In “<i>A Self-linking Field Formalism</i>” I establish a self-dual field structure with higher order self-induced symmetries that reinforce the first-order dynamics. The structure was derived from Gauss-...In “<i>A Self-linking Field Formalism</i>” I establish a self-dual field structure with higher order self-induced symmetries that reinforce the first-order dynamics. The structure was derived from Gauss-linking integrals in R<sup>3</sup> based on the Biot-Savart law and Ampere’s law applied to Heaviside’s equations, derived in strength-independent fashion in “<i>Primordial Principle of Self-Interaction</i>”. The derivation involves Geometric Calculus, topology, and field equations. My goal in this paper is to derive the simplest solution of a self-stabilized solitonic structure and discuss this model of a neutrino.展开更多
Background:The bacterial biofilm poses a significant challenge to traditional antibiotic therapy.There is a great need to develop novel antibiofilm agents combined with biofilm disrupting and bacteria-killing without ...Background:The bacterial biofilm poses a significant challenge to traditional antibiotic therapy.There is a great need to develop novel antibiofilm agents combined with biofilm disrupting and bacteria-killing without the dependence of antibiotic.Methods:Herein,we prepared ultrasound/magnetic field-responsive ferroferric oxide nanoparticles(Fe_(3)O_(4))/glucose oxidase microbubbles(FGMB)to form a cascade catalytic system for effective removing methicillin-resistant Staphylococcus aureus biofilms.FGMB were prepared through interfacial self-assembly of Fe_(3)O_(4) nanoparticles(NPs)and glucose oxidase(GOx)at the gas-liquid interface stabilized by surfactants.Under ultrasound/magnetic field stimulation,FGMB disrupted biofilm architecture through microbubble collapse-induced microjets and magnetically driven displacement.Simultaneously,ultrasound-triggered rupture of FGMB released GOx and Fe_(3)O_(4) NPs.Glucose can be oxidized by GOx to generate gluconic acid and hydrogen peroxide which was subsequently catalyzed into hydroxyl radicals by Fe_(3)O_(4) NPs,enabling chemical eradication of biofilm-embedded bacteria.Results:Optical microscopy images demonstrated that FGMB have spherical structure with average size of approximately 17μm.FGMB showed a 65.4%decrease in methicillin-resistant Staphylococcus aureus biofilm biomass and 1.1 log bacterial inactivation efficiency(91.2%),suggesting effective biofilm elimination.In vitro experimental results also indicate that FGMB have good biocompatibility.Conclusion:This antibiofilm strategy integrated dual modes of physical biofilm disruption with chemical bacteria-killing shows great potential as a versatile,non-resistant strategy for bacterial biofilm elimination.展开更多
Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is p...Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is proposed.The electric field applied between the template and the substrate drives the contact,tilting,filling,and holding processes.By accurately controlling the introduced included angle between the flexible template and the substrate,tilted nanostructures with a controllable angle are imprinted onto the substrate,although they are vertical on the template.By flexibly adjusting the electric field intensity and the included angle,large-area uniform-tilted,gradient-tilted,and high-angle-tilted nanostructures are fabricated.In contrast to traditional replication,the morphology of the nanoimprinting structure is extended to customized control.This work provides a cost-effective,efficient,and versatile technology for the fabrication of various large-area tilted metasurface structures.As an illustration,a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays,demonstrating superior imaging quality.展开更多
To address the challenges of high-precision optical surface defect detection,we propose a novel design for a wide-field and broadband light field camera in this work.The proposed system can achieve a 50°field of ...To address the challenges of high-precision optical surface defect detection,we propose a novel design for a wide-field and broadband light field camera in this work.The proposed system can achieve a 50°field of view and operates at both visible and near-infrared wavelengths.Using the principles of light field imaging,the proposed design enables 3D reconstruction of optical surfaces,thus enabling vertical surface height measurements with enhanced accuracy.Using Zemax-based simulations,we evaluate the system’s modulation transfer function,its optical aberrations,and its tolerance to shape variations through Zernike coefficient adjustments.The results demonstrate that this camera can achieve the required spatial resolution while also maintaining high imaging quality and thus offers a promising solution for advanced optical surface defect inspection.展开更多
The latest generation of aero engines has set higher standards for thrust-to-weight ratio and energy conversion efficiency,making it imperative to address the challenge of efficiently and accurately machining film coo...The latest generation of aero engines has set higher standards for thrust-to-weight ratio and energy conversion efficiency,making it imperative to address the challenge of efficiently and accurately machining film cooling holes.It has been demonstrated that conventional long-pulse lasers are incapable of meeting the elevated quality surface finish requirements for these holes,a consequence of the severe thermal defects.The employment of backside water-assisted laser drilling technology confers a number of distinct advantages in terms of mitigating laser thermal damage,thus representing a highly promising solution to this challenge.However,significant accumulation of bubbles and machining products during the backside water-assisted laser drilling process has been demonstrated to have a detrimental effect on laser transmission and machining stability,thereby reducing machining quality.In order to surmount these challenges,a novel method has been proposed,namely an ultrasonic shock water flow-assisted picosecond laser drilling technique.Numerical models for ultrasonic acoustic streaming and particle tracking for machining product transport have been established to investigate the mechanism.The simulation results demonstrated that the majority of the machining products could rapidly move away from the machining area because of the action of acoustic streaming,thereby avoiding the accumulation of bubbles and products.Subsequent analysis,comparing the process performance in micro-hole machining,confirmed that the ultrasonic field could effectively eliminate bubble and chip accumulation,thus significantly improving micro-hole quality.Furthermore,the impact of ultrasonic and laser parameters on micro-hole quality under varying machining methods was thoroughly investigated.The findings demonstrated that the novel methodology outlined in this study yielded superior-quality micro-holes at elevated ultrasonic and laser power levels,in conjunction with reduced laser frequency and scanning velocity.The taper of the micro-holes produced by the new method was reduced by more than 25%compared with the other conventional methods.展开更多
Peroxymonosulfate(PMS)-based advanced oxidation processes(AOPs)are an effective way to remove emerging contaminants(ECs)from water.The catalytic process involving PMS is hindered by the suboptimal electron trans-fer e...Peroxymonosulfate(PMS)-based advanced oxidation processes(AOPs)are an effective way to remove emerging contaminants(ECs)from water.The catalytic process involving PMS is hindered by the suboptimal electron trans-fer efficiency of current catalysts,the further application of AOPs technology is limited.Here,it is proposed that the interfacial electric field can be controlled by bor(B)-doped FeNC catalysts,which shows significant advantages in the efficient generation,release and participation of reactive oxygen species(ROS)in the reaction.The super exchange interaction between Fe sites and N and B sites is realized through the directional transfer of electrons in the interfacial electric field,which ensures the high efficiency and stability of the PMS catalytic process.B doping increases the d orbitals distribution at Fermi level,which facilitates enhanced electron transition activity,thereby promoting the effective generation of (1)^O_(2).At the same time,orbital hybridization causes the center of the d band to move to a lower energy level,which not only contributes to the desorption process of (1)^O_(2),but also accelerates its release.In addition,B-doping also improved the adsorption capacity of organic pollutants and shortened the migration distance of ROS,thereby significantly improving the degradation efficiency of ECs.The B-doping strategy outlined offers a novel approach to the development of FeNC catalysts,it lays a theoretical foundation and offers technical insights for the integration of PMS/AOPs technology in the ECs management.展开更多
Repolarizing tumor-associated macrophages(TAMs)toward the proinflammatory M1 phenotype represents a promising strategy to reverse the immunosuppressive tumor microenvironment(TME)and enhance antitumor immunotherapy.Re...Repolarizing tumor-associated macrophages(TAMs)toward the proinflammatory M1 phenotype represents a promising strategy to reverse the immunosuppressive tumor microenvironment(TME)and enhance antitumor immunotherapy.Recent studies have demonstrated that exogenous electrical stimulation can effectively repolarize TAMs toward the M1 phenotype.However,conventional electrical stimulation methods,relying on invasive implanted electrodes,are restricted to targeting localized tumor regions and pose inherent risks to patients.Notably,biological neural networks,distributed systems of interconnected neurons,can naturally permeate tissues and orchestrate cellular activities with high spatial efficiency.Inspired by this natural system,we developed a global in situ electric field network using piezoelectric BaTiO_(3)nanoparticles.Upon ultrasound stimulation,the nanoparticles generate a wireless electric field throughout the TME.In addtion,their nanoscale size enables them to function as synthetic“neurons”,allowing for uniform penetration throughout the tumor tissue and inducing significant repolarization of TAMs via the Ca^(2+)influx-activated nuclear factor-kappa B(NF-κB)signaling pathway.The repolarized M1 TAMs restore anti-tumor immunostimulatory functions and secrete key proinflammatory cytokines(e.g.,tumor necrosis factor-alpha(TNF-α)and interleukin-1 beta(IL-1β)),which enhance immunostimulation within the TME and directly contribute to tumor cell elimination.Remarkably,this strategy achieved robust in vivo tumor growth inhibition with excellent biosafety in a 4T1 breast tumor model.Overall,this work establishes a non-invasive,wireless electric field platform capable of globally repolarizing TAMs,offering a safe and efficient strategy to advance cancer immunotherapy and accelerate the clinical translation of bioelectronic therapies.展开更多
Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these i...Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these internal magnetic fields accurately,data selection based on specific criteria is often employed to minimize the influence of rapidly changing current systems in the ionosphere and magnetosphere.However,the quantitative impact of various data selection criteria on internal geomagnetic field modeling is not well understood.This study aims to address this issue and provide a reference for constructing and applying geomagnetic field models.First,we collect the latest MSS-1 and Swarm satellite magnetic data and summarize widely used data selection criteria in geomagnetic field modeling.Second,we briefly describe the method to co-estimate the core,crustal,and large-scale magnetospheric fields using satellite magnetic data.Finally,we conduct a series of field modeling experiments with different data selection criteria to quantitatively estimate their influence.Our numerical experiments confirm that without selecting data from dark regions and geomagnetically quiet times,the resulting internal field differences at the Earth’s surface can range from tens to hundreds of nanotesla(nT).Additionally,we find that the uncertainties introduced into field models by different data selection criteria are significantly larger than the measurement accuracy of modern geomagnetic satellites.These uncertainties should be considered when utilizing constructed magnetic field models for scientific research and applications.展开更多
With the approval of more and more genetically modified(GM)crops in our country,GM safety management has become more important.Transgenic detection is a major approach for transgenic safety management.Nevertheless,a c...With the approval of more and more genetically modified(GM)crops in our country,GM safety management has become more important.Transgenic detection is a major approach for transgenic safety management.Nevertheless,a convenient and visual technique with low equipment requirements and high sensitivity for the field detection of GM plants is still lacking.On the basis of the existing recombinase polymerase amplification(RPA)technique,we developed a multiplex RPA(multi-RPA)method that can simultaneously detect three transgenic elements,including the cauliflower mosaic virus 35S gene(CaMV35S)promoter,neomycin phosphotransferaseⅡgene(NptⅡ)and hygromycin B phosphotransferase gene(Hyg),thus improving the detection rate.Moreover,we coupled this multi-RPA technique with the CRISPR/Cas12a reporter system,which enabled the detection results to be clearly observed by naked eyes under ultraviolet(UV)light(254 nm;which could be achieved by a portable UV flashlight),therefore establishing a multi-RPA visual detection technique.Compared with the traditional test strip detection method,this multi-RPA-CRISPR/Cas12a technique has the higher specificity,higher sensitivity,wider application range and lower cost.Compared with other polymerase chain reaction(PCR)techniques,it also has the advantages of low equipment requirements and visualization,making it a potentially feasible method for the field detection of GM plants.展开更多
This study presents preliminary results of tidal-induced magnetic field signals extracted from 9 months of data collected by the Macao Science Satellite-1(MSS-1) from November 2023 to July 2024. Tidal signals were iso...This study presents preliminary results of tidal-induced magnetic field signals extracted from 9 months of data collected by the Macao Science Satellite-1(MSS-1) from November 2023 to July 2024. Tidal signals were isolated using sequential modeling techniques by subtracting non-tidal field model predictions from observed magnetic data. The extracted MSS-1 results show strong agreement with those from the Swarm and CryoSat satellites. MSS-1 effectively captures key large-scale tidal-induced magnetic anomalies, mainly due to its unique 41-degree low-inclination orbit, which provides wide coverage of local times. This finding underscores the strong potential of MSS-1 to recover high-resolution global tidal magnetic field models as more MSS-1 data become available.展开更多
With the continuous upgrading of traditional manufacturing industries and the rapid rise of emerging technology fields,the performance requirements for the permanent magnet synchronous motors(PMSMs)have become higher ...With the continuous upgrading of traditional manufacturing industries and the rapid rise of emerging technology fields,the performance requirements for the permanent magnet synchronous motors(PMSMs)have become higher and higher.The importance of fast and accurate electromagnetic thermal coupling analysis of such motors becomes more and more prominent.In view of this,the surfacemounted PMSM(SPMSM)equipped with unequally thick magnetic poles is taken as the main object and its electromagnetic thermal coupling analytical model(ETc AM)is investigated.First,the electromagnetic analytical model(EAM)is studied based on the modified subdomain method.It realizes the fast calculation of key electromagnetic characteristics.Subsequently,the 3D thermal analytical model(TAM)is developed by combining the EAM,the lumped parameter thermal network method(LPTNM),and the partial differential equation of heat flux.It realizes the fast calculation of key thermal characteristics in 3D space.Further,the information transfer channel between EAM and TAM is built with reference to the intrinsic connection between electromagnetic field and temperature field.Thereby,the novel ETcAM is proposed to realize the fast and accurate prediction of electromagnetic and temperature fields.Besides,ETcAM has a lot to commend it.One is that it well accounts for the complex structure,saturation,and heat exchange behavior.Second,it saves a lot of computer resources.It offers boundless possibilities for initial design,scheme evaluation,and optimization of motors.Finally,the validity,accuracy,and practicality of this study are verified by simulation and experiment.展开更多
Understanding the evolution of microstructures in nuclear fuels under high-burn-up conditions is critical for extending fuel refueling cycles and enhancing nuclear reactor safety.In this study,a phase-field model is p...Understanding the evolution of microstructures in nuclear fuels under high-burn-up conditions is critical for extending fuel refueling cycles and enhancing nuclear reactor safety.In this study,a phase-field model is proposed to examine the evolution of high-burn-up structures in polycrystalline UO_(2).The formation and growth of recrystallized grains were initially investigated.It was demonstrated that recrystallization kinetics adhere to the Kolmogorov–Johnson–Mehl–Avrami(KJMA)equation,and that recrystallization represents a process of free-energy reduction.Subsequently,the microstructural evolution in UO_(2) was analyzed as the burn up increased.Gas bubbles acted as additional nucleation sites,thereby augmenting the recrystallization kinetics,whereas the presence of recrystallized grains accelerated bubble growth by increasing the number of grain boundaries.The observed variations in the recrystallization kinetics and porosity with burn-up closely align with experimental findings.Furthermore,the influence of grain size on microstructure evolution was investigated.Larger grain sizes were found to decrease porosity and the occurrence of high-burn-up structures.展开更多
The movement of global ocean circulation in the Earth’s main magnetic field generates a measurable induced magnetic field(about 2 nT at geomagnetic satellite altitudes).However,this ocean circulation-induced magnetic...The movement of global ocean circulation in the Earth’s main magnetic field generates a measurable induced magnetic field(about 2 nT at geomagnetic satellite altitudes).However,this ocean circulation-induced magnetic field has not been previously estimated or incorporated into geomagnetic field models,potentially causing leakage into the core field model.Here,we present a method to account for the circulation-induced magnetic field during geomagnetic field modeling.First,a forward model of the circulation-induced magnetic field is constructed by numerically solving electromagnetic induction equations based on a realistic ocean circulation model.Then,this forward model is subtracted from the observed data.Finally,the core and lithospheric fields,magnetospheric and Earth’s mantle-induced fields,and the ocean tide-induced magnetic field are co-estimated.Applying our method to over 20 years of MSS-1,Swarm,CryoSat-2,and CHAMP satellite magnetic data,we derive a new multisource geomagnetic field model(MGFM).We find that incorporating a forward model of the circulation-induced magnetic field marginally improves the fit to the data.Furthermore,we demonstrate that neglecting the circulation-induced magnetic field in geomagnetic field modeling results in leakage into the core field model.The highlights of the MGFM model include:(i)a good agreement with the widely used CHAOS model series;(ii)the incorporation of magnetic fields induced by both ocean tides and circulation;and(iii)the suppression of leakage of the circulation-induced magnetic field into the core field model.展开更多
The Zijinshan ore field located in southwestern Fujian Province,China,is a representative porphyry-epithermal ore system hosting diverse mineralization types(Mao et al.,2013).The ore field comprises of the Zijinshan h...The Zijinshan ore field located in southwestern Fujian Province,China,is a representative porphyry-epithermal ore system hosting diverse mineralization types(Mao et al.,2013).The ore field comprises of the Zijinshan highsulfidation Cu-Au deposit,the Luoboling porphyry Cu-Mo deposit,the transitional style Cu deposit(Longjiangting and Wuziqilong)and the Yueyang low-sulfidation Agpolymetallic deposit(Zhang,2013;Zhang et al.,2003)展开更多
By combining data from the Challenging Minisatellite Payload(CHAMP),Swarm-A,and newest Macao Science Satellite-1(MSS-1) missions,we constructed a lithospheric magnetic field model up to spherical harmonic degree N = 1...By combining data from the Challenging Minisatellite Payload(CHAMP),Swarm-A,and newest Macao Science Satellite-1(MSS-1) missions,we constructed a lithospheric magnetic field model up to spherical harmonic degree N = 100.To isolate the lithospheric magnetic field signals,we utilized the latest CHAOS-8(CHAMP,Φrsted,and SAC-C 8) model and MGFM(Multisource Geomagnetic Field Model) to remove nonlithospheric sources,including the core field,magnetospheric field,ocean tidal field,and ocean circulation field.Subsequently,orbit-by-orbit processing was applied to both scalar and vector data,such as spherical harmonic high-pass filtering,singular spectrum analysis,and line leveling,to suppress noise and residual signals along the satellite tracks.With an orbital inclination of only 41°,MSS-1 effectively captures fine-scale lithospheric magnetic field signals in mid-to low-latitude regions.Its data exhibit a root mean square error of only 0.77 nT relative to the final model,confirming the high quality and utility of lithospheric field modeling.The resulting model exhibits excellent consistency with the MF7(Magnetic Field Model 7),maintaining a high correlation up to N = 90 and still exceeding 0.65 at N = 100.These results demonstrate the reliability and value of MSS-1 data in global lithospheric magnetic field modeling.展开更多
The generalized rheological tests on sandstone were conducted under both dynamic stress and seepage fields.The results demonstrate that the rheological strain of the specimen under increased stress conditions is great...The generalized rheological tests on sandstone were conducted under both dynamic stress and seepage fields.The results demonstrate that the rheological strain of the specimen under increased stress conditions is greater than that under creep conditions,indicating that the dynamic stress field significantly influences the rheological behaviours of sandstone.Following the rheological tests,the number of small pores in the sandstone decreased,while the number of medium-sized pores increased,forming new seepage channels.The high initial rheological stress accelerated fracture compression and the closure of seepage channels,resulting in reduction in the permeability of sandstone.Based on the principles of generalized rheology and the experimental findings,a novel rock rheological constitutive model incorporating both the dynamic stress field and seepage properties has been developed.Numerical simulations of surrounding rock deformation in geotechnical engineering were carried out using a secondary development version of this model,which confirmed the applicability of the generalized rheological numerical simulation method.These results provide theoretical support for the long-term stability evaluation of engineering rock masses and for predicting the deformation of surrounding rock.展开更多
It is well known that coarse-grained super-elastic NiTi shape memory alloys(SMAs)exhibit localized rather than homogeneous martensite transformation(MT),which,however,can be strongly influenced by either internal size...It is well known that coarse-grained super-elastic NiTi shape memory alloys(SMAs)exhibit localized rather than homogeneous martensite transformation(MT),which,however,can be strongly influenced by either internal size(grain size,GS)or the external size(geometric size).The coupled effect of GS and geometric size on the functional properties has not been clearly understood yet.In this work,the super-elasticity,one-way,and stress-assisted two-way shape memory effects of the polycrystalline NiTi SMAs with different aspect ratios(length/width for the gauge section)and different GSs are investigated based on the phase field method.The coupled effect of the aspect ratio and GS on the functional properties is adequately revealed.The simulated results indicate that when the aspect ratio is lower than about 4:1,the stress biaxiality and stress heterogeneity in the gauge section of the sample become more and more obvious with decreasing the aspect ratio,which can significantly influence the microstructure evolution in the process involving external stress.Therefore,the corresponding functional property is strongly dependent on the aspect ratio.With decreasing the GS and the aspect ratio(to be lower than 4:1),both the aspect ratio and GS can affect the MT or martensite reorientation in each grain and the interaction among grains.Thus,due to the strong internal constraint(i.e.,the constraint of grain boundary)and the external constraint(i.e.,the constraint of geometric boundary),the capabilities of the functional properties of NiTi SMAs are gradually weakened and highly dependent on these two factors.展开更多
The Sq(solar quiet)geomagnetic field is generated by the electric currents in the E-region of the ionosphere,driven by the atmospheric tides.It is a critical part of high-precision geomagnetic field modeling.Based on ...The Sq(solar quiet)geomagnetic field is generated by the electric currents in the E-region of the ionosphere,driven by the atmospheric tides.It is a critical part of high-precision geomagnetic field modeling.Based on the classic thermal tide theory and atmospheric electrodynamics,this research,for the first time,developed an Sq geomagnetic field model that is directly built on the physical mechanism of the ionospheric dynamo,which is responsible for daily variations of the geomagnetic field.The performance in Sq geomagnetic field modeling was investigated using the Macao Science Satellite-1(MSS-1)data.Our model can enhance the physics-based framework of comprehensive geomagnetic field modeling for the MSS-1 and ensuing missions.展开更多
In this study,we present a comprehensive evaluation of the magnetic field measurements from the Vector Field Magnetometer(VFM)aboard the recently launched Macao Science Satellite-1(MSS-1).One-year data from November 2...In this study,we present a comprehensive evaluation of the magnetic field measurements from the Vector Field Magnetometer(VFM)aboard the recently launched Macao Science Satellite-1(MSS-1).One-year data from November 2,2023,to November 1,2024,are considered.The MSS-1 flies with a low inclination(41°)and is designed to provide high-resolution magnetic field measurements,especially for monitoring the evolution of the South Atlantic Anomaly.Earlier studies confirmed the possibility of using MSS-1A data to model the Earth’s main magnetic field(e.g.,Jiang Y et al.,2024).Therefore,in this study we focus on the magnetic signatures related to the external field,which are primarily associated with magnetospheric and ionospheric currents.The global distributions of the magnetic residuals from MSS-1A show a pattern consistent with that derived from the European Space Agency’s Swarm A satellite.A statistical survey of the conjugated observations(withΔt<5 min andΔR<150 km)between the two satellites showed that the difference between their magnetic residuals is within±3 nanoteslas.By separating the magnetic residuals at the noon and midnight hours,we see that the MSS-1A data can effectively capture features of the magnetospheric and ionospheric currents,such as the magnetospheric ring current and ionospheric equatorial electrojet.Moreover,the magnetic residuals from MSS-1A show a diamagnetic effect caused by post-sunset equatorial plasma bubbles,which also suggests that the MSS-1A data have the potential to reveal the ionospheric structures.The comprehensive evaluations performed within this study demonstrate that the MSS-1A provides high-quality magnetic field data reaching the level of the Swarm satellite,which enables a deeper understanding of the modeling of Earth’s magnetic field as well as monitoring of the magnetic environment.展开更多
文摘In “<i>A Self-linking Field Formalism</i>” I establish a self-dual field structure with higher order self-induced symmetries that reinforce the first-order dynamics. The structure was derived from Gauss-linking integrals in R<sup>3</sup> based on the Biot-Savart law and Ampere’s law applied to Heaviside’s equations, derived in strength-independent fashion in “<i>Primordial Principle of Self-Interaction</i>”. The derivation involves Geometric Calculus, topology, and field equations. My goal in this paper is to derive the simplest solution of a self-stabilized solitonic structure and discuss this model of a neutrino.
基金supported by the National Natural Science Foundation of China(22375101)the Natural Science of Colleges and Universities in Jiangsu Province(24KJB430027).
文摘Background:The bacterial biofilm poses a significant challenge to traditional antibiotic therapy.There is a great need to develop novel antibiofilm agents combined with biofilm disrupting and bacteria-killing without the dependence of antibiotic.Methods:Herein,we prepared ultrasound/magnetic field-responsive ferroferric oxide nanoparticles(Fe_(3)O_(4))/glucose oxidase microbubbles(FGMB)to form a cascade catalytic system for effective removing methicillin-resistant Staphylococcus aureus biofilms.FGMB were prepared through interfacial self-assembly of Fe_(3)O_(4) nanoparticles(NPs)and glucose oxidase(GOx)at the gas-liquid interface stabilized by surfactants.Under ultrasound/magnetic field stimulation,FGMB disrupted biofilm architecture through microbubble collapse-induced microjets and magnetically driven displacement.Simultaneously,ultrasound-triggered rupture of FGMB released GOx and Fe_(3)O_(4) NPs.Glucose can be oxidized by GOx to generate gluconic acid and hydrogen peroxide which was subsequently catalyzed into hydroxyl radicals by Fe_(3)O_(4) NPs,enabling chemical eradication of biofilm-embedded bacteria.Results:Optical microscopy images demonstrated that FGMB have spherical structure with average size of approximately 17μm.FGMB showed a 65.4%decrease in methicillin-resistant Staphylococcus aureus biofilm biomass and 1.1 log bacterial inactivation efficiency(91.2%),suggesting effective biofilm elimination.In vitro experimental results also indicate that FGMB have good biocompatibility.Conclusion:This antibiofilm strategy integrated dual modes of physical biofilm disruption with chemical bacteria-killing shows great potential as a versatile,non-resistant strategy for bacterial biofilm elimination.
基金supported by National Natural Science Foundation of China(No.52025055 and 52275571)Basic Research Operation Fund of China(No.xzy012024024).
文摘Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is proposed.The electric field applied between the template and the substrate drives the contact,tilting,filling,and holding processes.By accurately controlling the introduced included angle between the flexible template and the substrate,tilted nanostructures with a controllable angle are imprinted onto the substrate,although they are vertical on the template.By flexibly adjusting the electric field intensity and the included angle,large-area uniform-tilted,gradient-tilted,and high-angle-tilted nanostructures are fabricated.In contrast to traditional replication,the morphology of the nanoimprinting structure is extended to customized control.This work provides a cost-effective,efficient,and versatile technology for the fabrication of various large-area tilted metasurface structures.As an illustration,a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays,demonstrating superior imaging quality.
基金supported by the Jilin Science and Technology Development Plan(20240101029JJ)the following study:synchronized high-speed detection of surface shape and defects in the grinding stage of complex surfaces(KLMSZZ202305)+3 种基金for the high-precision wide dynamic large aperture optical inspection system for fine astronomical observation by the National Major Research Instrument Development Project(62127901)for ultrasmooth manufacturing technology of large diameter complex curved surface by the National Key R&D Program(2022YFB3403405)for research on the key technology of rapid synchronous detection of surface shape and subsurface defects in the grinding stage of large diameter complex surfaces by the International Cooperation Project(2025010157)The Key Laboratory of Optical System Advanced Manufacturing Technology,Chinese Academy of Sciences(2022KLOMT02-04)also supported this study.
文摘To address the challenges of high-precision optical surface defect detection,we propose a novel design for a wide-field and broadband light field camera in this work.The proposed system can achieve a 50°field of view and operates at both visible and near-infrared wavelengths.Using the principles of light field imaging,the proposed design enables 3D reconstruction of optical surfaces,thus enabling vertical surface height measurements with enhanced accuracy.Using Zemax-based simulations,we evaluate the system’s modulation transfer function,its optical aberrations,and its tolerance to shape variations through Zernike coefficient adjustments.The results demonstrate that this camera can achieve the required spatial resolution while also maintaining high imaging quality and thus offers a promising solution for advanced optical surface defect inspection.
基金supported by the National Natural Science Foundation of China(No.52205468,No.52275431,No.52375186)China Postdoctoral Science Foundation(No.2025M771349)Zhejiang Province Natural Science Foundation(No.LD22E050001)。
文摘The latest generation of aero engines has set higher standards for thrust-to-weight ratio and energy conversion efficiency,making it imperative to address the challenge of efficiently and accurately machining film cooling holes.It has been demonstrated that conventional long-pulse lasers are incapable of meeting the elevated quality surface finish requirements for these holes,a consequence of the severe thermal defects.The employment of backside water-assisted laser drilling technology confers a number of distinct advantages in terms of mitigating laser thermal damage,thus representing a highly promising solution to this challenge.However,significant accumulation of bubbles and machining products during the backside water-assisted laser drilling process has been demonstrated to have a detrimental effect on laser transmission and machining stability,thereby reducing machining quality.In order to surmount these challenges,a novel method has been proposed,namely an ultrasonic shock water flow-assisted picosecond laser drilling technique.Numerical models for ultrasonic acoustic streaming and particle tracking for machining product transport have been established to investigate the mechanism.The simulation results demonstrated that the majority of the machining products could rapidly move away from the machining area because of the action of acoustic streaming,thereby avoiding the accumulation of bubbles and products.Subsequent analysis,comparing the process performance in micro-hole machining,confirmed that the ultrasonic field could effectively eliminate bubble and chip accumulation,thus significantly improving micro-hole quality.Furthermore,the impact of ultrasonic and laser parameters on micro-hole quality under varying machining methods was thoroughly investigated.The findings demonstrated that the novel methodology outlined in this study yielded superior-quality micro-holes at elevated ultrasonic and laser power levels,in conjunction with reduced laser frequency and scanning velocity.The taper of the micro-holes produced by the new method was reduced by more than 25%compared with the other conventional methods.
基金supported by the National Natural Science Foundation of China(No.22278156)the Guangdong Special Support Program Project(No.2021JC060580)+1 种基金the Young Elite Scientists Sponsorship Program by CAST-Doctoral Student Special Plan,the China Scholarship Council Program(No.202406150148)the Natural Science Foundation of Guangdong Province(No.2023A1515011186).
文摘Peroxymonosulfate(PMS)-based advanced oxidation processes(AOPs)are an effective way to remove emerging contaminants(ECs)from water.The catalytic process involving PMS is hindered by the suboptimal electron trans-fer efficiency of current catalysts,the further application of AOPs technology is limited.Here,it is proposed that the interfacial electric field can be controlled by bor(B)-doped FeNC catalysts,which shows significant advantages in the efficient generation,release and participation of reactive oxygen species(ROS)in the reaction.The super exchange interaction between Fe sites and N and B sites is realized through the directional transfer of electrons in the interfacial electric field,which ensures the high efficiency and stability of the PMS catalytic process.B doping increases the d orbitals distribution at Fermi level,which facilitates enhanced electron transition activity,thereby promoting the effective generation of (1)^O_(2).At the same time,orbital hybridization causes the center of the d band to move to a lower energy level,which not only contributes to the desorption process of (1)^O_(2),but also accelerates its release.In addition,B-doping also improved the adsorption capacity of organic pollutants and shortened the migration distance of ROS,thereby significantly improving the degradation efficiency of ECs.The B-doping strategy outlined offers a novel approach to the development of FeNC catalysts,it lays a theoretical foundation and offers technical insights for the integration of PMS/AOPs technology in the ECs management.
基金supported by the National Natural Science Foundation of China(Nos.52373235 and 52573322)the National Natural Science Foundation of Hubei Province of China(No.2024AFB568).
文摘Repolarizing tumor-associated macrophages(TAMs)toward the proinflammatory M1 phenotype represents a promising strategy to reverse the immunosuppressive tumor microenvironment(TME)and enhance antitumor immunotherapy.Recent studies have demonstrated that exogenous electrical stimulation can effectively repolarize TAMs toward the M1 phenotype.However,conventional electrical stimulation methods,relying on invasive implanted electrodes,are restricted to targeting localized tumor regions and pose inherent risks to patients.Notably,biological neural networks,distributed systems of interconnected neurons,can naturally permeate tissues and orchestrate cellular activities with high spatial efficiency.Inspired by this natural system,we developed a global in situ electric field network using piezoelectric BaTiO_(3)nanoparticles.Upon ultrasound stimulation,the nanoparticles generate a wireless electric field throughout the TME.In addtion,their nanoscale size enables them to function as synthetic“neurons”,allowing for uniform penetration throughout the tumor tissue and inducing significant repolarization of TAMs via the Ca^(2+)influx-activated nuclear factor-kappa B(NF-κB)signaling pathway.The repolarized M1 TAMs restore anti-tumor immunostimulatory functions and secrete key proinflammatory cytokines(e.g.,tumor necrosis factor-alpha(TNF-α)and interleukin-1 beta(IL-1β)),which enhance immunostimulation within the TME and directly contribute to tumor cell elimination.Remarkably,this strategy achieved robust in vivo tumor growth inhibition with excellent biosafety in a 4T1 breast tumor model.Overall,this work establishes a non-invasive,wireless electric field platform capable of globally repolarizing TAMs,offering a safe and efficient strategy to advance cancer immunotherapy and accelerate the clinical translation of bioelectronic therapies.
基金supported by the National Natural Science Foundation of China(42250101)the Macao Foundation。
文摘Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these internal magnetic fields accurately,data selection based on specific criteria is often employed to minimize the influence of rapidly changing current systems in the ionosphere and magnetosphere.However,the quantitative impact of various data selection criteria on internal geomagnetic field modeling is not well understood.This study aims to address this issue and provide a reference for constructing and applying geomagnetic field models.First,we collect the latest MSS-1 and Swarm satellite magnetic data and summarize widely used data selection criteria in geomagnetic field modeling.Second,we briefly describe the method to co-estimate the core,crustal,and large-scale magnetospheric fields using satellite magnetic data.Finally,we conduct a series of field modeling experiments with different data selection criteria to quantitatively estimate their influence.Our numerical experiments confirm that without selecting data from dark regions and geomagnetically quiet times,the resulting internal field differences at the Earth’s surface can range from tens to hundreds of nanotesla(nT).Additionally,we find that the uncertainties introduced into field models by different data selection criteria are significantly larger than the measurement accuracy of modern geomagnetic satellites.These uncertainties should be considered when utilizing constructed magnetic field models for scientific research and applications.
基金the Experimental Technology Research Project of Zhejiang University(SYB202138)National Natural Science Foundation of China(32000195)。
文摘With the approval of more and more genetically modified(GM)crops in our country,GM safety management has become more important.Transgenic detection is a major approach for transgenic safety management.Nevertheless,a convenient and visual technique with low equipment requirements and high sensitivity for the field detection of GM plants is still lacking.On the basis of the existing recombinase polymerase amplification(RPA)technique,we developed a multiplex RPA(multi-RPA)method that can simultaneously detect three transgenic elements,including the cauliflower mosaic virus 35S gene(CaMV35S)promoter,neomycin phosphotransferaseⅡgene(NptⅡ)and hygromycin B phosphotransferase gene(Hyg),thus improving the detection rate.Moreover,we coupled this multi-RPA technique with the CRISPR/Cas12a reporter system,which enabled the detection results to be clearly observed by naked eyes under ultraviolet(UV)light(254 nm;which could be achieved by a portable UV flashlight),therefore establishing a multi-RPA visual detection technique.Compared with the traditional test strip detection method,this multi-RPA-CRISPR/Cas12a technique has the higher specificity,higher sensitivity,wider application range and lower cost.Compared with other polymerase chain reaction(PCR)techniques,it also has the advantages of low equipment requirements and visualization,making it a potentially feasible method for the field detection of GM plants.
基金financially supported by the National Natural Science Foundation of China(42250102,42250101)the Macao Foundation and Macao Science and Technology Development Fund(0001/2019/A1)the Pre-research Project on Civil Aerospace Technologies funded by China National Space Administration(D020303)。
文摘This study presents preliminary results of tidal-induced magnetic field signals extracted from 9 months of data collected by the Macao Science Satellite-1(MSS-1) from November 2023 to July 2024. Tidal signals were isolated using sequential modeling techniques by subtracting non-tidal field model predictions from observed magnetic data. The extracted MSS-1 results show strong agreement with those from the Swarm and CryoSat satellites. MSS-1 effectively captures key large-scale tidal-induced magnetic anomalies, mainly due to its unique 41-degree low-inclination orbit, which provides wide coverage of local times. This finding underscores the strong potential of MSS-1 to recover high-resolution global tidal magnetic field models as more MSS-1 data become available.
基金supported by the Project of National Natural Science Foundation of China under Grant 52077122。
文摘With the continuous upgrading of traditional manufacturing industries and the rapid rise of emerging technology fields,the performance requirements for the permanent magnet synchronous motors(PMSMs)have become higher and higher.The importance of fast and accurate electromagnetic thermal coupling analysis of such motors becomes more and more prominent.In view of this,the surfacemounted PMSM(SPMSM)equipped with unequally thick magnetic poles is taken as the main object and its electromagnetic thermal coupling analytical model(ETc AM)is investigated.First,the electromagnetic analytical model(EAM)is studied based on the modified subdomain method.It realizes the fast calculation of key electromagnetic characteristics.Subsequently,the 3D thermal analytical model(TAM)is developed by combining the EAM,the lumped parameter thermal network method(LPTNM),and the partial differential equation of heat flux.It realizes the fast calculation of key thermal characteristics in 3D space.Further,the information transfer channel between EAM and TAM is built with reference to the intrinsic connection between electromagnetic field and temperature field.Thereby,the novel ETcAM is proposed to realize the fast and accurate prediction of electromagnetic and temperature fields.Besides,ETcAM has a lot to commend it.One is that it well accounts for the complex structure,saturation,and heat exchange behavior.Second,it saves a lot of computer resources.It offers boundless possibilities for initial design,scheme evaluation,and optimization of motors.Finally,the validity,accuracy,and practicality of this study are verified by simulation and experiment.
基金supported by the National Natural Science Foundation of China(Grant Nos.U20B2013 and 12205286)the National Key Research and Development Program of China(Grant No.2022YFB1902401)。
文摘Understanding the evolution of microstructures in nuclear fuels under high-burn-up conditions is critical for extending fuel refueling cycles and enhancing nuclear reactor safety.In this study,a phase-field model is proposed to examine the evolution of high-burn-up structures in polycrystalline UO_(2).The formation and growth of recrystallized grains were initially investigated.It was demonstrated that recrystallization kinetics adhere to the Kolmogorov–Johnson–Mehl–Avrami(KJMA)equation,and that recrystallization represents a process of free-energy reduction.Subsequently,the microstructural evolution in UO_(2) was analyzed as the burn up increased.Gas bubbles acted as additional nucleation sites,thereby augmenting the recrystallization kinetics,whereas the presence of recrystallized grains accelerated bubble growth by increasing the number of grain boundaries.The observed variations in the recrystallization kinetics and porosity with burn-up closely align with experimental findings.Furthermore,the influence of grain size on microstructure evolution was investigated.Larger grain sizes were found to decrease porosity and the occurrence of high-burn-up structures.
基金supported by the National Natural Science Foundation of China(42250101,42250102)the Macao Foundation.
文摘The movement of global ocean circulation in the Earth’s main magnetic field generates a measurable induced magnetic field(about 2 nT at geomagnetic satellite altitudes).However,this ocean circulation-induced magnetic field has not been previously estimated or incorporated into geomagnetic field models,potentially causing leakage into the core field model.Here,we present a method to account for the circulation-induced magnetic field during geomagnetic field modeling.First,a forward model of the circulation-induced magnetic field is constructed by numerically solving electromagnetic induction equations based on a realistic ocean circulation model.Then,this forward model is subtracted from the observed data.Finally,the core and lithospheric fields,magnetospheric and Earth’s mantle-induced fields,and the ocean tide-induced magnetic field are co-estimated.Applying our method to over 20 years of MSS-1,Swarm,CryoSat-2,and CHAMP satellite magnetic data,we derive a new multisource geomagnetic field model(MGFM).We find that incorporating a forward model of the circulation-induced magnetic field marginally improves the fit to the data.Furthermore,we demonstrate that neglecting the circulation-induced magnetic field in geomagnetic field modeling results in leakage into the core field model.The highlights of the MGFM model include:(i)a good agreement with the widely used CHAOS model series;(ii)the incorporation of magnetic fields induced by both ocean tides and circulation;and(iii)the suppression of leakage of the circulation-induced magnetic field into the core field model.
基金financially supported by Zijin Mining Group(No.01612216)the Ministry of Natural Resources,China(No.ZKKJ202426)。
文摘The Zijinshan ore field located in southwestern Fujian Province,China,is a representative porphyry-epithermal ore system hosting diverse mineralization types(Mao et al.,2013).The ore field comprises of the Zijinshan highsulfidation Cu-Au deposit,the Luoboling porphyry Cu-Mo deposit,the transitional style Cu deposit(Longjiangting and Wuziqilong)and the Yueyang low-sulfidation Agpolymetallic deposit(Zhang,2013;Zhang et al.,2003)
基金the support of the National Natural Science Foundation of China (Nos. 42250103, 41974073, and 41404053)the Macao Foundation and the preresearch project of Civil Aerospace Technologies (Nos. D020308 and D020303)funded by China’s National Space Administration, and the Specialized Research Fund for State Key Laboratories。
文摘By combining data from the Challenging Minisatellite Payload(CHAMP),Swarm-A,and newest Macao Science Satellite-1(MSS-1) missions,we constructed a lithospheric magnetic field model up to spherical harmonic degree N = 100.To isolate the lithospheric magnetic field signals,we utilized the latest CHAOS-8(CHAMP,Φrsted,and SAC-C 8) model and MGFM(Multisource Geomagnetic Field Model) to remove nonlithospheric sources,including the core field,magnetospheric field,ocean tidal field,and ocean circulation field.Subsequently,orbit-by-orbit processing was applied to both scalar and vector data,such as spherical harmonic high-pass filtering,singular spectrum analysis,and line leveling,to suppress noise and residual signals along the satellite tracks.With an orbital inclination of only 41°,MSS-1 effectively captures fine-scale lithospheric magnetic field signals in mid-to low-latitude regions.Its data exhibit a root mean square error of only 0.77 nT relative to the final model,confirming the high quality and utility of lithospheric field modeling.The resulting model exhibits excellent consistency with the MF7(Magnetic Field Model 7),maintaining a high correlation up to N = 90 and still exceeding 0.65 at N = 100.These results demonstrate the reliability and value of MSS-1 data in global lithospheric magnetic field modeling.
基金supported and financed by Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology (No.2024yjrc96)Anhui Provincial University Excellent Research and Innovation Team Support Project (No.2022AH010053)+2 种基金National Key Research and Development Program of China (Nos.2023YFC2907602 and 2022YFF1303302)Anhui Provincial Major Science and Technology Project (No.202203a07020011)Open Foundation of Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining (No.EC2023020)。
文摘The generalized rheological tests on sandstone were conducted under both dynamic stress and seepage fields.The results demonstrate that the rheological strain of the specimen under increased stress conditions is greater than that under creep conditions,indicating that the dynamic stress field significantly influences the rheological behaviours of sandstone.Following the rheological tests,the number of small pores in the sandstone decreased,while the number of medium-sized pores increased,forming new seepage channels.The high initial rheological stress accelerated fracture compression and the closure of seepage channels,resulting in reduction in the permeability of sandstone.Based on the principles of generalized rheology and the experimental findings,a novel rock rheological constitutive model incorporating both the dynamic stress field and seepage properties has been developed.Numerical simulations of surrounding rock deformation in geotechnical engineering were carried out using a secondary development version of this model,which confirmed the applicability of the generalized rheological numerical simulation method.These results provide theoretical support for the long-term stability evaluation of engineering rock masses and for predicting the deformation of surrounding rock.
基金supported by the National Natural Science Foundation of China (Grant Nos.12202294 and 12022208)the Project funded by China Postdoctoral Science Foundation (Grant No.2022M712243)the Fundamental Research Funds for the Central Universities (Grant No.2023SCU12098).
文摘It is well known that coarse-grained super-elastic NiTi shape memory alloys(SMAs)exhibit localized rather than homogeneous martensite transformation(MT),which,however,can be strongly influenced by either internal size(grain size,GS)or the external size(geometric size).The coupled effect of GS and geometric size on the functional properties has not been clearly understood yet.In this work,the super-elasticity,one-way,and stress-assisted two-way shape memory effects of the polycrystalline NiTi SMAs with different aspect ratios(length/width for the gauge section)and different GSs are investigated based on the phase field method.The coupled effect of the aspect ratio and GS on the functional properties is adequately revealed.The simulated results indicate that when the aspect ratio is lower than about 4:1,the stress biaxiality and stress heterogeneity in the gauge section of the sample become more and more obvious with decreasing the aspect ratio,which can significantly influence the microstructure evolution in the process involving external stress.Therefore,the corresponding functional property is strongly dependent on the aspect ratio.With decreasing the GS and the aspect ratio(to be lower than 4:1),both the aspect ratio and GS can affect the MT or martensite reorientation in each grain and the interaction among grains.Thus,due to the strong internal constraint(i.e.,the constraint of grain boundary)and the external constraint(i.e.,the constraint of geometric boundary),the capabilities of the functional properties of NiTi SMAs are gradually weakened and highly dependent on these two factors.
基金supported by the National Natural Science Foundation of China(Grant Nos.12250013,12403070,12425306,42250101,12273092)the Macao Foundation,and Shanghai Post-doctoral Excellence Program(Grant No.2023000137)。
文摘The Sq(solar quiet)geomagnetic field is generated by the electric currents in the E-region of the ionosphere,driven by the atmospheric tides.It is a critical part of high-precision geomagnetic field modeling.Based on the classic thermal tide theory and atmospheric electrodynamics,this research,for the first time,developed an Sq geomagnetic field model that is directly built on the physical mechanism of the ionospheric dynamo,which is responsible for daily variations of the geomagnetic field.The performance in Sq geomagnetic field modeling was investigated using the Macao Science Satellite-1(MSS-1)data.Our model can enhance the physics-based framework of comprehensive geomagnetic field modeling for the MSS-1 and ensuing missions.
基金supported by the National Natural Science Foundation of China(Grant Nos.42474200 and 42174186)Chao Xiong is supported by the Dragon 6 cooperation 2024-2028(Project No.95437).
文摘In this study,we present a comprehensive evaluation of the magnetic field measurements from the Vector Field Magnetometer(VFM)aboard the recently launched Macao Science Satellite-1(MSS-1).One-year data from November 2,2023,to November 1,2024,are considered.The MSS-1 flies with a low inclination(41°)and is designed to provide high-resolution magnetic field measurements,especially for monitoring the evolution of the South Atlantic Anomaly.Earlier studies confirmed the possibility of using MSS-1A data to model the Earth’s main magnetic field(e.g.,Jiang Y et al.,2024).Therefore,in this study we focus on the magnetic signatures related to the external field,which are primarily associated with magnetospheric and ionospheric currents.The global distributions of the magnetic residuals from MSS-1A show a pattern consistent with that derived from the European Space Agency’s Swarm A satellite.A statistical survey of the conjugated observations(withΔt<5 min andΔR<150 km)between the two satellites showed that the difference between their magnetic residuals is within±3 nanoteslas.By separating the magnetic residuals at the noon and midnight hours,we see that the MSS-1A data can effectively capture features of the magnetospheric and ionospheric currents,such as the magnetospheric ring current and ionospheric equatorial electrojet.Moreover,the magnetic residuals from MSS-1A show a diamagnetic effect caused by post-sunset equatorial plasma bubbles,which also suggests that the MSS-1A data have the potential to reveal the ionospheric structures.The comprehensive evaluations performed within this study demonstrate that the MSS-1A provides high-quality magnetic field data reaching the level of the Swarm satellite,which enables a deeper understanding of the modeling of Earth’s magnetic field as well as monitoring of the magnetic environment.