Exploring novel materials with excellent photothermal conversion capabilities for solar photothermal water evaporation is considered as an ideal strategy to simultaneously realize the direct and full use of the widely...Exploring novel materials with excellent photothermal conversion capabilities for solar photothermal water evaporation is considered as an ideal strategy to simultaneously realize the direct and full use of the widely distributed solar energy and alleviate the world's freshwater scarcity.Herein,an amphiphilic photothermal membrane is prepared through the self-assembly of hydrophilic heteropoly blue(HPB,H_(3)PMo_(12)O_(40))and hydrophobic surfactant(dioctadecyl dimethyl ammonium bromide,DODA).Benefiting from the synergistic effects of alternating functional hydrophilic HPB and hydrophobic DODA layers,the flexible membrane based on two-dimensional DODA-HPB self-assemblies(DODA-HPB/Nylon66)exhibits superior photothermal conversion properties,showing promising prospects in applications of solar desalination and wastewater treatment.展开更多
A new star-shaped molecule StOF-Br_3 containing oligofluorenes and halogen atoms(Bromine) has been synthesized and studied by Scanning Tunneling Microscopy(STM) at the highly oriented pyrolytic graphite(HOPG) surface....A new star-shaped molecule StOF-Br_3 containing oligofluorenes and halogen atoms(Bromine) has been synthesized and studied by Scanning Tunneling Microscopy(STM) at the highly oriented pyrolytic graphite(HOPG) surface.We have obtained the high-resolution self-assembled STM images,from which the highly ordered and closely packed non-porous arrangements of the StOF-Br_3 molecular selfassemblies at the heptanoic acid/HOPG surface could be observed.The molecular models and selfassembled StOF-Br_3 architectures have been given in the following text.Besides,we have also figured out the surface free energy by the density functional theory(DFT) calculation,which proved that the halogen...halogen interaction was strong enough to stabilize the ordered molecular self-assemblies.This work verifies the existence of bromine...bromine interactions,and meanwhile provides a kind of effective approach for quickly building ordered molecular nanoarchitectures with large areas and different geometries.展开更多
Molecular recognition directed self-assemblies from complementary molecular components, melamine and barbituric acid derivatives were studied by means of NMR, fluorescence, and TEM. It was found that both the process ...Molecular recognition directed self-assemblies from complementary molecular components, melamine and barbituric acid derivatives were studied by means of NMR, fluorescence, and TEM. It was found that both the process of the self-assembly and the morphologies of the result- ed self-assemblies could be mediated by modifying the structures of the molecular components used. The effect of the structures of the molecular components on the formation of the self-as- semblies was discussed in terms of intermolecular interactions.展开更多
The self-assembly characteristics of tetrathiafulvalene(TTF) derivatives molecules 1-3 at the 1-phenyloctane/HOPG(HOPG = highly oriented pyrolytic graphite) interface had been carefully studied by scanning tunneling m...The self-assembly characteristics of tetrathiafulvalene(TTF) derivatives molecules 1-3 at the 1-phenyloctane/HOPG(HOPG = highly oriented pyrolytic graphite) interface had been carefully studied by scanning tunneling microscopy(STM) method. The number of F atoms on the phenyl group had significantly affected the self-assembly structures. High-resolution STM images make clear the different assembly structures between the molecules 1-3, which attribute to the different F atom numbers and pyridine group in the molecule. Density functional theory(DFT) calculations have been performed to reveal the formation mechanism.展开更多
Two-dimensional self-assemblies of four partially fluorinated molecules, 1,4-bis(2,6-difluoropyridin-4-yl)benzene, 4,4'-bis(2,6-difluoropyridin-4-yl)-1,1'-biphenyl, 4,4'-bis(2,6-difluoropyridin-4-yl)-1,1':4...Two-dimensional self-assemblies of four partially fluorinated molecules, 1,4-bis(2,6-difluoropyridin-4-yl)benzene, 4,4'-bis(2,6-difluoropyridin-4-yl)-1,1'-biphenyl, 4,4'-bis(2,6-difluoropyridin-4-yl)-1,1':4',1'-terphenyl and 4,4'-bis(2,6-difluoropyridin-3-yl)-1,1'-biphenyl, involving weak intermolecular C-H···F and C-H···N hydrogen bonds were systematically investigated on Au(111) with low-temperature scanning tunneling microscopy. The inter-molecular connecting modes and binding sites were closely related to the backbones of the building blocks, i.e., the molecule length determines its binding sites with neighboring molecules in the assemblies while the attaching positions of the N and F atoms dictate its approaching and docking angles. The experimental results demonstrate that multiple weak hydrogen bonds such as C-H···F and C-H···N can be efficiently applied to tune the molecular orientations and the self-assembly structures accordingly.展开更多
Hydrolysis reactions are capable of directing the non-equilibrium assembly of biomolecular scaffolds to realize sophisticated structures and functions in natural systems.However,utilizing the proper hydrolysis reactio...Hydrolysis reactions are capable of directing the non-equilibrium assembly of biomolecular scaffolds to realize sophisticated structures and functions in natural systems.However,utilizing the proper hydrolysis reactions to construct controlled assemblies with complex topologies is still an arduous challenge in artificial systems and needs to be addressed.Herein,we report a nitric oxide(NO)-triggered slow hydrolysis strategy for the controlled construction of biomimetic supramolecular toroids(STs),thus realizing their visualization of intermediate structures and regulation of geometry parameters.This presented protocol harnesses hydrolysis reactions to control of non-equilibrium self-assembly processes for the construction of self-assemblies with complex topologies successfully,which sheds light on how the hydrolysis reaction rate can modulate the kinetic pathway of assembly,thus realizing the artificial establishment of bio-inspired hierarchical structures.展开更多
The self-assembled nanoparticles(SAN)formed during the decoction process of traditional Chinese medicine(TCM)exhibit non-uniform particle sizes and a tendency for aggregation.Our group found that the p H-driven method...The self-assembled nanoparticles(SAN)formed during the decoction process of traditional Chinese medicine(TCM)exhibit non-uniform particle sizes and a tendency for aggregation.Our group found that the p H-driven method can improve the self-assembly phenomenon of Herpetospermum caudigerum Wall.,and the SAN exhibited uniform particle size and demonstrated good stability.In this paper,we analyzed the interactions between the main active compound,herpetrione(Her),and its main carrier,Herpetospermum caudigerum Wall.polysaccharide(HCWP),along with their self-assembly mechanisms under different p H values.The binding constants of Her and HCWP increase with rising p H,leading to the formation of Her-HCWP SAN with a smaller particle size,higher zeta potential,and improved thermal stability.While the contributions of hydrogen bonding and electrostatic attraction to the formation of Her-HCWP SAN increase with rising p H,the hydrophobic force consistently plays a dominant role.This study enhances our scientific understanding of the self-assembly phenomenon of TCM improved by p H driven method.展开更多
Recently,hollow carbon nanospheres(HCSs)have garnered significant attention as potential Li metal hosts owing to their unique large voids and ease of fabrication.However,similar to other nanoscale hosts,their practica...Recently,hollow carbon nanospheres(HCSs)have garnered significant attention as potential Li metal hosts owing to their unique large voids and ease of fabrication.However,similar to other nanoscale hosts,their practical performance is limited by inhomogeneous agglomeration,increased binder requirements,and high tortuosity within the electrode.To overcome these problems and high tortuosity within the electrode,this study introduces a pomegranate-like carbon microcluster composed of primary HCSs(P-CMs)as a novel Li metal host.This unique nanostructure can be easily prepared using the spray-drying technique,enabling its mass production.Comprehensive analyses with various tools demonstrate that compared with HCS hosts,the P-CM host requires a smaller amount of binder to fabricate a sufficiently robust and even surface electrode.Furthermore,owing to reduced tortuosity,the well-designed P-CM electrode can provide continuous and shortened pathways for electron/ion transport,accelerating the Li-ion transfer kinetics and prohibiting preferential Li plating at the upper region of the electrode.Due to these characteristics,Li metal can be effectively encapsulated in the large inner voids of the primary HCSs constituting the P-CM,thereby enhancing the electrochemical performance of P-CM hosts in Li metal batteries.Specifically,the Coulombic efficiency of the P-CM host can be maintained at 97%over 100 cycles,with a high Li deposition areal capacity of 3 mAh·cm^(-2)and long cycle life(1000 h,1 mA·cm^(-2),and 1.0 mAh·cm^(-2)).Furthermore,a full cell incorporating a LiFePO4 cathode exhibits excellent cycle life.展开更多
Four glycoluril-based amphiphilic molecular clips(AMCs)M1~M4 have been prepared for intracellular delivery of short DNA.M1~M4 have two methyl groups on its convex surface and four cations on its aromatic side arm,whic...Four glycoluril-based amphiphilic molecular clips(AMCs)M1~M4 have been prepared for intracellular delivery of short DNA.M1~M4 have two methyl groups on its convex surface and four cations on its aromatic side arm,which can be used to construct self-assembled nanoparticles in aqueous solution driven by hydrophobic interaction.Dynamic light scattering experiments show that M1 and M2 can be driven hydrophobically to aggregate into extremely stable nanoparticles in water at the micromolar concentrations.Fluorescence titration and zeta potential experiments support that the nanoparticles formed by M1 and M2 are able to efficiently encapsulate short DNA(sDNA).Fluorescence imaging and flow cytometry studies reveal that their nano sizes enable intracellular delivery of the encapsulated sDNA into both normal and cancer cells,with delivery percentage reaching up to 94%,while in vitro experiments indicate that the two compounds have excellent biocompatibility and low cytotoxicity.展开更多
Nowadays,high-stable and ultrasensitive heavy metal detection is of utmost importance in water quality monitoring.Nanoparticle-enhanced laser-induced breakdown spectroscopy(NELIBS)shows high potential in hazardous met...Nowadays,high-stable and ultrasensitive heavy metal detection is of utmost importance in water quality monitoring.Nanoparticle-enhanced laser-induced breakdown spectroscopy(NELIBS)shows high potential in hazardous metal detection,however,encounters unstable and weak signals due to nonuniform distribution of analytes.Herein,we developed an interface self-assembly(ISA)method to create a uniformly distributed gold nanolayer at a liquid-liquid interface for positive heavy metal ions capture and NELIBS analysis.The electrostatically selfassembled Au nanoparticles(NPs)-analytes membrane was prepared at the oil-water interface by injecting ethanol into the mixture of cyclohexane and Au NPs-analytes water solution.Then,the interface self-assembled Au NPs-analytes membrane was transformed onto a laser-processed superhydrophilic Si slide for detection.Three heavy metals(cadmium(Cd),barium(Ba),and chromium(Cr))were analyzed to evaluate the stability and sensitivity of the ISA method for NELIBS.The results(Cd:RSD=3.6%,LoD=0.654 mg/L;Ba:RSD=3.4%,LoD=0.236 mg/L;Cr:RSD=7.7%,LoD=1.367 mg/L)demonstrated signal enhancement and high-stable and ultrasensitive detection.The actual sample detection(Cd:RE=7.71%,Ba:RE=6.78%)illustrated great reliability.The ISA method,creating a uniform distribution of NP-analytes at the interface,has promising prospects in NELIBS.展开更多
The potential of metal nanoclusters in biomedical applications is limited due to aggregation-caused quenching(ACQ).In this study,an in situ self-assembled pitaya structure was proposed to obtain stable fluorescence em...The potential of metal nanoclusters in biomedical applications is limited due to aggregation-caused quenching(ACQ).In this study,an in situ self-assembled pitaya structure was proposed to obtain stable fluorescence emission through protein coronas-controlled distance between gold nanoclusters(Au NCs).Interestingly,the gold ion complexes coated with proteins of low isoelectric point(pI)nucleate at the secondary structure of proteins with high p I through ionic exchange within cells,generating fluorescent Au NCs.It is worth noting that due to the steric hindrance formed by the protein coronas on the surface of Au NCs,the distance between Au NCs can be controlled,avoiding electron transfer caused by close proximity of Au NCs and inhibiting fluorescence ACQ.This strategy can achieve fluorescence imaging of clinical tissue samples without observable side effects.Therefore,this study proposes a distance-controllable self-assembled pitaya structure to provide a new approach for Au NCs with stable fluorescence.展开更多
A new type of amphiphiles bearingmacrocycle such as cucurbit[7]uril(CB[7])spontaneously forms a nanomaterial in water,specifically vesicles(tACB[7]vesicles)with a positive surface charge,verified through various analy...A new type of amphiphiles bearingmacrocycle such as cucurbit[7]uril(CB[7])spontaneously forms a nanomaterial in water,specifically vesicles(tACB[7]vesicles)with a positive surface charge,verified through various analytical techniques including TIRF,DLS and TEM.Functional validation not only reveals the accessibility of the CB[7]portal on these vesicles allowing CB[7]-based host-vip interactions with various functional vip molecules such as fluorescein isothiocyanate conjugated adamantylammonium and spermine(FITC-AdA and FITC-SPM,respectively)using confocal laser scanning microscopy,but also showcases the effective internalization of tACB[7]vesicles into cancer cells with the anticancer drug oxaliplatin(OxPt),as a vip to CB[7],through in vitro cell experiments.Hence,this study provides a blueprint to impart amphiphilic properties to CB[7]through synthetic design and highlights the potential of CB[7]derivatives as a new class of unconventional amphiphiles self-assembling into functional nanomaterials for advanced drug delivery.展开更多
The development of new and efficient extractants plays a key role in the separation and recovery of rare earth elements.In this pape r,the extractant(N,N-methyl py ridineethyl-N',N'-dicyclohexyl-3-oxadiglycola...The development of new and efficient extractants plays a key role in the separation and recovery of rare earth elements.In this pape r,the extractant(N,N-methyl py ridineethyl-N',N'-dicyclohexyl-3-oxadiglycolamide,MPyEDChDGA) with a new structure was synthesized,and the pyridine group was successfully grafted onto the 3-oxadiglycolamide structure.Using MPyEDChDGA for efficient enrichment of rare earth ions,the self-assembled solids were recovered by simple filtration without further backextraction and final precipitation,achieving a one-step strategy for the recovery of rare earth ions.Several important parameters affecting the self-assembly extraction,including pH,diluent,temperature,and extractant concentration,were systematically evaluated using La(NO_(3))_(3),Tb(NO_(3))_(3),and Lu(NO_(3))_(3) as representatives.The self-assembled solids were investigated in detail by X-ray diffraction(XRD),scanning electron microscopy(SEM),1H nuclear magnetic resonance(1H NMR),Fourier transform infrared spectroscopy(FT-IR),Raman,and X-ray photoelectron spectroscopy(XPS) analyses.The stoichiometry of the extraction species was characterized using the Job's method and electrospray ionization mass spectrometry(ESI-MS).In addition,MPyEDChDGA was applied to the recovery of Sm in SmCoCu simulated liquid,and the results show that MPyEDChDGA has good selectivity of Sm from transition metals(Co,Cu).The separation factor of Sm/Co can reach 6281±117,which provides a new approach to recovering Sm from SmCoCu scrap magnets.This study presents an efficient and convenient new strategy for the recovery and separation of rare earth elements.展开更多
Self-assembled monolayers(SAMs)are widely used as hole transport materials in inverted perovskite solar cells,offering low parasitic absorption and suitability for semitransparent and tandem solar cells.While SAMs hav...Self-assembled monolayers(SAMs)are widely used as hole transport materials in inverted perovskite solar cells,offering low parasitic absorption and suitability for semitransparent and tandem solar cells.While SAMs have shown to be promising in small-area devices(≤1 cm^(2)),their application in larger areas has been limited by a lack of knowledge regarding alternative deposition methods beyond the common spin-coating approach.Here,we compare spin-coating and upscalable methods such as thermal evaporation and spray-coating for[2-(9H-carbazol-9-yl)ethyl]phosphonic acid(2PACz),one of the most common carbazole-based SAMs.The impact of these deposition methods on the device performance is investigated,revealing that the spray-coating technique yields higher device performance.Furthermore,our work provides guidelines for the deposition of SAM materials for the fabrication of perovskite solar modules.In addition,we provide an extensive characterization of 2PACz films focusing on thermal evaporation and spray-coating methods,which allow for thicker 2PACz deposition.It is found that the optimal 2PACz deposition conditions corresponding to the highest device performances do not always correlate with the monolayer characteristics.展开更多
The precise control over the hierarchical self-assembly of sophisticated structures with comparable complexities and functions relying on the modulation of basic building blocks is elusive and highly desirable.Here,we...The precise control over the hierarchical self-assembly of sophisticated structures with comparable complexities and functions relying on the modulation of basic building blocks is elusive and highly desirable.Here,we report a fluorinated N-heterocyclic carbene(NHC)–based pillarplex with a tunable quaternary structure,employed as an efficient building block for constructing hierarchical superstructures.Initially,multiple noncovalent interactions in the NHC-based pillarplex,particularly those between the fluorinated pillarplex and PF_(6)-anions,induce the formation of a supramolecular gel at high concentrations.Additionally,this hierarchical self-assembled structure can be regulated by adjusting anion types,facilitating the controlled transformation from a supramolecular gel into a supramolecular channel upon the introduction of four monocarboxylic acids as anions.The study provides insight into the construction and controlled regulation of superstructures based on NHC-based pillarplexes.展开更多
Self-assembly of block copolymers(BCPs)is highly intricate and is adsorbing extensive experimental and simulation efforts to reveal it for maximizing structural order and device performances.The coarse-grained(CG)mole...Self-assembly of block copolymers(BCPs)is highly intricate and is adsorbing extensive experimental and simulation efforts to reveal it for maximizing structural order and device performances.The coarse-grained(CG)molecular dynamics(MD)simulation offers a microscopic angle to view the self-assembly of BCPs.Although some molecular details are sacrificed during CG processes,this method exhibits remarkable computational efficiency.In this study,a comprehensive CG model for polystyrene-block-poly(2-vinylpyridine),PS-b-P2VP,one of the most extensively studied BCPs for its high Flory-Huggins interaction parameter,is constructed,with parameters optimized using target values derived from all-atom MD simulations.The CG model precisely coincides with various classical self-assembling morphologies observed in experimental studies,matching the theoretical phase diagrams.Moreover,the conformational asymmetry of the experimental phase diagram is also clearly revealed by our simulation results,and the phase boundaries obtained from simulations are highly consistent with experimental results.The CG model is expected to extend to simulate the self-assembly behaviors of other BCPs in addition to PS-b-P2VP,thus increasing understanding of the microphase separation of BCPs from the molecular level.展开更多
Taking a widely contaminated yet abundant waste,such as poultry feathers,and extracting keratin from this struc-ture appears to be a real challenge whenever the preservation of the secondary structure of the protein i...Taking a widely contaminated yet abundant waste,such as poultry feathers,and extracting keratin from this struc-ture appears to be a real challenge whenever the preservation of the secondary structure of the protein is desired.This process would allow exploiting it in ways(e.g.,in the biomedicalfield)that are inspired by a structure that is primarily designed forflight,therefore capable specifically of withstandingflexure and lateral buckling,also with very low thicknesses.The preservation of the structure is based on disulfide crosslinks,and it is offered with pre-ference by some chemical treatments,mainly those based on ionic liquid and on a reduction process.However,the degree of preservation cannot always be precisely assessed;however,beyond chemical characterization,the forma-tion of homogeneous gels can also suggest that the process was successful in this sense.An extraction respectful of nature’s intentions,considering that the secondary structure builds up according to the very function of the feath-ers in the animal,can be deemed to be biomimetic.In particular,biomimetic extractions comply with the very characteristics the protein was designed for to serve in the specific environmental and mechanical situation in which it is inserted.This review tries to elucidate in which cases this aim is achieved and for which specific appli-cations a chicken feather keratin that has preserved its secondary structure can be suited.展开更多
Spatial confinement of block copolymers can induce frustrations,which can further be utilized to regulate self-assembled structures,thus providing an efficient route for fabricating novel structures.We studied the sel...Spatial confinement of block copolymers can induce frustrations,which can further be utilized to regulate self-assembled structures,thus providing an efficient route for fabricating novel structures.We studied the self-assembly of AB di-block copolymers(di-BCPs)confined in Janus spherical nanocavities using simulations,and explained the structure formation mechanisms.In the case of a strongly selective cavity wall,all the lamella-forming,gyroid-forming,and cylinder-forming di-BCPs can form interfacial frustration-induced Janus concentric perforated lamellar nanoparticles,whose outermost is a Janus spherical shell and the internal is a sphere with concentric perforated lamellar structure.In particular,Janus concentric perforated lamellar nanoparticles with holes distributed only near the equatorial plane were obtained in both lamella-forming and gyroid-forming di-BCPs,directly reflecting the effect of interfacial frustration.The minority-block domain of the cylider-forming di-BCPs may form hemispherical perforated lamellar structures with holes distributed in parallel layers with a specific orientation.For symmetric di-BCPs,both the A and B domains in each nanoparticle are continuous,interchangeable,and have rotational symmetry.While for gyroid-forming and cylinder-forming di-BCPs,only the majority-block domains are continuous in each nanoparticle,and holes in the minority-block domains usually have rotational symmetry.In the case of a weakly selective cavity wall,the inhomogeneity of the cavity wall results in structures having a specific orientation(such as flower-like and branched structures in gyroid-forming and cylinder-forming di-BCPs)and a perforated wetting layer with uniformly distributed holes.The novel nanoparticles obtained may have potential applications in nanotechnology as functional nanostructures or nanoparticles.展开更多
A significant challenge in developing block copolymer photonic crystals is constructing low-symmetric ordered phases,which are essential for achieving a complete photonic band gap.Here,we propose a promising strategy ...A significant challenge in developing block copolymer photonic crystals is constructing low-symmetric ordered phases,which are essential for achieving a complete photonic band gap.Here,we propose a promising strategy to create low-symmetric ordered morphologies by incorporating shape-anisotropic rod-like side chains into block copolymers.Using dissipative particle dynamics simulations,we demonstrate that block copolymers with longer rod-like side chains can self-assemble into a hexagonally packed columnar phase characterized by a low-symmetric rectangular cross-section.Photonic band structure calculations reveal that this low-symmetric columnar phase can exhibit a complete photonic band gap,with the gap size dependent on the aspect ratio of the rectangular cross-sections of the columns.Our findings suggest an effective approach to constructing low-symmetric photonic crystals through the self-assembly of block copolymers with shape-anisotropic segments.展开更多
Amphiphilic asymmetric brush copolymers(AABCs)possess unique self-assembly behaviors owing to their asymmetric brush architecture and multiple functionalities of multicomponent side chains.However,the synthesis of AAB...Amphiphilic asymmetric brush copolymers(AABCs)possess unique self-assembly behaviors owing to their asymmetric brush architecture and multiple functionalities of multicomponent side chains.However,the synthesis of AABCs presents challenges,which greatly limits the exploration of their self-assembly behaviors.In this work,we employed dissipative particle dynamics(DPD)simulations to investigate the self-assembly behaviors of AABCs in selective solution.By varying the copolymer concentration and structure,we conducted the self-assembly phase diagrams of AABCs,revealing complex morphologies such as channelized micelles with one or more solvophilic channels.Moreover,the number,surface area,and one-dimensional density distribution of the channelized micelles were calculated to demonstrate the internal structure and morphological transformation during the self-assembly process.Our findings indicate that the morphology of the internal solvophilic channels is greatly influenced by the copolymer structure,concentration,and interaction parameters between the different side chains.The simulation results are consistent with available experimental observations,which can offer theoretical insights into the self-assembly of AABCs.展开更多
基金supported by the National Natural Science Foundation of China(22071020,22171041,22271043,22205034)Natural Science Foundation of Jilin Province Science and Technology Department(20220101045JC)the Fundamental Research Funds for the Central Universities(2412021QD008,2412022QD012)
文摘Exploring novel materials with excellent photothermal conversion capabilities for solar photothermal water evaporation is considered as an ideal strategy to simultaneously realize the direct and full use of the widely distributed solar energy and alleviate the world's freshwater scarcity.Herein,an amphiphilic photothermal membrane is prepared through the self-assembly of hydrophilic heteropoly blue(HPB,H_(3)PMo_(12)O_(40))and hydrophobic surfactant(dioctadecyl dimethyl ammonium bromide,DODA).Benefiting from the synergistic effects of alternating functional hydrophilic HPB and hydrophobic DODA layers,the flexible membrane based on two-dimensional DODA-HPB self-assemblies(DODA-HPB/Nylon66)exhibits superior photothermal conversion properties,showing promising prospects in applications of solar desalination and wastewater treatment.
基金The financial supports from the National Natural Science Foundation of China(NSFC,Nos.21773041 and 21327805)the National Basic Research Program of China(No.2016YFA0200700)。
文摘A new star-shaped molecule StOF-Br_3 containing oligofluorenes and halogen atoms(Bromine) has been synthesized and studied by Scanning Tunneling Microscopy(STM) at the highly oriented pyrolytic graphite(HOPG) surface.We have obtained the high-resolution self-assembled STM images,from which the highly ordered and closely packed non-porous arrangements of the StOF-Br_3 molecular selfassemblies at the heptanoic acid/HOPG surface could be observed.The molecular models and selfassembled StOF-Br_3 architectures have been given in the following text.Besides,we have also figured out the surface free energy by the density functional theory(DFT) calculation,which proved that the halogen...halogen interaction was strong enough to stabilize the ordered molecular self-assemblies.This work verifies the existence of bromine...bromine interactions,and meanwhile provides a kind of effective approach for quickly building ordered molecular nanoarchitectures with large areas and different geometries.
基金the National Natural Science Foundation of China.
文摘Molecular recognition directed self-assemblies from complementary molecular components, melamine and barbituric acid derivatives were studied by means of NMR, fluorescence, and TEM. It was found that both the process of the self-assembly and the morphologies of the result- ed self-assemblies could be mediated by modifying the structures of the molecular components used. The effect of the structures of the molecular components on the formation of the self-as- semblies was discussed in terms of intermolecular interactions.
基金supported NSF of Zhejiang Province of China (Nos.Y20B020032,LY18B020016)the National Natural Science Foundation of China (Nos.21773041,21805144 and 21972031)the Strategic Priority Research Program of Chinese Academy of Sciences (No.XDB36000000)。
文摘The self-assembly characteristics of tetrathiafulvalene(TTF) derivatives molecules 1-3 at the 1-phenyloctane/HOPG(HOPG = highly oriented pyrolytic graphite) interface had been carefully studied by scanning tunneling microscopy(STM) method. The number of F atoms on the phenyl group had significantly affected the self-assembly structures. High-resolution STM images make clear the different assembly structures between the molecules 1-3, which attribute to the different F atom numbers and pyridine group in the molecule. Density functional theory(DFT) calculations have been performed to reveal the formation mechanism.
基金supported by NSFC(Nos.21333001,21133001,21261130090),ChinaNRF CREATE-SPURc project(No.R-143-001-205-592),Singapore
文摘Two-dimensional self-assemblies of four partially fluorinated molecules, 1,4-bis(2,6-difluoropyridin-4-yl)benzene, 4,4'-bis(2,6-difluoropyridin-4-yl)-1,1'-biphenyl, 4,4'-bis(2,6-difluoropyridin-4-yl)-1,1':4',1'-terphenyl and 4,4'-bis(2,6-difluoropyridin-3-yl)-1,1'-biphenyl, involving weak intermolecular C-H···F and C-H···N hydrogen bonds were systematically investigated on Au(111) with low-temperature scanning tunneling microscopy. The inter-molecular connecting modes and binding sites were closely related to the backbones of the building blocks, i.e., the molecule length determines its binding sites with neighboring molecules in the assemblies while the attaching positions of the N and F atoms dictate its approaching and docking angles. The experimental results demonstrate that multiple weak hydrogen bonds such as C-H···F and C-H···N can be efficiently applied to tune the molecular orientations and the self-assembly structures accordingly.
基金supported by the National Science Foundation of China(22071197,22022107,82304889)。
文摘Hydrolysis reactions are capable of directing the non-equilibrium assembly of biomolecular scaffolds to realize sophisticated structures and functions in natural systems.However,utilizing the proper hydrolysis reactions to construct controlled assemblies with complex topologies is still an arduous challenge in artificial systems and needs to be addressed.Herein,we report a nitric oxide(NO)-triggered slow hydrolysis strategy for the controlled construction of biomimetic supramolecular toroids(STs),thus realizing their visualization of intermediate structures and regulation of geometry parameters.This presented protocol harnesses hydrolysis reactions to control of non-equilibrium self-assembly processes for the construction of self-assemblies with complex topologies successfully,which sheds light on how the hydrolysis reaction rate can modulate the kinetic pathway of assembly,thus realizing the artificial establishment of bio-inspired hierarchical structures.
基金supported by the National Natural Science Foundation of China(Nos.81873092,82174074)。
文摘The self-assembled nanoparticles(SAN)formed during the decoction process of traditional Chinese medicine(TCM)exhibit non-uniform particle sizes and a tendency for aggregation.Our group found that the p H-driven method can improve the self-assembly phenomenon of Herpetospermum caudigerum Wall.,and the SAN exhibited uniform particle size and demonstrated good stability.In this paper,we analyzed the interactions between the main active compound,herpetrione(Her),and its main carrier,Herpetospermum caudigerum Wall.polysaccharide(HCWP),along with their self-assembly mechanisms under different p H values.The binding constants of Her and HCWP increase with rising p H,leading to the formation of Her-HCWP SAN with a smaller particle size,higher zeta potential,and improved thermal stability.While the contributions of hydrogen bonding and electrostatic attraction to the formation of Her-HCWP SAN increase with rising p H,the hydrophobic force consistently plays a dominant role.This study enhances our scientific understanding of the self-assembly phenomenon of TCM improved by p H driven method.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.2020R1C1C1003375)。
文摘Recently,hollow carbon nanospheres(HCSs)have garnered significant attention as potential Li metal hosts owing to their unique large voids and ease of fabrication.However,similar to other nanoscale hosts,their practical performance is limited by inhomogeneous agglomeration,increased binder requirements,and high tortuosity within the electrode.To overcome these problems and high tortuosity within the electrode,this study introduces a pomegranate-like carbon microcluster composed of primary HCSs(P-CMs)as a novel Li metal host.This unique nanostructure can be easily prepared using the spray-drying technique,enabling its mass production.Comprehensive analyses with various tools demonstrate that compared with HCS hosts,the P-CM host requires a smaller amount of binder to fabricate a sufficiently robust and even surface electrode.Furthermore,owing to reduced tortuosity,the well-designed P-CM electrode can provide continuous and shortened pathways for electron/ion transport,accelerating the Li-ion transfer kinetics and prohibiting preferential Li plating at the upper region of the electrode.Due to these characteristics,Li metal can be effectively encapsulated in the large inner voids of the primary HCSs constituting the P-CM,thereby enhancing the electrochemical performance of P-CM hosts in Li metal batteries.Specifically,the Coulombic efficiency of the P-CM host can be maintained at 97%over 100 cycles,with a high Li deposition areal capacity of 3 mAh·cm^(-2)and long cycle life(1000 h,1 mA·cm^(-2),and 1.0 mAh·cm^(-2)).Furthermore,a full cell incorporating a LiFePO4 cathode exhibits excellent cycle life.
文摘Four glycoluril-based amphiphilic molecular clips(AMCs)M1~M4 have been prepared for intracellular delivery of short DNA.M1~M4 have two methyl groups on its convex surface and four cations on its aromatic side arm,which can be used to construct self-assembled nanoparticles in aqueous solution driven by hydrophobic interaction.Dynamic light scattering experiments show that M1 and M2 can be driven hydrophobically to aggregate into extremely stable nanoparticles in water at the micromolar concentrations.Fluorescence titration and zeta potential experiments support that the nanoparticles formed by M1 and M2 are able to efficiently encapsulate short DNA(sDNA).Fluorescence imaging and flow cytometry studies reveal that their nano sizes enable intracellular delivery of the encapsulated sDNA into both normal and cancer cells,with delivery percentage reaching up to 94%,while in vitro experiments indicate that the two compounds have excellent biocompatibility and low cytotoxicity.
基金supported by the National Natural Science Foundation of China(No.62075069 and 52303092)the Water Conservancy Technology project of Hunan Province,China(XSKJ2021000-32)+1 种基金the City University of Hong Kong(#7005507)the Open Project of Yunnan Precious Metals Laboratory Co.,Ltd(grant number YPML-2023050278).
文摘Nowadays,high-stable and ultrasensitive heavy metal detection is of utmost importance in water quality monitoring.Nanoparticle-enhanced laser-induced breakdown spectroscopy(NELIBS)shows high potential in hazardous metal detection,however,encounters unstable and weak signals due to nonuniform distribution of analytes.Herein,we developed an interface self-assembly(ISA)method to create a uniformly distributed gold nanolayer at a liquid-liquid interface for positive heavy metal ions capture and NELIBS analysis.The electrostatically selfassembled Au nanoparticles(NPs)-analytes membrane was prepared at the oil-water interface by injecting ethanol into the mixture of cyclohexane and Au NPs-analytes water solution.Then,the interface self-assembled Au NPs-analytes membrane was transformed onto a laser-processed superhydrophilic Si slide for detection.Three heavy metals(cadmium(Cd),barium(Ba),and chromium(Cr))were analyzed to evaluate the stability and sensitivity of the ISA method for NELIBS.The results(Cd:RSD=3.6%,LoD=0.654 mg/L;Ba:RSD=3.4%,LoD=0.236 mg/L;Cr:RSD=7.7%,LoD=1.367 mg/L)demonstrated signal enhancement and high-stable and ultrasensitive detection.The actual sample detection(Cd:RE=7.71%,Ba:RE=6.78%)illustrated great reliability.The ISA method,creating a uniform distribution of NP-analytes at the interface,has promising prospects in NELIBS.
基金supported by the National Natural Science Foundation of China(Nos.82061148012,82027806,21974019)SEU Innovation Capability Enhancement Plan for Doctoral Students(No.CXJH_SEU 24138)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX24_0469)。
文摘The potential of metal nanoclusters in biomedical applications is limited due to aggregation-caused quenching(ACQ).In this study,an in situ self-assembled pitaya structure was proposed to obtain stable fluorescence emission through protein coronas-controlled distance between gold nanoclusters(Au NCs).Interestingly,the gold ion complexes coated with proteins of low isoelectric point(pI)nucleate at the secondary structure of proteins with high p I through ionic exchange within cells,generating fluorescent Au NCs.It is worth noting that due to the steric hindrance formed by the protein coronas on the surface of Au NCs,the distance between Au NCs can be controlled,avoiding electron transfer caused by close proximity of Au NCs and inhibiting fluorescence ACQ.This strategy can achieve fluorescence imaging of clinical tissue samples without observable side effects.Therefore,this study proposes a distance-controllable self-assembled pitaya structure to provide a new approach for Au NCs with stable fluorescence.
基金supported by the National Research Foundation of Korea[NRF-2023–00211758].
文摘A new type of amphiphiles bearingmacrocycle such as cucurbit[7]uril(CB[7])spontaneously forms a nanomaterial in water,specifically vesicles(tACB[7]vesicles)with a positive surface charge,verified through various analytical techniques including TIRF,DLS and TEM.Functional validation not only reveals the accessibility of the CB[7]portal on these vesicles allowing CB[7]-based host-vip interactions with various functional vip molecules such as fluorescein isothiocyanate conjugated adamantylammonium and spermine(FITC-AdA and FITC-SPM,respectively)using confocal laser scanning microscopy,but also showcases the effective internalization of tACB[7]vesicles into cancer cells with the anticancer drug oxaliplatin(OxPt),as a vip to CB[7],through in vitro cell experiments.Hence,this study provides a blueprint to impart amphiphilic properties to CB[7]through synthetic design and highlights the potential of CB[7]derivatives as a new class of unconventional amphiphiles self-assembling into functional nanomaterials for advanced drug delivery.
基金Project supported by the Natural Science Foundation of Shandong Province (ZR2022QB067)。
文摘The development of new and efficient extractants plays a key role in the separation and recovery of rare earth elements.In this pape r,the extractant(N,N-methyl py ridineethyl-N',N'-dicyclohexyl-3-oxadiglycolamide,MPyEDChDGA) with a new structure was synthesized,and the pyridine group was successfully grafted onto the 3-oxadiglycolamide structure.Using MPyEDChDGA for efficient enrichment of rare earth ions,the self-assembled solids were recovered by simple filtration without further backextraction and final precipitation,achieving a one-step strategy for the recovery of rare earth ions.Several important parameters affecting the self-assembly extraction,including pH,diluent,temperature,and extractant concentration,were systematically evaluated using La(NO_(3))_(3),Tb(NO_(3))_(3),and Lu(NO_(3))_(3) as representatives.The self-assembled solids were investigated in detail by X-ray diffraction(XRD),scanning electron microscopy(SEM),1H nuclear magnetic resonance(1H NMR),Fourier transform infrared spectroscopy(FT-IR),Raman,and X-ray photoelectron spectroscopy(XPS) analyses.The stoichiometry of the extraction species was characterized using the Job's method and electrospray ionization mass spectrometry(ESI-MS).In addition,MPyEDChDGA was applied to the recovery of Sm in SmCoCu simulated liquid,and the results show that MPyEDChDGA has good selectivity of Sm from transition metals(Co,Cu).The separation factor of Sm/Co can reach 6281±117,which provides a new approach to recovering Sm from SmCoCu scrap magnets.This study presents an efficient and convenient new strategy for the recovery and separation of rare earth elements.
基金supported by funding from the Energy Materials and Surface Sciences Unit of the Okinawa Institute of Science and Technology Graduate University,the OIST R&D Cluster Research Program,the OIST Proof of Concept(POC)Program,the JSPS KAKENHI Grant Number JP21F21754 and Alexander von Humboldt Foundation。
文摘Self-assembled monolayers(SAMs)are widely used as hole transport materials in inverted perovskite solar cells,offering low parasitic absorption and suitability for semitransparent and tandem solar cells.While SAMs have shown to be promising in small-area devices(≤1 cm^(2)),their application in larger areas has been limited by a lack of knowledge regarding alternative deposition methods beyond the common spin-coating approach.Here,we compare spin-coating and upscalable methods such as thermal evaporation and spray-coating for[2-(9H-carbazol-9-yl)ethyl]phosphonic acid(2PACz),one of the most common carbazole-based SAMs.The impact of these deposition methods on the device performance is investigated,revealing that the spray-coating technique yields higher device performance.Furthermore,our work provides guidelines for the deposition of SAM materials for the fabrication of perovskite solar modules.In addition,we provide an extensive characterization of 2PACz films focusing on thermal evaporation and spray-coating methods,which allow for thicker 2PACz deposition.It is found that the optimal 2PACz deposition conditions corresponding to the highest device performances do not always correlate with the monolayer characteristics.
基金financial support from the National Natural Science Fund for Distinguished Young Scholars of China(No.22025107)Shaanxi Fundamental Science Research Project for Chemistry&Biology(No.22JHZ003)+2 种基金the Key International Scientific and Technological Cooperation and Exchange Project of Shaanxi Province(No.2023-GHZD-15)the National Youth Top-notch Talent Support Program of Chinathe FM&EM International Joint Laboratory of Northwest University。
文摘The precise control over the hierarchical self-assembly of sophisticated structures with comparable complexities and functions relying on the modulation of basic building blocks is elusive and highly desirable.Here,we report a fluorinated N-heterocyclic carbene(NHC)–based pillarplex with a tunable quaternary structure,employed as an efficient building block for constructing hierarchical superstructures.Initially,multiple noncovalent interactions in the NHC-based pillarplex,particularly those between the fluorinated pillarplex and PF_(6)-anions,induce the formation of a supramolecular gel at high concentrations.Additionally,this hierarchical self-assembled structure can be regulated by adjusting anion types,facilitating the controlled transformation from a supramolecular gel into a supramolecular channel upon the introduction of four monocarboxylic acids as anions.The study provides insight into the construction and controlled regulation of superstructures based on NHC-based pillarplexes.
基金supported by the National Natural Science Foundation of China(22438005,22108117).
文摘Self-assembly of block copolymers(BCPs)is highly intricate and is adsorbing extensive experimental and simulation efforts to reveal it for maximizing structural order and device performances.The coarse-grained(CG)molecular dynamics(MD)simulation offers a microscopic angle to view the self-assembly of BCPs.Although some molecular details are sacrificed during CG processes,this method exhibits remarkable computational efficiency.In this study,a comprehensive CG model for polystyrene-block-poly(2-vinylpyridine),PS-b-P2VP,one of the most extensively studied BCPs for its high Flory-Huggins interaction parameter,is constructed,with parameters optimized using target values derived from all-atom MD simulations.The CG model precisely coincides with various classical self-assembling morphologies observed in experimental studies,matching the theoretical phase diagrams.Moreover,the conformational asymmetry of the experimental phase diagram is also clearly revealed by our simulation results,and the phase boundaries obtained from simulations are highly consistent with experimental results.The CG model is expected to extend to simulate the self-assembly behaviors of other BCPs in addition to PS-b-P2VP,thus increasing understanding of the microphase separation of BCPs from the molecular level.
文摘Taking a widely contaminated yet abundant waste,such as poultry feathers,and extracting keratin from this struc-ture appears to be a real challenge whenever the preservation of the secondary structure of the protein is desired.This process would allow exploiting it in ways(e.g.,in the biomedicalfield)that are inspired by a structure that is primarily designed forflight,therefore capable specifically of withstandingflexure and lateral buckling,also with very low thicknesses.The preservation of the structure is based on disulfide crosslinks,and it is offered with pre-ference by some chemical treatments,mainly those based on ionic liquid and on a reduction process.However,the degree of preservation cannot always be precisely assessed;however,beyond chemical characterization,the forma-tion of homogeneous gels can also suggest that the process was successful in this sense.An extraction respectful of nature’s intentions,considering that the secondary structure builds up according to the very function of the feath-ers in the animal,can be deemed to be biomimetic.In particular,biomimetic extractions comply with the very characteristics the protein was designed for to serve in the specific environmental and mechanical situation in which it is inserted.This review tries to elucidate in which cases this aim is achieved and for which specific appli-cations a chicken feather keratin that has preserved its secondary structure can be suited.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.22173051,21829301,21774066)College Discipline Innovation and Intelligence Introduction Program(111 Project(B16027)+1 种基金the International Cooperation Base(2016D01025)Tianjin International Joint Research and Development Center。
文摘Spatial confinement of block copolymers can induce frustrations,which can further be utilized to regulate self-assembled structures,thus providing an efficient route for fabricating novel structures.We studied the self-assembly of AB di-block copolymers(di-BCPs)confined in Janus spherical nanocavities using simulations,and explained the structure formation mechanisms.In the case of a strongly selective cavity wall,all the lamella-forming,gyroid-forming,and cylinder-forming di-BCPs can form interfacial frustration-induced Janus concentric perforated lamellar nanoparticles,whose outermost is a Janus spherical shell and the internal is a sphere with concentric perforated lamellar structure.In particular,Janus concentric perforated lamellar nanoparticles with holes distributed only near the equatorial plane were obtained in both lamella-forming and gyroid-forming di-BCPs,directly reflecting the effect of interfacial frustration.The minority-block domain of the cylider-forming di-BCPs may form hemispherical perforated lamellar structures with holes distributed in parallel layers with a specific orientation.For symmetric di-BCPs,both the A and B domains in each nanoparticle are continuous,interchangeable,and have rotational symmetry.While for gyroid-forming and cylinder-forming di-BCPs,only the majority-block domains are continuous in each nanoparticle,and holes in the minority-block domains usually have rotational symmetry.In the case of a weakly selective cavity wall,the inhomogeneity of the cavity wall results in structures having a specific orientation(such as flower-like and branched structures in gyroid-forming and cylinder-forming di-BCPs)and a perforated wetting layer with uniformly distributed holes.The novel nanoparticles obtained may have potential applications in nanotechnology as functional nanostructures or nanoparticles.
基金financially supported by the National Key R&D Program of China(No.2022YFB3707300)the National Natural Science Foundation of China(Nos.22133002,22373089)the support from the Excellent Youth Foundation of Henan Scientific Committee(No.242300421032).
文摘A significant challenge in developing block copolymer photonic crystals is constructing low-symmetric ordered phases,which are essential for achieving a complete photonic band gap.Here,we propose a promising strategy to create low-symmetric ordered morphologies by incorporating shape-anisotropic rod-like side chains into block copolymers.Using dissipative particle dynamics simulations,we demonstrate that block copolymers with longer rod-like side chains can self-assemble into a hexagonally packed columnar phase characterized by a low-symmetric rectangular cross-section.Photonic band structure calculations reveal that this low-symmetric columnar phase can exhibit a complete photonic band gap,with the gap size dependent on the aspect ratio of the rectangular cross-sections of the columns.Our findings suggest an effective approach to constructing low-symmetric photonic crystals through the self-assembly of block copolymers with shape-anisotropic segments.
基金supported by the National Science Foundation for Distinguished Young Scholars(No.52325308)the National Natural Science Foundation of China(Nos.52273008 and 52073092)+1 种基金Shanghai Scientific and Technological Innovation Projects(No.22ZR1479300)Shanghai Rising-Star Program(No.23QA1402500).
文摘Amphiphilic asymmetric brush copolymers(AABCs)possess unique self-assembly behaviors owing to their asymmetric brush architecture and multiple functionalities of multicomponent side chains.However,the synthesis of AABCs presents challenges,which greatly limits the exploration of their self-assembly behaviors.In this work,we employed dissipative particle dynamics(DPD)simulations to investigate the self-assembly behaviors of AABCs in selective solution.By varying the copolymer concentration and structure,we conducted the self-assembly phase diagrams of AABCs,revealing complex morphologies such as channelized micelles with one or more solvophilic channels.Moreover,the number,surface area,and one-dimensional density distribution of the channelized micelles were calculated to demonstrate the internal structure and morphological transformation during the self-assembly process.Our findings indicate that the morphology of the internal solvophilic channels is greatly influenced by the copolymer structure,concentration,and interaction parameters between the different side chains.The simulation results are consistent with available experimental observations,which can offer theoretical insights into the self-assembly of AABCs.