PuraStat®is a novel self-assembling peptide(SAP)used as a haemostatic agent in endoscopy,with widespread application in surgical settings.While the current evidence,though deserving further expansion,demonstrates...PuraStat®is a novel self-assembling peptide(SAP)used as a haemostatic agent in endoscopy,with widespread application in surgical settings.While the current evidence,though deserving further expansion,demonstrates a good haemostatic performance profile for this substance,there remains significant heterogeneity among studies,and an analysis of this SAP as monotherapy is not always available.The recent study by Bellester et al in the World Journal of Gastrointestinal Endoscopy provided an optimal effectiveness profile of this SAP in 45 patients treated for gastrointestinal(GI)bleeding,particularly highlighting data on its use as monotherapy in upper GI bleeding.This invited article outlines the current evidence on PuraStat®and offers a commentary on the recently published study.展开更多
Viral vector gene delivery is a promising technique for the therapeutic administra- tion of proteins to damaged tissue for the improvement of regeneration outcomes in various disease settings including brain and spina...Viral vector gene delivery is a promising technique for the therapeutic administra- tion of proteins to damaged tissue for the improvement of regeneration outcomes in various disease settings including brain and spinal cord injury, as well as autoimmune diseases. Though promising results have been demonstrated, limitations of viral vectors, including spread of the virus to distant sites, neutralization by the host immune system, and low transduction efficiencies have stimulated the investigation of biomaterials as gene delivery vehicles for improved protein expression at an injury site. Here, we show how N- fluorenylmethyloxycarbonyl (Fmoc) self-assembling peptide (SAP) hydrogels, designed for tissue-specific central nervous system (CNS) applications via incorporation of the laminin peptide sequence isoleucine-lysine-valine-alanine- valine (IKVAV), are effective as biocompatible, localized viral vector gene delivery vehicles in vivo. Through the addition of a C-terminal lysine (K) residue, we show that increased electrostatic interactions, provided by the additional amine side chain, allow effective immobilization of lentiviral vector particles, thereby limiting their activity exclusively to the site of injection and enabling focal gene delivery in vivo in a tissue-specific manner. When the C-terminal lysine was absent, no difference was observed between the number of transfected cells, the volume of tissue transfected, or the transfection efficiency with and without the Fmoc-SAP. Importantly, immobilization of the virus only affected transfection cell number and volume, with no impact observed on transfection efficiency. This hydrogel allows the sustained and targeted delivery of growth factors post injury. We have established Fmoc-SAPs as a versatile platform for enhanced biomaterial design for a range of tissue engineering applications.展开更多
Developing novel building blocks with predictable side-chain orientations and minimal intramolecular interactions is essential for peptide-based self-assembling materials.Traditional structures likeα-helices andβ-sh...Developing novel building blocks with predictable side-chain orientations and minimal intramolecular interactions is essential for peptide-based self-assembling materials.Traditional structures likeα-helices andβ-sheets rely on such interactions for stability,limiting control over exposed interacting moieties.Here,we reported a novel,frame-like peptide scaffold that maintains exceptional stability without intramolecular interactions.This structure exposes its backbone and orients side chains for hierarchical self-assembly into micron-scale cubes.By introducing mutations at specific sites,we controlled packing orientations,offering new options for tunable self-assembly.Our scaffold provides a versatile platform for designing advanced peptide materials,with applications in nanotechnology and biomaterials.展开更多
Natural antimicrobial peptides(AMPs)are promising candidates for the development of a new generation of antimicrobials to combat antibiotic-resistant pathogens.They have found extensive applications in the fields of m...Natural antimicrobial peptides(AMPs)are promising candidates for the development of a new generation of antimicrobials to combat antibiotic-resistant pathogens.They have found extensive applications in the fields of medicine,food,and agriculture.However,efficiently screening AMPs from natural sources poses several challenges,including low efficiency and high antibiotic resistance.This review focuses on the action mechanisms of AMPs,both through membrane and non-membrane routes.We thoroughly examine various highly efficient AMP screening methods,including whole-bacterial adsorption binding,cell membrane chromatography(CMC),phospholipid membrane chromatography binding,membranemediated capillary electrophoresis(CE),colorimetric assays,thin layer chromatography(TLC),fluorescence-based screening,genetic sequencing-based analysis,computational mining of AMP databases,and virtual screening methods.Additionally,we discuss potential developmental applications for enhancing the efficiency of AMP discovery.This review provides a comprehensive framework for identifying AMPs within complex natural product systems.展开更多
Background Broiler chickens are most vulnerable immediately after hatching due to their immature immune systems,making them susceptible to infectious diseases.The yolk plays an important role in early immune defence b...Background Broiler chickens are most vulnerable immediately after hatching due to their immature immune systems,making them susceptible to infectious diseases.The yolk plays an important role in early immune defence by showing relevant antioxidant and passive immunity capabilities during broiler embryonic development.The immunomodulatory effects of phytogenic compound carvacrol have been widely reported.After in ovo delivery in the amniotic fluid during embryonic development carvacrol is known to migrate to the yolk sac.However,it is unknown whether carvacrol in the yolk could enhance defence responsiveness in the yolk sac.Therefore,the aim of this study was to improve early immune function in chicken embryos,and it was hypothesized that in ovo delivery of carvacrol would result in immunomodulatory effects in the yolk sac,potentially improving post-hatch resilience.Methods On embryonic day(E)17.5,either a saline(control)or carvacrol solution was injected into the amniotic fluid.Yolk sac tissue samples were collected at E19.5,and transcriptomic analyses using RNA sequencing were performed,following functional enrichment analyses comparing the control(saline)and carvacrol-injected groups.Results The results showed that 268 genes were upregulated and 174 downregulated in the carvacrol group compared to the control(P<0.05;logFC<-0.5 or log FC>0.5).Functional analyses of these differentially expressed genes,using KEGG,REACTOME,and Gene Ontology databases,showed enrichment of several immune-related pathways.This included the pathways‘Antimicrobial peptides’(P=0.001)and‘Chemoattractant activity’(P=0.004),amongst others.Moreover,the‘NOD-like receptor signaling’pathway was enriched(P=0.002).Antimicrobial peptides are part of the innate immune defence and are amongst the molecules produced after the nucleotide oligomeriza-tion domain(NOD)-like receptor pathway activation.While these responses may be associated with an inflammatory reaction to an exogenous threat,they could also indicate that in ovo delivery of carvacrol could prepare the newly hatched chick against bacterial pathogens by potentially promoting antimicrobial peptide production through acti-vation of NOD-like receptor signaling in the yolk sac.Conclusion In conclusion,these findings suggest that in ovo delivery of carvacrol has the potential to enhance anti-pathogenic and pro-inflammatory responses in the yolk sac via upregulation of antimicrobial peptides,and NOD-like receptor pathways.展开更多
Momordica antiviral protein 30 kD(MAP30)is a type I ribosome-inactivating protein(RIP)with antibacterial,anti-HIV and antitumor activities but lacks the ability to target tumor cells.To increase its tumor-targeting ab...Momordica antiviral protein 30 kD(MAP30)is a type I ribosome-inactivating protein(RIP)with antibacterial,anti-HIV and antitumor activities but lacks the ability to target tumor cells.To increase its tumor-targeting ability,the arginine-glycine-aspartic(RGD)peptide and the epidermal growth factor receptor interference(EGFRi)peptide were fused with MAP30,which was named ELRL-MAP30.The efficiency of targeted therapy for triple-negative breast cancer(TNBC)MDA-MB-231 cells,which lack the expression of estrogen receptor(ER),Progesterone receptor(PgR)and human epidermal growth factor receptor-2(HER2),is limited.In this study,we focus on exploring the effect and mechanism of ELRL-MAP30 on TNBC MDA-MB-231 cells.First,we discovered that ELRL-MAP30 significantly inhibited the migration and invasion of MDA-MB-231 cells and induced MDA-MB-231 cell apoptosis.Moreover,ELRL-MAP30 treatment resulted in a significant increase in Bax expression and a decrease in Bcl-2 expression.Furthermore,ELRL-MAP30 triggered apoptosis via the Fak/EGFR/Erk and Ilk/Akt signaling pathways.In addition,recombinant ELRL-MAP30 can inhibit chicken embryonic angiogenesis,and also inhibit the tube formation ability of human umbilical vein endothelial cells(HUVECs),indicating its potential therapeutic effects on tumor angiogenesis.Collectively,these results indicate that ELRL-MAP30 has significant tumor-targeting properties in MDA-MB-231 cancer cells and reveals potential therapeutic effects on angiogenesis.These findings indicate the potential role of ELRL-MAP30 in the targeted treatment of the TNBC cell line MDA-MB-231.展开更多
Targeted cancer therapy has emerged as a promising alternative to conventional chemotherapy,which is often plagued by poor selectivity,off-target effects,and drug resistance.Among the various targeting agents in devel...Targeted cancer therapy has emerged as a promising alternative to conventional chemotherapy,which is often plagued by poor selectivity,off-target effects,and drug resistance.Among the various targeting agents in development,peptides stand out for their unique advantages,including minimal immunogenicity,high tissue penetration,and ease of modification.Their small size,specificity,and flexibility allow them to target cancer cells while minimizing damage to healthy tissue selectively.Peptide-based therapies have shown great potential in enhancing the efficacy of drug delivery,improving tumor imaging,and reducing adverse effects.With cancer responsible for millions of deaths worldwide,the development of peptide-based therapeutics offers new hope in addressing the limitations of current treatments.As detailed studies on different aspects of targeting peptides are crucial for optimizing drug development,this review provides a comprehensive overview of the literature on tumor-targeting peptides,including their structure,sources,modes of action,and their application in cancer therapy—both as standalone agents and in fusion drugs.Additionally,various computational tools for peptide-based tumor-targeting drug design and validation are explored.The promising results from these studies highlight peptides as ideal candidates for targeted cancer therapies,offering valuable insights for researchers and accelerating the discovery of novel anti-tumor peptide base drug candidates.展开更多
The naturally fermented Inner Mongolian cheese’s flavor and nutritional value make it a popular choice among customers.In this work,to create multi-functional peptides that have taste and biological activity,peptidom...The naturally fermented Inner Mongolian cheese’s flavor and nutritional value make it a popular choice among customers.In this work,to create multi-functional peptides that have taste and biological activity,peptidomics and bioinformatics were used to screen flavor peptides from Inner Mongolian cheese and further assess their antioxidant and angiotensin I-converting enzyme(ACE)inhibitory properties.According to sensory data,YH8 and IL7 had detectable bitter tastes with low thresholds of 0.03 and 0.06 mmol/L,respectively.With an umami threshold range of 0.24‒0.81 mmol/L,VQ6,FK13,HP13 and QT14 exhibited a range of flavors dominated by umami,including sweet,bitter,salty,sour and kokumi.Antioxidant activity wise,YH8,VQ6,HP13 and QT14 were well represented.The above-mentioned peptides all had some ACE inhibitory effect.The bitter peptide IL7(IC_(50)=0.08 mmol/L)had the highest level of ACE inhibitory activity,followed by YH8(IC_(50)=0.33 mmol/L).These multi-functional peptides,which have been assessed for bioactive and taste features in Inner Mongolian cheese,may have positive impacts on health and harmonize the cheese’s overall flavor.These results suggest that some flavor peptides produced in fermented foods might be with bioactivities while providing a basis for the exploration and application of multi-functional peptides.展开更多
Taking a widely contaminated yet abundant waste,such as poultry feathers,and extracting keratin from this struc-ture appears to be a real challenge whenever the preservation of the secondary structure of the protein i...Taking a widely contaminated yet abundant waste,such as poultry feathers,and extracting keratin from this struc-ture appears to be a real challenge whenever the preservation of the secondary structure of the protein is desired.This process would allow exploiting it in ways(e.g.,in the biomedicalfield)that are inspired by a structure that is primarily designed forflight,therefore capable specifically of withstandingflexure and lateral buckling,also with very low thicknesses.The preservation of the structure is based on disulfide crosslinks,and it is offered with pre-ference by some chemical treatments,mainly those based on ionic liquid and on a reduction process.However,the degree of preservation cannot always be precisely assessed;however,beyond chemical characterization,the forma-tion of homogeneous gels can also suggest that the process was successful in this sense.An extraction respectful of nature’s intentions,considering that the secondary structure builds up according to the very function of the feath-ers in the animal,can be deemed to be biomimetic.In particular,biomimetic extractions comply with the very characteristics the protein was designed for to serve in the specific environmental and mechanical situation in which it is inserted.This review tries to elucidate in which cases this aim is achieved and for which specific appli-cations a chicken feather keratin that has preserved its secondary structure can be suited.展开更多
The cosmetic sector is a multibillion-dollar industry that requires constant attention being paid to innovative product development and engagement.Notably,its market value is projected to exceed 750 billion U.S.dollar...The cosmetic sector is a multibillion-dollar industry that requires constant attention being paid to innovative product development and engagement.Notably,its market value is projected to exceed 750 billion U.S.dollars by 2025,and it is expanding as novel,climate-friendly,green,and sustainable components from natural sources are incorporated.This review is written based on the numerous reports on the potential applications of food-derived peptides while focusing on their possible uses in the formulation of cosmeceutical and skincare products.First,the production methods of bioactive peptides linked to cosmeceutical uses are described.Then,we discuss the obtainment and characterization of different anti-inflammatory,antimicrobial,antioxidant,anti-aging,and other pleiotropic peptides with their specific mechanisms,from various food sources.The review concludes with salient considerations of the cost of production and pilot scale operation,stability,compatibility,user safety,site-specificity,and delivery methods,when designing or developing biopeptide-based cosmeceutical products.展开更多
Umami peptides play important roles in the flavor of fermented broad bean paste(FBBP),and proteases produced by microorganisms contributed to the production of umami peptides.In order to reveal the formation of umami ...Umami peptides play important roles in the flavor of fermented broad bean paste(FBBP),and proteases produced by microorganisms contributed to the production of umami peptides.In order to reveal the formation of umami peptides and their relationships with protease-producing microorganisms during the natural fermentation of FBBP,peptidomics and virtual screening were used to identify and screen umami peptides.Meanwhile,macrogenomics was used to analyze the abundance of microbial-derived protease genes during FBBP fermentation.Then,based on the Pearson correlation coefficient,the correlation network diagram of each protease-producing microorganism with umami peptides was constructed.The results showed that a total of two exopeptidases and four endopeptidases were annotated from FBBP.Staphylococcus,Lactobacillus,Aspergillus,and Weissella can produce most proteases.The species Lactobacillus curvatus,Dyella jiangningensis,Erythrobacter sp.,and unclassified_g_Pantoea had strong correlation with umami peptides,and they may contribute to the process of protein hydrolysis to produce umami peptides.This study is expected to reveal the formation mechanism of umami peptides in FBBP,and the results of this study provided a better understanding of the relationship between proteases,microbiota,and core umami peptides in FBBP,which could help to improve the umami taste of Pixian Douban paste during fermentation.展开更多
The growing population and industrialization have led to significant production in agro-industrial sectors,result-ing in large amounts of agro-industrial residues often left untreated,posing potential environmental is...The growing population and industrialization have led to significant production in agro-industrial sectors,result-ing in large amounts of agro-industrial residues often left untreated,posing potential environmental issues.There-fore,finding effective ways to utilize these bio-based residues is crucial.One promising approach is to use these low-or no-value agro-industrial wastes as raw materials for producing renewable biomaterials,including proteins and peptides.Research has extensively explored peptide extraction using plant and animal-based agro-industrial residue.Due to lower processing costs and beneficial bioactive properties,peptides derived from waste could replace synthetic peptides and those extracted from food sources.The isolation,purification,and analysis processes of these peptides are thoroughly examined to optimize their extraction and ensure their purity and efficacy.These peptides’bioactive properties and mechanisms are being analyzed for their potential applications in the biomedical field.Additionally,the applications of bioactive peptides in medical fields,such as drug delivery systems,tissue engineering,and bioprinting,are discussed.展开更多
Chemical modification of native peptides and proteins is a versatile strategy to facilitate late-stage diversification for functional studies.Among the proteogenic amino acids,lysine is extensively involved in posttra...Chemical modification of native peptides and proteins is a versatile strategy to facilitate late-stage diversification for functional studies.Among the proteogenic amino acids,lysine is extensively involved in posttranslational modifications and the binding of ligands to target proteins,making its selective modification attractive.However,lysine’s high natural abundance and solvent accessibility,as well as its relatively low reactivity to cysteine,necessitate addressing chemoselectivity and regioselectivity for the Lys modification of native proteins.Although Lys chemoselective modification methods have been well developed,achieving site-selective modification of a specific Lys residue remains a great challenge.In this review,we discussed the challenges of Lys selective modification,presented recent examples of Lys chemoselective modification,and summarized the currently known methods and strategies for Lys site-selective modification.We also included an outlook on potential solutions for Lys site-selective labeling and its potential applications in chemical biology and drug development.展开更多
Bioactive peptides have various excellent biological activities and serve as functional foods to prevent chronic diseases in the human body.This article investigated the regulatory effect of egg white peptides(EPs)on ...Bioactive peptides have various excellent biological activities and serve as functional foods to prevent chronic diseases in the human body.This article investigated the regulatory effect of egg white peptides(EPs)on the intestine barrier of young mice with colitis.The results showed that the intake of EPs could protect the intestines from inflammation damage.Besides,the expression of tight junction proteins and mucin is upregulated.Markedly,the intake of EPs can increase the concentration of amino acids in the serum of young mice,which is crucial for nutritional supplementation during intestinal inflammation process.Proteomics analysis implied that EPs can regulate protein expression in the intestine,involving multiple inflammatory pathways including phosphoinositide 3-kinase(PI3K)-protein kinase B(AKT)and mitogen-activated protein kinase(MAPK)signaling pathway.This demonstrated the health benefits of bioactive peptides and provides a theoretical basis for the development of animal derived proteins as functional foods.展开更多
Calcium-chelating peptide is a new type of calcium supplement with excellent absorption properties and high bioavailability,safety and stability.This study synthesized calcium chelating peptide from gluten by enzymati...Calcium-chelating peptide is a new type of calcium supplement with excellent absorption properties and high bioavailability,safety and stability.This study synthesized calcium chelating peptide from gluten by enzymatic hydrolysis,determined peptide sequences with high activity,and analyzed their digestive characteristics and stability.The enzymatic hydrolysis process was optimized using response surface methodology to determine the optimal enzymatic hydrolysis conditions of temperature 55?C,p H 8.5,and the ratio of alkaline protease to flavor protease(proportion of enzymes)2.63:1 under a liquid-to-solid ratio of 20:1.The calcium chelation rate of gluten hydrolysate was up to 40.1%under the optimal conditions.Fractional purification was then carried out and results showed that peptides with a molecular weight below 500 Da exhibited the highest chelation rate(51.1%).LC-MS/MS analysis was applied to identify 1224 distinct peptide sequences,among which V.YIPPY?C(WCP1)exhibited a higher calcium chelation rate after screening and molecular docking studies.The synthesized WCP1 displayed a calcium chelation rate as high as 53.5%.Fourier Transform Infrared Spectroscopy(FTIR)confirmed that both carboxyl and phosphate groups play crucial roles in mediating interactions between calcium ions and wheat polypeptides.Circular Dichroism(CD)revealed that the structure of wheat peptide became more compact after chelation.Furthermore,stability experiments indicated that the calcium-chelating peptides displayed notable resistance to digestion as well as excellent p H stability and thermal stability.This study provides technical support for deep processing and functional product development of gluten flour.展开更多
Identification of natural substances with antioxidant properties is ongoing research for addressing issues related to oxidative stress especially attributed to environmental effects.Our previous study demonstrated tha...Identification of natural substances with antioxidant properties is ongoing research for addressing issues related to oxidative stress especially attributed to environmental effects.Our previous study demonstrated that Lateolabrax japonicus peptides(LPH),rich in Glu,Gly,and hydrophobic amino acids,exhibited remarkable antioxidant activity in vitro,with though its action mechanism yet to be revealed.Therefore,to assess the in vivo antioxidative properties of LPH,we employed H_(2)O_(2) to generate oxidative stress in Drosophila melanogaster model.Results indicated that LPH significantly prolonged the lifespan of Drosophila subjected to oxidative stress mostly mediated via LPH’s enhancement of the antioxidant defense system and intestinal functions.Antioxidant effects were manifested by a decrease in malondialdehyde(MDA)levels,elevated superoxide dismutase(SOD),catalase(CAT),and glutathione peroxidase(GSH-Px)activities,decreased levels of reactive oxygen species(ROS)in intestinal epithelial cells,and the preservation of intestinal length.LPH effectively controlled the excessive proliferation and differentiation of oxidative stress-induced Drosophila intestinal stem cells.At the gene level,LPH upregulated the expression of antioxidant-related Nrf2 genes while concurrently downregulated mTOR expression level.Furthermore,high-throughput 16S rDNA sequencing revealed that the addition of LPH significantly influenced the diversity and abundance of the intestinal microbiota in H_(2)O_(2)-induced Drosophila.These findings provide a deeper understanding of the antioxidative mechanism of LPH,suggesting its potential applications in food industry and to be assessed using other in vivo oxidative stress models.展开更多
Iron deficiency anemia(IDA)is a nutritional deficiency disease with a high incidence rate worldwide.Bioactive peptides are safe and effective,have multiple functions and can serve as potential candidates for alleviati...Iron deficiency anemia(IDA)is a nutritional deficiency disease with a high incidence rate worldwide.Bioactive peptides are safe and effective,have multiple functions and can serve as potential candidates for alleviating IDA.In this study,the anti-anemia effects of tuna dark muscle peptides were explored in a dietinduced IDA mouse model.The results showed that tuna dark muscle peptides alleviated the IDA phenotype,oxidative stress and iron metabolism.In addition,tuna dark muscle peptides reversed gut microbiota dysbiosis in IDA mice.Furthermore,the transplanted fecal microbiota from tuna dark muscle peptide-treated mice also alleviated IDA symptoms and regulated iron metabolism and the gut microbiota,indicating that the antianemic effects were at least partially mediated by the gut microbiota.Thus,we identified a new and safe prebiotic material to alleviate IDA and provided ideas for the development of peptides.At the same time,these data also provided a theoretical basis for fecal microbiota transplantation to alleviate IDA.展开更多
Rosa roxburghii seeds are by-products of R.roxburghii processing,and their protein hydrolysates(RTSPHs)were found to possess a variety of biological activities.This study aimed to rapidly identify pancreatic lipase(PL...Rosa roxburghii seeds are by-products of R.roxburghii processing,and their protein hydrolysates(RTSPHs)were found to possess a variety of biological activities.This study aimed to rapidly identify pancreatic lipase(PL)and cholesterol esterase(CE)inhibitory peptides in RTSPHs and to elucidate their molecular mechanisms by combining peptidomics and virtual screening.The simulated intestinal environment worsened the peptide’s inhibition of PL but catalyzed the inhibition of CE.The fraction less than 3 kDa in RTSPHs was found to have the highest PL/CE inhibitory activity,among which 17 promising inhibitory peptides were identified and screened by peptidomics and virtual screening.LFCMH,RIPAGSPF,and YFRPR showed good inhibitory abilities against both PL and CE.Molecular docking showed that peptides inhibited PL and CE mainly by hydrogen bonding and hydrophobic interactions with residues in the active site and surface loop.Inhibition kinetic revealed that the peptides were competitive and mixed-type inhibitors of PL/CE.Further,the three peptides,LFCMH,RIPAGSPF,and YFRPR,could effectively inhibit 3T3-L1 preadipocytes differentiation,increase high-density lipoprotein cholesterol content and decrease low-density lipoprotein cholesterol content.This study suggests that combining peptidomics with virtual screening is an effective strategy for rapid screening of PL/CE inhibitory peptides.展开更多
Marine fauna provides a plentiful repository of peptides and bioactive proteins.Peptides and proteins isolated from marine animals have been studied and applied in the development of food supplements,drugs,and cosmece...Marine fauna provides a plentiful repository of peptides and bioactive proteins.Peptides and proteins isolated from marine animals have been studied and applied in the development of food supplements,drugs,and cosmeceutical products because of their special bioactivities,such as anti-inflammatory and antioxidant effects.This study focused on exploring the alleviating effects of five major marine animal-derived peptides(Apostichopus japonicus,Acaudina leucoprocta,Melanogrammus aeglefinus,Phascolosoma esculenta and Rhopilema esculentum)on adjuvant-induced arthritis(AIA).The treatment with five marine animals-derived peptides downregulated the expression levels of pro-inflammatory cytokines of interleukin(IL)-1β,IL-17 and tumor necrosis factor(TNF)-α in the bones of the mice with AIA and alleviated the rough surface of bone tissues significantly.A.japonicus-treatment ameliorates inflammation by restoring nuclear factor-κB pathway in AIA mice.High-throughput sequencing of the gut microbiota based on 16S rRNA sequencing revealed that A.japonicus peptide-treated AIA mice showed alterations and imbalance of intestinal flora and an increased abundance of Lactobacillus and Clostridium.Furthermore,metabolomic analysis showed that the level of short-chain fatty acids(SCFAs)in the feces was enhanced to different degrees in mice treated with five major marine animal-derived peptides.Taken together,we propose that major marine animal-derived peptides can alleviate arthritis by improving the imbalance in the gut flora and increasing SCFAs production to varying degrees.展开更多
This study investigated the preventive effects of soybean meal peptides(SPs)and their purification peptides(GTYW)on acute alcoholic liver injury.We combined the gut microbiota,metabolites,liver inflammation,and oxidat...This study investigated the preventive effects of soybean meal peptides(SPs)and their purification peptides(GTYW)on acute alcoholic liver injury.We combined the gut microbiota,metabolites,liver inflammation,and oxidative stress indicators to explore the prevention mechanism of SPs and GTYW.Results showed that SPs,GTYW effectively improved the hepatic oxidative stress and inflammatory.Additionally,SPs and GTYW reversed the effects of alcohol on the gut microbiota,which were evident in the increased abundance of Alloprevotella,Parasutterella in the GTYW group and norank_f__Muribaculaceae in the SPs group.Nontargeted metabolomic analysis showed that SPs ameliorated metabolic disorders by regulating phenylalanine,tyrosine and tryptophan biosynthesis,while GTYW regulated metabolites throughα-linolenic acid metabolism and phenylalanine metabolism.Furthermore,significant correlations were observed between gut microbiota,metabolites and liver indicators.These findings confirmed that SPs and GTYW can prevent acute alcoholic liver injury.展开更多
文摘PuraStat®is a novel self-assembling peptide(SAP)used as a haemostatic agent in endoscopy,with widespread application in surgical settings.While the current evidence,though deserving further expansion,demonstrates a good haemostatic performance profile for this substance,there remains significant heterogeneity among studies,and an analysis of this SAP as monotherapy is not always available.The recent study by Bellester et al in the World Journal of Gastrointestinal Endoscopy provided an optimal effectiveness profile of this SAP in 45 patients treated for gastrointestinal(GI)bleeding,particularly highlighting data on its use as monotherapy in upper GI bleeding.This invited article outlines the current evidence on PuraStat®and offers a commentary on the recently published study.
文摘Viral vector gene delivery is a promising technique for the therapeutic administra- tion of proteins to damaged tissue for the improvement of regeneration outcomes in various disease settings including brain and spinal cord injury, as well as autoimmune diseases. Though promising results have been demonstrated, limitations of viral vectors, including spread of the virus to distant sites, neutralization by the host immune system, and low transduction efficiencies have stimulated the investigation of biomaterials as gene delivery vehicles for improved protein expression at an injury site. Here, we show how N- fluorenylmethyloxycarbonyl (Fmoc) self-assembling peptide (SAP) hydrogels, designed for tissue-specific central nervous system (CNS) applications via incorporation of the laminin peptide sequence isoleucine-lysine-valine-alanine- valine (IKVAV), are effective as biocompatible, localized viral vector gene delivery vehicles in vivo. Through the addition of a C-terminal lysine (K) residue, we show that increased electrostatic interactions, provided by the additional amine side chain, allow effective immobilization of lentiviral vector particles, thereby limiting their activity exclusively to the site of injection and enabling focal gene delivery in vivo in a tissue-specific manner. When the C-terminal lysine was absent, no difference was observed between the number of transfected cells, the volume of tissue transfected, or the transfection efficiency with and without the Fmoc-SAP. Importantly, immobilization of the virus only affected transfection cell number and volume, with no impact observed on transfection efficiency. This hydrogel allows the sustained and targeted delivery of growth factors post injury. We have established Fmoc-SAPs as a versatile platform for enhanced biomaterial design for a range of tissue engineering applications.
基金supported by the National Basic Research Program of China 973 Program(Nos.2021YFA0910803,2021YFC2103900)the National Natural Science Foundation of China(No.21977011)+4 种基金the Natural Science Foundation of Guangdong Province(Nos.2022A1515010996 and 2020A1515011544)the Shenzhen Science and Technology Innovation Committee(Nos.RCJC20200714114433053,JCYJ20180507181527112 and JCYJ20200109140406047)the Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions(No.2019SHIBS0004)the Shenzhen Fundamental Research Program(No.GXWD20201231165807007–20200827170132001)Tian Fu Jin Cheng Laboratory(Advanced Medical Center)Group Racing Project(No.TFJC2023010008)。
文摘Developing novel building blocks with predictable side-chain orientations and minimal intramolecular interactions is essential for peptide-based self-assembling materials.Traditional structures likeα-helices andβ-sheets rely on such interactions for stability,limiting control over exposed interacting moieties.Here,we reported a novel,frame-like peptide scaffold that maintains exceptional stability without intramolecular interactions.This structure exposes its backbone and orients side chains for hierarchical self-assembly into micron-scale cubes.By introducing mutations at specific sites,we controlled packing orientations,offering new options for tunable self-assembly.Our scaffold provides a versatile platform for designing advanced peptide materials,with applications in nanotechnology and biomaterials.
基金supported by the National Natural Science Foundation of China(Grant Nos.:82373835,82304437,and 82173781)Regional Joint Fund Project of Guangdong Basic and Applied Basic Research Fund,China(Grant Nos.:2023A1515110417 and 2023A1515140131)+2 种基金Regional Joint Fund-Key Project of Guangdong Basic and Applied Basic Research Fund,China(Grant No.:2020B1515120033)the Key Field Projects of General Universities in Guangdong Province,China(Grant Nos.:2020ZDZX2057 and 2022ZDZX2056)Medical Scientific Research Foundation of Guangdong Province of China(Grant No.:A2022061).
文摘Natural antimicrobial peptides(AMPs)are promising candidates for the development of a new generation of antimicrobials to combat antibiotic-resistant pathogens.They have found extensive applications in the fields of medicine,food,and agriculture.However,efficiently screening AMPs from natural sources poses several challenges,including low efficiency and high antibiotic resistance.This review focuses on the action mechanisms of AMPs,both through membrane and non-membrane routes.We thoroughly examine various highly efficient AMP screening methods,including whole-bacterial adsorption binding,cell membrane chromatography(CMC),phospholipid membrane chromatography binding,membranemediated capillary electrophoresis(CE),colorimetric assays,thin layer chromatography(TLC),fluorescence-based screening,genetic sequencing-based analysis,computational mining of AMP databases,and virtual screening methods.Additionally,we discuss potential developmental applications for enhancing the efficiency of AMP discovery.This review provides a comprehensive framework for identifying AMPs within complex natural product systems.
基金support by AgriFutures Australia’s Chicken Meat Program[grant number PRJ-011584]is gratefully acknowledged.
文摘Background Broiler chickens are most vulnerable immediately after hatching due to their immature immune systems,making them susceptible to infectious diseases.The yolk plays an important role in early immune defence by showing relevant antioxidant and passive immunity capabilities during broiler embryonic development.The immunomodulatory effects of phytogenic compound carvacrol have been widely reported.After in ovo delivery in the amniotic fluid during embryonic development carvacrol is known to migrate to the yolk sac.However,it is unknown whether carvacrol in the yolk could enhance defence responsiveness in the yolk sac.Therefore,the aim of this study was to improve early immune function in chicken embryos,and it was hypothesized that in ovo delivery of carvacrol would result in immunomodulatory effects in the yolk sac,potentially improving post-hatch resilience.Methods On embryonic day(E)17.5,either a saline(control)or carvacrol solution was injected into the amniotic fluid.Yolk sac tissue samples were collected at E19.5,and transcriptomic analyses using RNA sequencing were performed,following functional enrichment analyses comparing the control(saline)and carvacrol-injected groups.Results The results showed that 268 genes were upregulated and 174 downregulated in the carvacrol group compared to the control(P<0.05;logFC<-0.5 or log FC>0.5).Functional analyses of these differentially expressed genes,using KEGG,REACTOME,and Gene Ontology databases,showed enrichment of several immune-related pathways.This included the pathways‘Antimicrobial peptides’(P=0.001)and‘Chemoattractant activity’(P=0.004),amongst others.Moreover,the‘NOD-like receptor signaling’pathway was enriched(P=0.002).Antimicrobial peptides are part of the innate immune defence and are amongst the molecules produced after the nucleotide oligomeriza-tion domain(NOD)-like receptor pathway activation.While these responses may be associated with an inflammatory reaction to an exogenous threat,they could also indicate that in ovo delivery of carvacrol could prepare the newly hatched chick against bacterial pathogens by potentially promoting antimicrobial peptide production through acti-vation of NOD-like receptor signaling in the yolk sac.Conclusion In conclusion,these findings suggest that in ovo delivery of carvacrol has the potential to enhance anti-pathogenic and pro-inflammatory responses in the yolk sac via upregulation of antimicrobial peptides,and NOD-like receptor pathways.
文摘Momordica antiviral protein 30 kD(MAP30)is a type I ribosome-inactivating protein(RIP)with antibacterial,anti-HIV and antitumor activities but lacks the ability to target tumor cells.To increase its tumor-targeting ability,the arginine-glycine-aspartic(RGD)peptide and the epidermal growth factor receptor interference(EGFRi)peptide were fused with MAP30,which was named ELRL-MAP30.The efficiency of targeted therapy for triple-negative breast cancer(TNBC)MDA-MB-231 cells,which lack the expression of estrogen receptor(ER),Progesterone receptor(PgR)and human epidermal growth factor receptor-2(HER2),is limited.In this study,we focus on exploring the effect and mechanism of ELRL-MAP30 on TNBC MDA-MB-231 cells.First,we discovered that ELRL-MAP30 significantly inhibited the migration and invasion of MDA-MB-231 cells and induced MDA-MB-231 cell apoptosis.Moreover,ELRL-MAP30 treatment resulted in a significant increase in Bax expression and a decrease in Bcl-2 expression.Furthermore,ELRL-MAP30 triggered apoptosis via the Fak/EGFR/Erk and Ilk/Akt signaling pathways.In addition,recombinant ELRL-MAP30 can inhibit chicken embryonic angiogenesis,and also inhibit the tube formation ability of human umbilical vein endothelial cells(HUVECs),indicating its potential therapeutic effects on tumor angiogenesis.Collectively,these results indicate that ELRL-MAP30 has significant tumor-targeting properties in MDA-MB-231 cancer cells and reveals potential therapeutic effects on angiogenesis.These findings indicate the potential role of ELRL-MAP30 in the targeted treatment of the TNBC cell line MDA-MB-231.
文摘Targeted cancer therapy has emerged as a promising alternative to conventional chemotherapy,which is often plagued by poor selectivity,off-target effects,and drug resistance.Among the various targeting agents in development,peptides stand out for their unique advantages,including minimal immunogenicity,high tissue penetration,and ease of modification.Their small size,specificity,and flexibility allow them to target cancer cells while minimizing damage to healthy tissue selectively.Peptide-based therapies have shown great potential in enhancing the efficacy of drug delivery,improving tumor imaging,and reducing adverse effects.With cancer responsible for millions of deaths worldwide,the development of peptide-based therapeutics offers new hope in addressing the limitations of current treatments.As detailed studies on different aspects of targeting peptides are crucial for optimizing drug development,this review provides a comprehensive overview of the literature on tumor-targeting peptides,including their structure,sources,modes of action,and their application in cancer therapy—both as standalone agents and in fusion drugs.Additionally,various computational tools for peptide-based tumor-targeting drug design and validation are explored.The promising results from these studies highlight peptides as ideal candidates for targeted cancer therapies,offering valuable insights for researchers and accelerating the discovery of novel anti-tumor peptide base drug candidates.
基金supported by the central government and guides local funds for science and technology development(2022ZY0109).
文摘The naturally fermented Inner Mongolian cheese’s flavor and nutritional value make it a popular choice among customers.In this work,to create multi-functional peptides that have taste and biological activity,peptidomics and bioinformatics were used to screen flavor peptides from Inner Mongolian cheese and further assess their antioxidant and angiotensin I-converting enzyme(ACE)inhibitory properties.According to sensory data,YH8 and IL7 had detectable bitter tastes with low thresholds of 0.03 and 0.06 mmol/L,respectively.With an umami threshold range of 0.24‒0.81 mmol/L,VQ6,FK13,HP13 and QT14 exhibited a range of flavors dominated by umami,including sweet,bitter,salty,sour and kokumi.Antioxidant activity wise,YH8,VQ6,HP13 and QT14 were well represented.The above-mentioned peptides all had some ACE inhibitory effect.The bitter peptide IL7(IC_(50)=0.08 mmol/L)had the highest level of ACE inhibitory activity,followed by YH8(IC_(50)=0.33 mmol/L).These multi-functional peptides,which have been assessed for bioactive and taste features in Inner Mongolian cheese,may have positive impacts on health and harmonize the cheese’s overall flavor.These results suggest that some flavor peptides produced in fermented foods might be with bioactivities while providing a basis for the exploration and application of multi-functional peptides.
文摘Taking a widely contaminated yet abundant waste,such as poultry feathers,and extracting keratin from this struc-ture appears to be a real challenge whenever the preservation of the secondary structure of the protein is desired.This process would allow exploiting it in ways(e.g.,in the biomedicalfield)that are inspired by a structure that is primarily designed forflight,therefore capable specifically of withstandingflexure and lateral buckling,also with very low thicknesses.The preservation of the structure is based on disulfide crosslinks,and it is offered with pre-ference by some chemical treatments,mainly those based on ionic liquid and on a reduction process.However,the degree of preservation cannot always be precisely assessed;however,beyond chemical characterization,the forma-tion of homogeneous gels can also suggest that the process was successful in this sense.An extraction respectful of nature’s intentions,considering that the secondary structure builds up according to the very function of the feath-ers in the animal,can be deemed to be biomimetic.In particular,biomimetic extractions comply with the very characteristics the protein was designed for to serve in the specific environmental and mechanical situation in which it is inserted.This review tries to elucidate in which cases this aim is achieved and for which specific appli-cations a chicken feather keratin that has preserved its secondary structure can be suited.
文摘The cosmetic sector is a multibillion-dollar industry that requires constant attention being paid to innovative product development and engagement.Notably,its market value is projected to exceed 750 billion U.S.dollars by 2025,and it is expanding as novel,climate-friendly,green,and sustainable components from natural sources are incorporated.This review is written based on the numerous reports on the potential applications of food-derived peptides while focusing on their possible uses in the formulation of cosmeceutical and skincare products.First,the production methods of bioactive peptides linked to cosmeceutical uses are described.Then,we discuss the obtainment and characterization of different anti-inflammatory,antimicrobial,antioxidant,anti-aging,and other pleiotropic peptides with their specific mechanisms,from various food sources.The review concludes with salient considerations of the cost of production and pilot scale operation,stability,compatibility,user safety,site-specificity,and delivery methods,when designing or developing biopeptide-based cosmeceutical products.
基金supported by the Science and Technology Department of Sichuan Province,China(2020YFN0151,23ZDYF3100)Chongqing Science and Technology Commission(cstc2021jscx-cylhX0014).
文摘Umami peptides play important roles in the flavor of fermented broad bean paste(FBBP),and proteases produced by microorganisms contributed to the production of umami peptides.In order to reveal the formation of umami peptides and their relationships with protease-producing microorganisms during the natural fermentation of FBBP,peptidomics and virtual screening were used to identify and screen umami peptides.Meanwhile,macrogenomics was used to analyze the abundance of microbial-derived protease genes during FBBP fermentation.Then,based on the Pearson correlation coefficient,the correlation network diagram of each protease-producing microorganism with umami peptides was constructed.The results showed that a total of two exopeptidases and four endopeptidases were annotated from FBBP.Staphylococcus,Lactobacillus,Aspergillus,and Weissella can produce most proteases.The species Lactobacillus curvatus,Dyella jiangningensis,Erythrobacter sp.,and unclassified_g_Pantoea had strong correlation with umami peptides,and they may contribute to the process of protein hydrolysis to produce umami peptides.This study is expected to reveal the formation mechanism of umami peptides in FBBP,and the results of this study provided a better understanding of the relationship between proteases,microbiota,and core umami peptides in FBBP,which could help to improve the umami taste of Pixian Douban paste during fermentation.
基金funded by the Thailand Graduate Institute of Science and Technology(TGIST)(Grant No.TG-BT-AIT-63-002D).
文摘The growing population and industrialization have led to significant production in agro-industrial sectors,result-ing in large amounts of agro-industrial residues often left untreated,posing potential environmental issues.There-fore,finding effective ways to utilize these bio-based residues is crucial.One promising approach is to use these low-or no-value agro-industrial wastes as raw materials for producing renewable biomaterials,including proteins and peptides.Research has extensively explored peptide extraction using plant and animal-based agro-industrial residue.Due to lower processing costs and beneficial bioactive properties,peptides derived from waste could replace synthetic peptides and those extracted from food sources.The isolation,purification,and analysis processes of these peptides are thoroughly examined to optimize their extraction and ensure their purity and efficacy.These peptides’bioactive properties and mechanisms are being analyzed for their potential applications in the biomedical field.Additionally,the applications of bioactive peptides in medical fields,such as drug delivery systems,tissue engineering,and bioprinting,are discussed.
基金the National Natural Science Foundation of China(Nos.82373722,22077144)Hunan Provincial Natural Science Foundation of China(No.2023JJ30527)+2 种基金Guangdong Basic and Applied Basic Research Foundation(No.2023B1515040006)Guangdong Provincial Key Laboratory of Construction Foundation(No.2023B1212060022)Key Research and Development Program of Guangdong Province(No.2020B1111110003).
文摘Chemical modification of native peptides and proteins is a versatile strategy to facilitate late-stage diversification for functional studies.Among the proteogenic amino acids,lysine is extensively involved in posttranslational modifications and the binding of ligands to target proteins,making its selective modification attractive.However,lysine’s high natural abundance and solvent accessibility,as well as its relatively low reactivity to cysteine,necessitate addressing chemoselectivity and regioselectivity for the Lys modification of native proteins.Although Lys chemoselective modification methods have been well developed,achieving site-selective modification of a specific Lys residue remains a great challenge.In this review,we discussed the challenges of Lys selective modification,presented recent examples of Lys chemoselective modification,and summarized the currently known methods and strategies for Lys site-selective modification.We also included an outlook on potential solutions for Lys site-selective labeling and its potential applications in chemical biology and drug development.
基金funded by the National Natural Science Foundation of China(32272346)Graduate Innovation Fund of Jilin University.
文摘Bioactive peptides have various excellent biological activities and serve as functional foods to prevent chronic diseases in the human body.This article investigated the regulatory effect of egg white peptides(EPs)on the intestine barrier of young mice with colitis.The results showed that the intake of EPs could protect the intestines from inflammation damage.Besides,the expression of tight junction proteins and mucin is upregulated.Markedly,the intake of EPs can increase the concentration of amino acids in the serum of young mice,which is crucial for nutritional supplementation during intestinal inflammation process.Proteomics analysis implied that EPs can regulate protein expression in the intestine,involving multiple inflammatory pathways including phosphoinositide 3-kinase(PI3K)-protein kinase B(AKT)and mitogen-activated protein kinase(MAPK)signaling pathway.This demonstrated the health benefits of bioactive peptides and provides a theoretical basis for the development of animal derived proteins as functional foods.
基金Innovation Ability Improvement Project of Science and Technology Small and Medium-sized Enterprises in Shandong Province:2023TSGC0892,2022TSGC2520Project supported by Qingdao Natural Science Foundation:23-2-1-180-zyyd-jch+3 种基金Key R&D Program of Shandong Province,China:2023TZXD078Shandong Province Technology Innovation Guidance Plan:YDZX2023035Qingdao People’s Livelihood Science and Technology Plan Project:23-2-8-xdny-6-nsh,23-3-8-xdny-1-nshThe Two Hundred Talents Project of Yantai City in 2020。
文摘Calcium-chelating peptide is a new type of calcium supplement with excellent absorption properties and high bioavailability,safety and stability.This study synthesized calcium chelating peptide from gluten by enzymatic hydrolysis,determined peptide sequences with high activity,and analyzed their digestive characteristics and stability.The enzymatic hydrolysis process was optimized using response surface methodology to determine the optimal enzymatic hydrolysis conditions of temperature 55?C,p H 8.5,and the ratio of alkaline protease to flavor protease(proportion of enzymes)2.63:1 under a liquid-to-solid ratio of 20:1.The calcium chelation rate of gluten hydrolysate was up to 40.1%under the optimal conditions.Fractional purification was then carried out and results showed that peptides with a molecular weight below 500 Da exhibited the highest chelation rate(51.1%).LC-MS/MS analysis was applied to identify 1224 distinct peptide sequences,among which V.YIPPY?C(WCP1)exhibited a higher calcium chelation rate after screening and molecular docking studies.The synthesized WCP1 displayed a calcium chelation rate as high as 53.5%.Fourier Transform Infrared Spectroscopy(FTIR)confirmed that both carboxyl and phosphate groups play crucial roles in mediating interactions between calcium ions and wheat polypeptides.Circular Dichroism(CD)revealed that the structure of wheat peptide became more compact after chelation.Furthermore,stability experiments indicated that the calcium-chelating peptides displayed notable resistance to digestion as well as excellent p H stability and thermal stability.This study provides technical support for deep processing and functional product development of gluten flour.
基金supported by National Key R&D Program of China(2023YFD2100205)Fuzhou Science&Technology Project,China(2022-Y-0022022-P-023).
文摘Identification of natural substances with antioxidant properties is ongoing research for addressing issues related to oxidative stress especially attributed to environmental effects.Our previous study demonstrated that Lateolabrax japonicus peptides(LPH),rich in Glu,Gly,and hydrophobic amino acids,exhibited remarkable antioxidant activity in vitro,with though its action mechanism yet to be revealed.Therefore,to assess the in vivo antioxidative properties of LPH,we employed H_(2)O_(2) to generate oxidative stress in Drosophila melanogaster model.Results indicated that LPH significantly prolonged the lifespan of Drosophila subjected to oxidative stress mostly mediated via LPH’s enhancement of the antioxidant defense system and intestinal functions.Antioxidant effects were manifested by a decrease in malondialdehyde(MDA)levels,elevated superoxide dismutase(SOD),catalase(CAT),and glutathione peroxidase(GSH-Px)activities,decreased levels of reactive oxygen species(ROS)in intestinal epithelial cells,and the preservation of intestinal length.LPH effectively controlled the excessive proliferation and differentiation of oxidative stress-induced Drosophila intestinal stem cells.At the gene level,LPH upregulated the expression of antioxidant-related Nrf2 genes while concurrently downregulated mTOR expression level.Furthermore,high-throughput 16S rDNA sequencing revealed that the addition of LPH significantly influenced the diversity and abundance of the intestinal microbiota in H_(2)O_(2)-induced Drosophila.These findings provide a deeper understanding of the antioxidative mechanism of LPH,suggesting its potential applications in food industry and to be assessed using other in vivo oxidative stress models.
基金sponsored by the Natural Science Foundation of Zhejiang Province(LQ22D060002 and LTGC23C190001)Fund of State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products(ZS20190105)+1 种基金General Project of Zhejiang Provincial Department of Education(Y202146257)K.C.Wong Magna Fund of Ningbo University。
文摘Iron deficiency anemia(IDA)is a nutritional deficiency disease with a high incidence rate worldwide.Bioactive peptides are safe and effective,have multiple functions and can serve as potential candidates for alleviating IDA.In this study,the anti-anemia effects of tuna dark muscle peptides were explored in a dietinduced IDA mouse model.The results showed that tuna dark muscle peptides alleviated the IDA phenotype,oxidative stress and iron metabolism.In addition,tuna dark muscle peptides reversed gut microbiota dysbiosis in IDA mice.Furthermore,the transplanted fecal microbiota from tuna dark muscle peptide-treated mice also alleviated IDA symptoms and regulated iron metabolism and the gut microbiota,indicating that the antianemic effects were at least partially mediated by the gut microbiota.Thus,we identified a new and safe prebiotic material to alleviate IDA and provided ideas for the development of peptides.At the same time,these data also provided a theoretical basis for fecal microbiota transplantation to alleviate IDA.
基金supported by Yunnan Fundamental Research Project(202301AS070014)Science and Technology Plan Project in Guizhou Province([2020]1Y022).
文摘Rosa roxburghii seeds are by-products of R.roxburghii processing,and their protein hydrolysates(RTSPHs)were found to possess a variety of biological activities.This study aimed to rapidly identify pancreatic lipase(PL)and cholesterol esterase(CE)inhibitory peptides in RTSPHs and to elucidate their molecular mechanisms by combining peptidomics and virtual screening.The simulated intestinal environment worsened the peptide’s inhibition of PL but catalyzed the inhibition of CE.The fraction less than 3 kDa in RTSPHs was found to have the highest PL/CE inhibitory activity,among which 17 promising inhibitory peptides were identified and screened by peptidomics and virtual screening.LFCMH,RIPAGSPF,and YFRPR showed good inhibitory abilities against both PL and CE.Molecular docking showed that peptides inhibited PL and CE mainly by hydrogen bonding and hydrophobic interactions with residues in the active site and surface loop.Inhibition kinetic revealed that the peptides were competitive and mixed-type inhibitors of PL/CE.Further,the three peptides,LFCMH,RIPAGSPF,and YFRPR,could effectively inhibit 3T3-L1 preadipocytes differentiation,increase high-density lipoprotein cholesterol content and decrease low-density lipoprotein cholesterol content.This study suggests that combining peptidomics with virtual screening is an effective strategy for rapid screening of PL/CE inhibitory peptides.
基金sponsored by the National Key R&D Program of China(2019YFD0900101)One Health Interdisciplinary Research Project,Ningbo University,KC Wong Magna Fund in Ningbo University+1 种基金the National Natural Science Foundation of China(42106122)the Natural Science Foundation of Zhejiang Province(LGC22C190002)。
文摘Marine fauna provides a plentiful repository of peptides and bioactive proteins.Peptides and proteins isolated from marine animals have been studied and applied in the development of food supplements,drugs,and cosmeceutical products because of their special bioactivities,such as anti-inflammatory and antioxidant effects.This study focused on exploring the alleviating effects of five major marine animal-derived peptides(Apostichopus japonicus,Acaudina leucoprocta,Melanogrammus aeglefinus,Phascolosoma esculenta and Rhopilema esculentum)on adjuvant-induced arthritis(AIA).The treatment with five marine animals-derived peptides downregulated the expression levels of pro-inflammatory cytokines of interleukin(IL)-1β,IL-17 and tumor necrosis factor(TNF)-α in the bones of the mice with AIA and alleviated the rough surface of bone tissues significantly.A.japonicus-treatment ameliorates inflammation by restoring nuclear factor-κB pathway in AIA mice.High-throughput sequencing of the gut microbiota based on 16S rRNA sequencing revealed that A.japonicus peptide-treated AIA mice showed alterations and imbalance of intestinal flora and an increased abundance of Lactobacillus and Clostridium.Furthermore,metabolomic analysis showed that the level of short-chain fatty acids(SCFAs)in the feces was enhanced to different degrees in mice treated with five major marine animal-derived peptides.Taken together,we propose that major marine animal-derived peptides can alleviate arthritis by improving the imbalance in the gut flora and increasing SCFAs production to varying degrees.
基金funded by the National Key R&D Program of China(2022YFD2101002)Jilin Province Science and Technology Youth Talent Support Project(QT202021)Fundamental Research Funds for the Central Universities。
文摘This study investigated the preventive effects of soybean meal peptides(SPs)and their purification peptides(GTYW)on acute alcoholic liver injury.We combined the gut microbiota,metabolites,liver inflammation,and oxidative stress indicators to explore the prevention mechanism of SPs and GTYW.Results showed that SPs,GTYW effectively improved the hepatic oxidative stress and inflammatory.Additionally,SPs and GTYW reversed the effects of alcohol on the gut microbiota,which were evident in the increased abundance of Alloprevotella,Parasutterella in the GTYW group and norank_f__Muribaculaceae in the SPs group.Nontargeted metabolomic analysis showed that SPs ameliorated metabolic disorders by regulating phenylalanine,tyrosine and tryptophan biosynthesis,while GTYW regulated metabolites throughα-linolenic acid metabolism and phenylalanine metabolism.Furthermore,significant correlations were observed between gut microbiota,metabolites and liver indicators.These findings confirmed that SPs and GTYW can prevent acute alcoholic liver injury.