundamental Research Funds for the Central Universities(Grant No.22120200405).
文摘A simultaneous high-resolution x-ray backlighting and self-emission imaging method for laser-produced plasma diagnostics is developed in which two Kirkpatrick–Baez imaging channels for high-energy and low-energy diagnostics are constructed using a combination of multilayer mirrors in near-coaxial form.By using a streak or framing camera placed on the image plane,both backlit and self-emission images of a laserproduced plasma with high spatial and temporal resolution can be obtained simultaneously in a single shot.This paper describes the details of the method with regard to its optical and multilayer design,assembly,and alignment method.In addition,x-ray imaging results with a spatial resolution better than 5μm in the laboratory and experimental results with imploding capsules in the SG-III prototype laser facility are presented.
基金supported by the National Natural Science Foundation of China(11372119)partly by the Fundamental Research Funds for the Central Universities(2016XZZX001-05)
文摘With the advent of left-handed magnetic materials, it is desirable to develop high-performance wave devices based on their novel properties of wave propagation. This letter reports the special properties of elastic wave propagation in magnetoelastic multilayered composites with negative permeability as compared to those in counterpart structures with positive permeability. These novel properties of elastic waves are discerned from the diversified dispersion curves, which represent the propagation and attenuation characteristics of elastic waves. To compute these dispersion curves, the method of reverberation-ray matrix is extended for the analysis of elastic waves in magnetoelastic multilayered composites. Although only the results of a single piezomagnetic and a binary magnetoelastic layers with mechanically free and magnetically short surfaces as well as perfect interface are illustrated in the numerical examples, the analysis is applicable to magnetoelastic multilayered structures with other kinds of boundaries/interfaces.