期刊文献+
共找到167篇文章
< 1 2 9 >
每页显示 20 50 100
Self-adapting control parameters modifieddifferential evolution for trajectoryplanning of manipulators 被引量:12
1
作者 Lianghong WU Yaonan WANG Shaowu ZHOU 《控制理论与应用(英文版)》 EI 2007年第4期365-373,共9页
Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinizat... Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinization problems. According to the relative position of two different individual vectors selected to generate a difference vector in the searching place, a self-adapting strategy for the scale factor F of the difference vector is proposed. In terms of the convergence status of the target vector in the current population, a self-adapting crossover probability constant CR strategy is proposed. Therefore, good target vectors have a lower CFI while worse target vectors have a large CFI. At the same time, the mutation operator is modified to improve the convergence speed. The performance of these proposed approaches are studied with the use of some benchmark problems and applied to the trajectory planning of a three-joint redundant manipulator. Finally, the experiment results show that the proposed approaches can greatly improve robustness and convergence speed. 展开更多
关键词 self-adapting control parameters Differential evolution Redundant manipulator Trajectory planning
在线阅读 下载PDF
CNN-Based Fast HEVC Quantization Parameter Mode Decision 被引量:5
2
作者 Liming Chen Bosi Wang +1 位作者 Weijie Yu Xu Fan 《Journal of New Media》 2019年第3期115-126,共12页
With the development of multimedia presentation technology,image acquisition technology and the Internet industry,long-distance communication methods have changed from the previous letter,the audio to the current audi... With the development of multimedia presentation technology,image acquisition technology and the Internet industry,long-distance communication methods have changed from the previous letter,the audio to the current audio/video.And the proportion of video in work,study and entertainment keeps increasing,high-definition video is getting more and more attention.Due to the limits of the network environment and storage capacity,the original video must be encoded to be efficiently transmitted and stored.High Efficient Video Coding(HEVC)requires a large amount of time to recursively traverse all possible quantization parameter values of the coding unit in the adaptive quantization process.The optimal quantization parameter is calculated by comparing the rate distortion cost.In this paper,we propose a fast decision method for HEVC quantization parameters selection based on convolutional neural network,which saves video’s encoding time. 展开更多
关键词 HEVC convolutional NEURAL NETWORK quantization parametER
在线阅读 下载PDF
Variable Parameter Self-Adaptive Control Strategy Based on Driving Condition Identification for Plug-In Hybrid Electric Bus 被引量:1
3
作者 Kongjian Qin Yu Liu Xi Hu 《Journal of Beijing Institute of Technology》 EI CAS 2019年第1期162-170,共9页
A variable parameter self-adaptive control strategy based on driving condition identification is proposed to take full advantage of the fuel saving potential of the plug-in hybrid electric bus(PHEB).Firstly,the princi... A variable parameter self-adaptive control strategy based on driving condition identification is proposed to take full advantage of the fuel saving potential of the plug-in hybrid electric bus(PHEB).Firstly,the principal component analysis(PCA)and the fuzzy c-means clustering(FCM)algorithm is used to construct the comprehensive driving cycle,congestion driving cycle,urban driving cycle and suburban driving cycle of Chinese urban buses.Secondly,an improved particle swarm optimization(IPSO)algorithm is proposed,and is used to optimize the control parameters of PHEB under different driving cycles,respectively.Then,the variable parameter self-adaptive control strategy based on driving condition identification is given.Finally,for an actual running vehicle,the driving condition is identified by relevance vector machine(RVM),and the corresponding control parameters are selected to control the vehicle.The simulation results show that the fuel consumption of using the variable parameter self-adaptive control strategy is reduced by 4.2% compared with that of the fixed parameter control strategy,and the feasibility of the variable parameter self-adaptive control strategy is verified. 展开更多
关键词 PLUG-IN hybrid electric bus(PHEB) variable parametER self-adaptive control strategy energy CONSUMPTION
在线阅读 下载PDF
Optimizing Fine-Tuning in Quantized Language Models:An In-Depth Analysis of Key Variables
4
作者 Ao Shen Zhiquan Lai +1 位作者 Dongsheng Li Xiaoyu Hu 《Computers, Materials & Continua》 SCIE EI 2025年第1期307-325,共19页
Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in speci... Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in specific tasks with reduced training costs,the substantial memory requirements during fine-tuning present a barrier to broader deployment.Parameter-Efficient Fine-Tuning(PEFT)techniques,such as Low-Rank Adaptation(LoRA),and parameter quantization methods have emerged as solutions to address these challenges by optimizing memory usage and computational efficiency.Among these,QLoRA,which combines PEFT and quantization,has demonstrated notable success in reducing memory footprints during fine-tuning,prompting the development of various QLoRA variants.Despite these advancements,the quantitative impact of key variables on the fine-tuning performance of quantized LLMs remains underexplored.This study presents a comprehensive analysis of these key variables,focusing on their influence across different layer types and depths within LLM architectures.Our investigation uncovers several critical findings:(1)Larger layers,such as MLP layers,can maintain performance despite reductions in adapter rank,while smaller layers,like self-attention layers,aremore sensitive to such changes;(2)The effectiveness of balancing factors depends more on specific values rather than layer type or depth;(3)In quantization-aware fine-tuning,larger layers can effectively utilize smaller adapters,whereas smaller layers struggle to do so.These insights suggest that layer type is a more significant determinant of fine-tuning success than layer depth when optimizing quantized LLMs.Moreover,for the same discount of trainable parameters,reducing the trainable parameters in a larger layer is more effective in preserving fine-tuning accuracy than in a smaller one.This study provides valuable guidance for more efficient fine-tuning strategies and opens avenues for further research into optimizing LLM fine-tuning in resource-constrained environments. 展开更多
关键词 Large-scale Language Model parameter-Efficient Fine-Tuning parameter quantization key variable trainable parameters experimental analysis
在线阅读 下载PDF
High-Efficiency Video Coder in Pruned Environment Using Adaptive Quantization Parameter Selection
5
作者 Krishan Kumar Mohamed Abouhawwash +2 位作者 Amit Kant Pandit Shubham Mahajan Mofreh A.Hogo 《Computers, Materials & Continua》 SCIE EI 2022年第10期1977-1993,共17页
The high-efficiency video coder(HEVC)is one of the most advanced techniques used in growing real-time multimedia applications today.However,they require large bandwidth for transmission through bandwidth,and bandwidth... The high-efficiency video coder(HEVC)is one of the most advanced techniques used in growing real-time multimedia applications today.However,they require large bandwidth for transmission through bandwidth,and bandwidth varies with different video sequences/formats.This paper proposes an adaptive information-based variable quantization matrix(AIVQM)developed for different video formats having variable energy levels.The quantization method is adapted based on video sequence using statistical analysis,improving bit budget,quality and complexity reduction.Further,to have precise control over bit rate and quality,a multi-constraint prune algorithm is proposed in the second stage of the AI-VQM technique for pre-calculating K numbers of paths.The same should be handy to selfadapt and choose one of the K-path automatically in dynamically changing bandwidth availability as per requirement after extensive testing of the proposed algorithm in the multi-constraint environment for multiple paths and evaluating the performance based on peak signal to noise ratio(PSNR),bit-budget and time complexity for different videos a noticeable improvement in rate-distortion(RD)performance is achieved.Using the proposed AIVQM technique,more feasible and efficient video sequences are achieved with less loss in PSNR than the variable quantization method(VQM)algorithm with approximately a rise of 10%–20%based on different video sequences/formats. 展开更多
关键词 Adaptive quantization high-efficient video coding(HEVC) quad-tree rate-distortion optimization(RDO) video compression variable quantization method(VQM) quantization parameter(QP)
在线阅读 下载PDF
Self-Adaptive Stepsize Affine Projection Based Parameter Estimation of IPMSM Using Square-Wave Current Injection
6
作者 Gaolin Wang Chen Li +1 位作者 Guoqiang Zhang Dianguo Xu 《CES Transactions on Electrical Machines and Systems》 2017年第1期48-57,共10页
Affine projection algorithm(APA)has been used to estimate the parameters of interior permanent magnet synchronous motor(IPMSM).However,there is not a strict guideline of choosing the stepsize of this algorithm to make... Affine projection algorithm(APA)has been used to estimate the parameters of interior permanent magnet synchronous motor(IPMSM).However,there is not a strict guideline of choosing the stepsize of this algorithm to make sure that the results of parameter estimation are convergent.In order to solve such problem,self-adaptive stepsize affine projection algorithm for parameter estimation of IPMSM is proposed in this paper.Compared with traditional affine projection algorithm,this method can obtain the stepsize automatically based on the operation condition,which can ensure the convergence and celerity of the process of parameter estimation.Then,on the basis of self-adaptive stepsize affine projection algorithm,a novel parameter estimation method based on square-wave current injection is proposed.By this method,the error of estimated parameter caused by stator resistance,linkage magnetic flux and dead-time voltage can be reduced effectively.Finally,the proposed parameter estimation method is verified by experiments on a 2.2-kW IPMSM drive platform. 展开更多
关键词 Affine projection parameter estimation permanent magnet synchronous machine square-current injection self-adaptive stepsize.
在线阅读 下载PDF
Pattern-Moving-Based Parameter Identification of Output Error Models with Multi-Threshold Quantized Observations 被引量:2
7
作者 Xiangquan Li Zhengguang Xu +1 位作者 Cheng Han Ning Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第3期1807-1825,共19页
This paper addresses a modified auxiliary model stochastic gradient recursive parameter identification algorithm(M-AM-SGRPIA)for a class of single input single output(SISO)linear output error models with multi-thresho... This paper addresses a modified auxiliary model stochastic gradient recursive parameter identification algorithm(M-AM-SGRPIA)for a class of single input single output(SISO)linear output error models with multi-threshold quantized observations.It proves the convergence of the designed algorithm.A pattern-moving-based system dynamics description method with hybrid metrics is proposed for a kind of practical single input multiple output(SIMO)or SISO nonlinear systems,and a SISO linear output error model with multi-threshold quantized observations is adopted to approximate the unknown system.The system input design is accomplished using the measurement technology of random repeatability test,and the probabilistic characteristic of the explicit metric value is employed to estimate the implicit metric value of the pattern class variable.A modified auxiliary model stochastic gradient recursive algorithm(M-AM-SGRA)is designed to identify the model parameters,and the contraction mapping principle proves its convergence.Two numerical examples are given to demonstrate the feasibility and effectiveness of the achieved identification algorithm. 展开更多
关键词 Pattern moving multi-threshold quantized observations output error model auxiliary model parameter identification
在线阅读 下载PDF
基于轻量化网络的帕金森步态识别方法 被引量:1
8
作者 郭坛 时文雅 +1 位作者 郇战 刘洋 《传感器与微系统》 北大核心 2025年第4期143-147,共5页
为了提高帕金森步态的识别效率并保持高识别精度,提出了一种基于轻量化帕金森步态识别方法-多头量化时域卷积网络(MQ-TCN)。用TCN层替换深度可分离卷积中的逐通道卷积,并部署TTQ算法,减少模型的参数量和参数复杂度。其次,该研究还分析... 为了提高帕金森步态的识别效率并保持高识别精度,提出了一种基于轻量化帕金森步态识别方法-多头量化时域卷积网络(MQ-TCN)。用TCN层替换深度可分离卷积中的逐通道卷积,并部署TTQ算法,减少模型的参数量和参数复杂度。其次,该研究还分析了帕金森步态数据的冗余性,在略微损失识别精度的前提下大幅降低了模型训练所需的存储空间,进一步提升了模型在轻量设备中的可部署能力。实验结果显示:改进的MQ-TCN平均识别精度达到94.9%,参数量仅为目前最小帕金森步态识别模型的5%,不但保持高效的识别精度,还大幅度降低了模型的参数量与参数复杂度,为后续帕金森步态识别工具在轻量设备上的部署提供了参考依据。 展开更多
关键词 异常步态识别 轻量化卷积 时域卷积网络 参数量化 模型压缩
在线阅读 下载PDF
水铁矿对可见-短波红外反射光谱(VSWIR)识别和量化分析赤铁矿、针铁矿的影响
9
作者 陈可妍 韩梦麒 +6 位作者 谭伟 周靖雯 秦效荣 贺依琳 梁晓亮 何宏平 朱建喜 《地球化学》 北大核心 2025年第5期669-678,I0001,I0002,共12页
赤铁矿(Hem)和针铁矿(Gth)是地表主要的铁(氢)氧化物,它们的相对含量能反映风化过程中气候环境和地下水条件。可见-短波红外反射(VSWIR)光谱是一种快速、便捷且经济的技术,可用于土壤、风化壳中赤铁矿和针铁矿的定量研究。作为赤铁矿和... 赤铁矿(Hem)和针铁矿(Gth)是地表主要的铁(氢)氧化物,它们的相对含量能反映风化过程中气候环境和地下水条件。可见-短波红外反射(VSWIR)光谱是一种快速、便捷且经济的技术,可用于土壤、风化壳中赤铁矿和针铁矿的定量研究。作为赤铁矿和针铁矿的重要前驱体,水铁矿(Fhy)往往与赤铁矿或针铁矿在地表环境中同时存在。这三类铁(氢)氧化物的VSWIR光谱的吸收带均由Fe^(3+)电子跃迁引起,且都出现在400~1000 nm波段范围内,重叠严重。因此,水铁矿的存在可能对使用VSWIR光谱识别和分析赤铁矿和针铁矿含量造成严重干扰。然而,目前尚缺乏量化评估水铁矿对赤铁矿、针铁矿在~500 nm和~900 nm吸收带半高宽(FWHM)、吸收位置(P)、不对称性(AS)等光谱特征影响的相关研究。因此,本文对Hem-Fhy、Gth-Fhy、Hem-Gth-Fhy的混合VSWIR光谱开展全面研究,以建立精确定量赤铁矿、针铁矿、水铁矿含量的光谱参数。结果表明,~500 nm吸收带的不对称性(AS500)随Hem-Fhy中水铁矿含量增加而降低;~900 nm吸收带的半高宽(FWHM900)随Gth-Fhy中水铁矿含量增加而增大。此外,当三元混合体系中水铁矿含量高于60%时,~900 nm吸收带位置(P900)向长波方向偏移10~25 nm。本研究揭示的铁(氢)氧化物与光谱参数之间的量化关系为矿物的VSWIR光谱分析提供重要依据,同时为FWHM900、P900等光谱参数成为评估古环境和地下水条件演化的有效指标奠定理论基础。 展开更多
关键词 水铁矿 赤铁矿 针铁矿 可见-短波红外反射光谱 光谱参数 量化关系
在线阅读 下载PDF
球谐级数对数字重构颗粒形状及堆积特性的影响研究
10
作者 朱俊宇 汪淼 +3 位作者 王桥 汪泾周 马刚 周伟 《武汉大学学报(工学版)》 北大核心 2025年第3期343-352,共10页
采用三维扫描技术获得了大石峡灰岩混合料的真实形状颗粒模型,采用不同球谐级数的球谐函数进行颗粒数字重构。系统研究了球谐级数对重构颗粒的形状特征的影响,及其对颗粒堆积、颗粒柱坍塌的影响。随着球谐级数l的增加,数字重构颗粒的形... 采用三维扫描技术获得了大石峡灰岩混合料的真实形状颗粒模型,采用不同球谐级数的球谐函数进行颗粒数字重构。系统研究了球谐级数对重构颗粒的形状特征的影响,及其对颗粒堆积、颗粒柱坍塌的影响。随着球谐级数l的增加,数字重构颗粒的形状会逐渐逼近实际扫描颗粒。当球谐级数为5左右时,重构颗粒和真实颗粒的伸长率和扁平率基本一致;当球谐级数大于10时,重构颗粒和真实颗粒的球度和凸度基本一致;当球谐级数为15时,重构颗粒和真实颗粒的圆度基本一致。用连续离散耦合分析方法进行了颗粒堆积模拟,随着球谐级数的增加,由重构颗粒组成的集合体的孔隙率先降低后逐渐增大,直到球谐级数达到15时,颗粒集合体的孔隙率趋于稳定。采用连续离散耦合分析方法进行了颗粒柱坍塌试验模拟,当球谐级数达到5时,反映颗粒堆积和流动性的指标趋于稳定,而后随着球谐级数的增大有少许波动,但变化不大。通过颗粒形态重构进行相关研究,将对实际工程中颗粒体的堆积特性分析与预测具有重要指导意义。 展开更多
关键词 颗粒形状 球谐函数 形状量化参数 连续-离散耦合方法 堆积试验 坍塌试验
原文传递
一种自适应图像编码的量化参数选择算法
11
作者 冯靖靖 王向文 《计算机应用与软件》 北大核心 2025年第10期279-284,366,共7页
量化是图像编码中提高压缩效率、去除信息冗余的关键。考虑图像编码中的率失真优化权衡以及算法复杂性,基于DZ+UTQ量化器提出一种自适应图像编码的量化参数选择算法。该算法首先将图片按照变换后的DCT频域位置分成64个独立信源,假定各... 量化是图像编码中提高压缩效率、去除信息冗余的关键。考虑图像编码中的率失真优化权衡以及算法复杂性,基于DZ+UTQ量化器提出一种自适应图像编码的量化参数选择算法。该算法首先将图片按照变换后的DCT频域位置分成64个独立信源,假定各个信源系数服从拉普拉斯分布,然后以反注水算法为理论指导,为各个待量化信源分配相等的预算失真,对每个信源的量化步长进行优化设计,并在此基础上提出对DZ+UTQ舍入偏移量死区的自适应调整算法,从而达到优化分配编码比特率的目的。将本文算法与固定舍入参数的量化算法相比较,相同码率下该文算法的图像重构质量更高,几乎不引入额外复杂度。 展开更多
关键词 优化量化 JPEG 图像压缩 自适应量化参数
在线阅读 下载PDF
Robust Adaptive Attitude Control for Non-rigid Spacecraft With Quantized Control Input 被引量:4
12
作者 Yun Li Fan Yang 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第2期472-481,共10页
In this paper,an adaptive backstepping control scheme is proposed for attitude tracking of non-rigid spacecraft in the presence of input quantization,inertial uncertainty and external disturbance.TThe control signal f... In this paper,an adaptive backstepping control scheme is proposed for attitude tracking of non-rigid spacecraft in the presence of input quantization,inertial uncertainty and external disturbance.TThe control signal for each actuator is quantized by sector-bounded quantizers,including the logarithmic quantizer and the hysteresis quantizer.By describing the impact of quantization in a new affine model and introducing a smooth function and a novel form of the control signal,the influence caused by input quantization and external disturbance is properly compensated for.Moreover,with the aid of the adaptive control technique,our approach can achieve attitude tracking without the explicit knowledge of inertial parameters.Unlike existing attitude control schemes for spacecraft,in this paper,the quantization parameters can be unknown,and the bounds of inertial parameters and disturbance are also not needed.In addition to proving the stability of the closed-loop system,the relationship between the control performance and design parameters is analyzed.Simulation results are presented to illustrate the effectiveness of the proposed scheme. 展开更多
关键词 Adaptive control attitude control input quantization spacecraft time-varying inertial parameter
在线阅读 下载PDF
Harmony search algorithm with differential evolution based control parameter co-evolution and its application in chemical process dynamic optimization 被引量:1
13
作者 范勤勤 王循华 颜学峰 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2227-2237,共11页
A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rat... A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rate and pitch adjusting rate, are encoded as a symbiotic individual of an original individual(i.e., harmony vector). Harmony search operators are applied to evolving the original population. DE is applied to co-evolving the symbiotic population based on feedback information from the original population. Thus, with the evolution of the original population in DEHS, the symbiotic population is dynamically and self-adaptively adjusted, and real-time optimum control parameters are obtained. The proposed DEHS algorithm has been applied to various benchmark functions and two typical dynamic optimization problems. The experimental results show that the performance of the proposed algorithm is better than that of other HS variants. Satisfactory results are obtained in the application. 展开更多
关键词 harmony search differential evolution optimization CO-EVOLUTION self-adaptive control parameter dynamic optimization
在线阅读 下载PDF
Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
14
作者 Hongwei Zhang Ran Cheng Dawei Ding 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第10期341-351,共11页
The finite-time synchronization of fractional-order multi-weighted complex networks(FMCNs)with uncertain parameters and external disturbances is studied.Firstly,based on fractional calculus characteristics and Lyapuno... The finite-time synchronization of fractional-order multi-weighted complex networks(FMCNs)with uncertain parameters and external disturbances is studied.Firstly,based on fractional calculus characteristics and Lyapunov stability theory,quantized controllers are designed to guarantee that FMCNs can achieve synchronization in a limited time with and without coupling delay,respectively.Then,appropriate parameter update laws are obtained to identify the uncertain parameters in FMCNs.Finally,numerical simulation examples are given to validate the correctness of the theoretical results. 展开更多
关键词 fractional-order complex networks uncertain parameter finite-time synchronization quantized control
原文传递
Self-adapting Scalable Differential Evolution Algorithm
15
作者 刘荣辉 郑建国 《Journal of Donghua University(English Edition)》 EI CAS 2011年第4期384-390,共7页
Differential evolution(DE) demonstrates good convergence performance,but it is difficult to choose trial vector generation strategies and associated control parameter values.An improved method,self-adapting scalable D... Differential evolution(DE) demonstrates good convergence performance,but it is difficult to choose trial vector generation strategies and associated control parameter values.An improved method,self-adapting scalable DE(SSDE) algorithm,is proposed.Trial vector generation strategies and crossover probability are respectively self-adapted by two operators in this algorithm.Meanwhile,to enhance the convergence rate,vectors selected randomly with the optimal fitness values are introduced to guide searching direction.Benchmark problems are used to verify this algorithm.Compared with other well-known DE algorithms,experiment results indicate that this algorithm is better than other DE algorithms in terms of convergence rate and quality of optimization. 展开更多
关键词 differential evolution (DE) SCALABLE self-adapting parameter control function optimization
在线阅读 下载PDF
自动语音识别模型压缩算法综述 被引量:3
16
作者 时小虎 袁宇平 +2 位作者 吕贵林 常志勇 邹元君 《吉林大学学报(理学版)》 CAS 北大核心 2024年第1期122-131,共10页
随着深度学习技术的发展,自动语音识别任务模型的参数数量越来越庞大,使得模型的计算开销、存储需求和功耗花费逐渐增加,难以在资源受限设备上部署.因此对基于深度学习的自动语音识别模型进行压缩,在降低模型大小的同时尽量保持原有性... 随着深度学习技术的发展,自动语音识别任务模型的参数数量越来越庞大,使得模型的计算开销、存储需求和功耗花费逐渐增加,难以在资源受限设备上部署.因此对基于深度学习的自动语音识别模型进行压缩,在降低模型大小的同时尽量保持原有性能具有重要价值.针对上述问题,全面综述了近年来该领域的主要工作,将其归纳为知识蒸馏、模型量化、低秩分解、网络剪枝、参数共享以及组合模型几类方法,并进行了系统综述,为模型在资源受限设备的部署提供可选的解决方案. 展开更多
关键词 语音识别 模型压缩 知识蒸馏 模型量化 低秩分解 网络剪枝 参数共享
在线阅读 下载PDF
异构环境感知的分布式神经网络训练模型 被引量:2
17
作者 咸琳涛 刘晓兰 +1 位作者 王淦 刘建明 《计算机工程与设计》 北大核心 2024年第9期2821-2827,共7页
针对分布式神经网络训练在异构环境中训练速度慢、资源利用率低的问题,提出一种异构环境感知的分布式神经网络训练模型(H-PS)。根据计算节点当前状态动态调度训练任务,使计算节点能够在相同时间完成训练任务,提高资源利用率。提出通信... 针对分布式神经网络训练在异构环境中训练速度慢、资源利用率低的问题,提出一种异构环境感知的分布式神经网络训练模型(H-PS)。根据计算节点当前状态动态调度训练任务,使计算节点能够在相同时间完成训练任务,提高资源利用率。提出通信与计算并行策略,参数服务器与计算节点传输模型参数期间,计算节点持续模型计算,进一步提高资源利用率。使用灵活的量化策略,压缩神经网络模型参数,减少参数服务器与计算节点的通信开销。使用新兴的容器集群进行实验,结果表明,与现有方法相比,H-PS训练时间缩短1.4~3.5倍。 展开更多
关键词 分布式机器学习 异构环境 任务动态规划 通信与计算并行 参数动态量化 深度神经网络 容器集群
在线阅读 下载PDF
基于时域依赖的编码树单元级零延时码率控制算法
18
作者 程宝平 陶晓明 +3 位作者 黄敏峰 谢小燕 杜金 杨栩 《计算机应用研究》 CSCD 北大核心 2024年第5期1489-1495,共7页
基于高效视频编码标准的x265编码器根据图像复杂度来分配比特,复杂图像往往包含运动变化较大的高频信息,其时域相关性较弱且消耗较多比特,导致分配给运动变化平缓图像的比特减少,进而影响编码质量且码率波动较大。同时,x265编码器采用... 基于高效视频编码标准的x265编码器根据图像复杂度来分配比特,复杂图像往往包含运动变化较大的高频信息,其时域相关性较弱且消耗较多比特,导致分配给运动变化平缓图像的比特减少,进而影响编码质量且码率波动较大。同时,x265编码器采用独立率失真优化技术编码,忽略了编码单元间在时域上的相关性,进而损失编码性能。针对上述问题,提出一种基于时域依赖的编码树单元级码率控制算法。首先,根据迭代策略寻找最合适的量化参数进行帧级比特分配;其次,建立零延时的失真时域反向传播模型并计算失真影响因子;最后,将失真影响因子用于调整编码单元的拉格朗日乘子及量化参数。实验结果显示,相较于x265-3.6的码率控制算法,所提算法的平均BD-rate码率节省达到5.6%。 展开更多
关键词 比特分配 拉格朗日乘子 码率控制 量化参数 x265
在线阅读 下载PDF
基于参考单元编码失真时域影响的率失真优化算法 被引量:1
19
作者 黄敏峰 王乐才 +3 位作者 邓米雪 盛剑锋 王梨名 杨栩 《计算机应用研究》 CSCD 北大核心 2024年第11期3515-3520,共6页
针对通用视频编码标准H.266/VVC的独立率失真优化技术未考虑参考单元编码失真的时域传播影响而损失编码性能的问题,提出一种基于编码失真时域传播影响的低延时率失真优化算法。首先,根据视频图像的时域连续性特征,由运动补偿预测误差及... 针对通用视频编码标准H.266/VVC的独立率失真优化技术未考虑参考单元编码失真的时域传播影响而损失编码性能的问题,提出一种基于编码失真时域传播影响的低延时率失真优化算法。首先,根据视频图像的时域连续性特征,由运动补偿预测误差及重建误差来计算编码失真的时域传播影响权重;其次,建立基于编码失真时域传播影响的率失真优化模型;最后,将编码失真的时域传播影响权重用于调整编码单元的拉格朗日乘子及量化参数。实验结果显示,在低延时P帧和B帧配置下,相较于基准算法,BD-rate码率节省分别达到1.6%和0.9%,编码时间分别下降2.93%和6.02%。实验结果表明,该算法在不增加编码复杂度的条件下有效提升了编码性能,适用于实时编码应用场景。 展开更多
关键词 编码失真 拉格朗日乘子 率失真优化 量化参数 VVC
在线阅读 下载PDF
基于轻量化模型的智能配电站房云边协同应用模式研究 被引量:4
20
作者 廖飞龙 刘冰倩 +3 位作者 黄建业 郑州 武欣欣 游婷婷 《自动化与仪器仪表》 2024年第3期210-215,共6页
为了解决电力行业图像智能识别由于云端集中推理模式带来的网络带宽限制和数据传输时延方面的问题,在云边协同应用与人工智能深度学习网络模型轻量化压缩两个方向上进行探索研究和融合应用,通过云边协同架构体系和主流人工智能深度学习... 为了解决电力行业图像智能识别由于云端集中推理模式带来的网络带宽限制和数据传输时延方面的问题,在云边协同应用与人工智能深度学习网络模型轻量化压缩两个方向上进行探索研究和融合应用,通过云边协同架构体系和主流人工智能深度学习网络模型压缩方法进行对比分析,提出了一种基于参数量化模型压缩的云边协同应用模式,并在实际运行中的智能配电站房中进行现场测试,通过业务应用测试和数据结论验证了该应用模式的可行性,通过该云边协同应用模式实现了云端模型复用,减少了额外开发边端模型的人力物力投入,具有较高的示范和推广价值。 展开更多
关键词 云边协同 模型压缩 边缘计算 参数量化 人工智能 物联网
原文传递
上一页 1 2 9 下一页 到第
使用帮助 返回顶部