期刊文献+
共找到411篇文章
< 1 2 21 >
每页显示 20 50 100
Scheduling Optimization and Adaptive Decision-Making Method for Self-organizing Manufacturing Systems Considering Dynamic Disturbances
1
作者 ZHANG Yi QIAO Senyu +2 位作者 YIN Leilei SUN Quan XIE Fupeng 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第3期297-309,共13页
The production mode of manufacturing industry presents characteristics of multiple varieties,small-batch and personalization,leading to frequent disturbances in workshop.Traditional centralized scheduling methods are ... The production mode of manufacturing industry presents characteristics of multiple varieties,small-batch and personalization,leading to frequent disturbances in workshop.Traditional centralized scheduling methods are difficult to achieve efficient and real-time production management under dynamic disturbance.In order to improve the intelligence and adaptability of production scheduler,a novel distributed scheduling architecture is proposed,which has the ability to autonomously allocate tasks and handle disturbances.All production tasks are scheduled through autonomous collaboration and decision-making between intelligent machines.Firstly,the multi-agent technology is applied to build a self-organizing manufacturing system,enabling each machine to be equipped with the ability of active information interaction and joint-action execution.Secondly,various self-organizing collaboration strategies are designed to effectively facilitate cooperation and competition among multiple agents,thereby flexibly achieving global perception of environmental state.To ensure the adaptability and superiority of production decisions in dynamic environment,deep reinforcement learning is applied to build a smart production scheduler:Based on the perceived environment state,the scheduler intelligently generates the optimal production strategy to guide the task allocation and resource configuration.The feasibility and effectiveness of the proposed method are verified through three experimental scenarios using a discrete manufacturing workshop as the test bed.Compared to heuristic dispatching rules,the proposed method achieves an average performance improvement of 34.0%in three scenarios in terms of order tardiness.The proposed system can provide a new reference for the design of smart manufacturing systems. 展开更多
关键词 intlligent manufacturing adaptive scheduling self-organizing manufacturing system reinforcement learning
在线阅读 下载PDF
Intrusion Detection in NSL-KDD Dataset Using Hybrid Self-Organizing Map Model
2
作者 Noveela Iftikhar Mujeeb Ur Rehman +2 位作者 Mumtaz Ali Shah Mohammed J.F.Alenazi Jehad Ali 《Computer Modeling in Engineering & Sciences》 2025年第4期639-671,共33页
Intrusion attempts against Internet of Things(IoT)devices have significantly increased in the last few years.These devices are now easy targets for hackers because of their built-in security flaws.Combining a Self-Org... Intrusion attempts against Internet of Things(IoT)devices have significantly increased in the last few years.These devices are now easy targets for hackers because of their built-in security flaws.Combining a Self-Organizing Map(SOM)hybrid anomaly detection system for dimensionality reduction with the inherited nature of clustering and Extreme Gradient Boosting(XGBoost)for multi-class classification can improve network traffic intrusion detection.The proposed model is evaluated on the NSL-KDD dataset.The hybrid approach outperforms the baseline line models,Multilayer perceptron model,and SOM-KNN(k-nearest neighbors)model in precision,recall,and F1-score,highlighting the proposed approach’s scalability,potential,adaptability,and real-world applicability.Therefore,this paper proposes a highly efficient deployment strategy for resource-constrained network edges.The results reveal that Precision,Recall,and F1-scores rise 10%-30% for the benign,probing,and Denial of Service(DoS)classes.In particular,the DoS,probe,and benign classes improved their F1-scores by 7.91%,32.62%,and 12.45%,respectively. 展开更多
关键词 Intrusion detection self-organizing map Internet of Things dimensionality reduction
在线阅读 下载PDF
基于Self-Organizing Maps回归算法的黄河流域降水量空间预测研究
3
作者 刘文婷 白明照 李凤云 《陕西水利》 2025年第6期9-11,16,共4页
基于Self-Organizing Maps(SOM)回归算法,构建黄河流域降水量空间预测模型。利用2020年305个气象站点降水观测数据,结合海拔、坡度、坡向、NDVI等地理环境因子,通过网格搜索法优化SOM模型参数。结果表明,SOM模型成功捕捉了黄河流域降水... 基于Self-Organizing Maps(SOM)回归算法,构建黄河流域降水量空间预测模型。利用2020年305个气象站点降水观测数据,结合海拔、坡度、坡向、NDVI等地理环境因子,通过网格搜索法优化SOM模型参数。结果表明,SOM模型成功捕捉了黄河流域降水量空间异质性,预测精度较高(R2=0.83,RMSE=47.6 mm)。降水量呈现由东南向西北递减趋势,范围在135 mm~1171 mm之间,高值区(>900 mm)主要分布在东南部,中值区(500 mm~800 mm)位中部,低值区(<400 mm)集中在西北部。该研究可为降水量空间预测提供一种有效的新途径。 展开更多
关键词 self-organizing Maps 降水量 黄河流域 空间预测
在线阅读 下载PDF
Employing a Diversity Control Approach to Optimize Self-Organizing Particle Swarm Optimization Algorithms
4
作者 Sung-Jung Hsiao Wen-Tsai Sung 《Computers, Materials & Continua》 2025年第3期3891-3905,共15页
For optimization algorithms,the most important consideration is their global optimization performance.Our research is conducted with the hope that the algorithm can robustly find the optimal solution to the target pro... For optimization algorithms,the most important consideration is their global optimization performance.Our research is conducted with the hope that the algorithm can robustly find the optimal solution to the target problem at a lower computational cost or faster speed.For stochastic optimization algorithms based on population search methods,the search speed and solution quality are always contradictory.Suppose that the random range of the group search is larger;in that case,the probability of the algorithm converging to the global optimal solution is also greater,but the search speed will inevitably slow.The smaller the random range of the group search is,the faster the search speed will be,but the algorithm will easily fall into local optima.Therefore,our method is intended to utilize heuristic strategies to guide the search direction and extract as much effective information as possible from the search process to guide an optimized search.This method is not only conducive to global search,but also avoids excessive randomness,thereby improving search efficiency.To effectively avoid premature convergence problems,the diversity of the group must be monitored and regulated.In fact,in natural bird flocking systems,the distribution density and diversity of groups are often key factors affecting individual behavior.For example,flying birds can adjust their speed in time to avoid collisions based on the crowding level of the group,while foraging birds will judge the possibility of sharing food based on the density of the group and choose to speed up or escape.The aim of this work was to verify that the proposed optimization method is effective.We compared and analyzed the performances of five algorithms,namely,self-organized particle swarm optimization(PSO)-diversity controlled inertia weight(SOPSO-DCIW),self-organized PSO-diversity controlled acceleration coefficient(SOPSO-DCAC),standard PSO(SPSO),the PSO algorithm with a linear decreasing inertia weight(SPSO-LDIW),and the modified PSO algorithm with a time-varying acceleration constant(MPSO-TVAC). 展开更多
关键词 Diversity control optimize self-organizing PSO
在线阅读 下载PDF
Space-based self-organizing real-time wireless networks for satellite cluster
5
作者 Lei YANG Huaguo YANG +1 位作者 Zhenglong YIN Quan CHEN 《Chinese Journal of Aeronautics》 2025年第8期419-432,共14页
The information exchange among satellites is crucial for the implementation of cluster satellite cooperative missions.However,achieving fast perception,rapid networking,and highprecision time synchronization among nod... The information exchange among satellites is crucial for the implementation of cluster satellite cooperative missions.However,achieving fast perception,rapid networking,and highprecision time synchronization among nodes without the support of the Global Navigation Satellite System(GNSS)and other prior information remains a formidable challenge to real-time wireless networks design.Therefore,a self-organizing network methodology based on multi-agent negotiation is proposed,which autonomously determines the master node through collaborative negotiation and competitive elections.On this basis,a real-time network protocol design is carried out and a high-precision time synchronization method with motion compensation is proposed.Simulation results demonstrate that the proposed method enables rapid networking with the capability of selfdiscovery,self-organization,and self-healing.For a cluster of 8 satellites,the networking time and the reorganization time are less than 4 s.The time synchronization accuracy exceeds 10-10s with motion compensation,demonstrating excellent real-time performance and stability.The research presented in this paper provides a valuable reference for the design and application of spacebased self-organizing networks for satellite cluster. 展开更多
关键词 SATELLITE Real time self-organized network Time synchronization Motion compensation
原文传递
Algorithm for Solving Traveling Salesman Problem Based on Self-Organizing Mapping Network 被引量:1
6
作者 朱江辉 叶航航 +1 位作者 姚莉秀 蔡云泽 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第3期463-470,共8页
Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from ... Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from the perspectives of network update strategy,initialization method,and parameter selection.This paper compares the performance of the proposed algorithms with the performance of existing SOM network algorithms on the TSP and compares them with several heuristic algorithms.Simulations show that compared with existing SOM networks,the improved SOM network proposed in this paper improves the convergence rate and algorithm accuracy.Compared with iterated local search and heuristic algorithms,the improved SOM net-work algorithms proposed in this paper have the advantage of fast calculation speed on medium-scale TSP. 展开更多
关键词 traveling salesman problem(TSP) self-organizing mapping(SOM) combinatorial optimization neu-ral network
原文传递
Reconstruction of lithofacies using a supervised Self-Organizing Map:Application in pseudo-wells based on a synthetic geologic cross-section
7
作者 Carreira V.R. Bijani R. Ponte-Neto C.F. 《Artificial Intelligence in Geosciences》 2024年第1期14-26,共13页
Recently,machine learning(ML)has been considered a powerful technological element of different society areas.To transform the computer into a decision maker,several sophisticated methods and algorithms are constantly ... Recently,machine learning(ML)has been considered a powerful technological element of different society areas.To transform the computer into a decision maker,several sophisticated methods and algorithms are constantly created and analyzed.In geophysics,both supervised and unsupervised ML methods have dramatically contributed to the development of seismic and well-log data interpretation.In well-logging,ML algorithms are well-suited for lithologic reconstruction problems,once there is no analytical expressions for computing well-log data produced by a particular rock unit.Additionally,supervised ML methods are strongly dependent on a accurate-labeled training data-set,which is not a simple task to achieve,due to data absences or corruption.Once an adequate supervision is performed,the classification outputs tend to be more accurate than unsupervised methods.This work presents a supervised version of a Self-Organizing Map,named as SSOM,to solve a lithologic reconstruction problem from well-log data.Firstly,we go for a more controlled problem and simulate well-log data directly from an interpreted geologic cross-section.We then define two specific training data-sets composed by density(RHOB),sonic(DT),spontaneous potential(SP)and gamma-ray(GR)logs,all simulated through a Gaussian distribution function per lithology.Once the training data-set is created,we simulate a particular pseudo-well,referred to as classification well,for defining controlled tests.First one comprises a training data-set with no labeled log data of the simulated fault zone.In the second test,we intentionally improve the training data-set with the fault.To bespeak the obtained results for each test,we analyze confusion matrices,logplots,accuracy and precision.Apart from very thin layer misclassifications,the SSOM provides reasonable lithologic reconstructions,especially when the improved training data-set is considered for supervision.The set of numerical experiments shows that our SSOM is extremely well-suited for a supervised lithologic reconstruction,especially to recover lithotypes that are weakly-sampled in the training log-data.On the other hand,some misclassifications are also observed when the cortex could not group the slightly different lithologies. 展开更多
关键词 self-organizing Maps Supervised machine learning Synthetic well-log data Classification of lithofacies
在线阅读 下载PDF
Inquiry of Modernization Management of Rural Community Self-organizing on the Perspective of Social Work
8
作者 王守颂 《Agricultural Science & Technology》 CAS 2015年第1期140-144,150,共6页
The current rural community self-organizing of China is closely related with the rural social stability as well as economic and social development. However, the current rural community self-organizing construction fal... The current rural community self-organizing of China is closely related with the rural social stability as well as economic and social development. However, the current rural community self-organizing construction falls far behind the requirements of realistic practice all over China, which greatly affects the advancement of the rural modernization of China. On the other hand, social work provides a unique perspective and method to deal with these problems. Its service philosophy of selfservice as well as its humanitarian value and practical working methods provide reality conformity for the intervention into rural community self-organizing, making it conductive to improving the social relations between rural community residents and possible to realize the mutual development of rural community and rural community residents. 展开更多
关键词 Rural community Community self-organizing Social work
在线阅读 下载PDF
Fault Diagnosis in Chemical Process Based on Self-organizing Map Integrated with Fisher Discriminant Analysis 被引量:16
9
作者 陈心怡 颜学峰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第4期382-387,共6页
Fault diagnosis and monitoring are very important for complex chemical process. There are numerous methods that have been studied in this field, in which the effective visualization method is still challenging. In ord... Fault diagnosis and monitoring are very important for complex chemical process. There are numerous methods that have been studied in this field, in which the effective visualization method is still challenging. In order to get a better visualization effect, a novel fault diagnosis method which combines self-organizing map (SOM) with Fisher discriminant analysis (FDA) is proposed. FDA can reduce the dimension of the data in terms of maximizing the separability of the classes. After feature extraction by FDA, SOM can distinguish the different states on the output map clearly and it can also be employed to monitor abnormal states. Tennessee Eastman (TE) process is employed to illustrate the fault diagnosis and monitoring performance of the proposed method. The result shows that the SOM integrated with FDA method is efficient and capable for real-time monitoring and fault diagnosis in complex chemical process. 展开更多
关键词 self-organizing maps Fisher discriminant analysis fault diagnosis MONITORING Tennessee Eastman process
在线阅读 下载PDF
Data-Driven Microstructure and Microhardness Design in Additive Manufacturing Using a Self-Organizing Map 被引量:9
10
作者 Zhengtao Gan Hengyang Li +5 位作者 Sarah J.Wolff Jennifer L.Bennett Gregory Hyatt Gregory J.Wagner Jian Cao Wing Kam Liu 《Engineering》 SCIE EI 2019年第4期730-735,共6页
To design microstructure and microhardness in the additive manufacturing(AM)of nickel(Ni)-based superalloys,the present work develops a novel data-driven approach that combines physics-based models,experimental measur... To design microstructure and microhardness in the additive manufacturing(AM)of nickel(Ni)-based superalloys,the present work develops a novel data-driven approach that combines physics-based models,experimental measurements,and a data-mining method.The simulation is based on a computational thermal-fluid dynamics(CtFD)model,which can obtain thermal behavior,solidification parameters such as cooling rate,and the dilution of solidified clad.Based on the computed thermal information,dendrite arm spacing and microhardness are estimated using well-tested mechanistic models.Experimental microstructure and microhardness are determined and compared with the simulated values for validation.To visualize process-structure-properties(PSPs)linkages,the simulation and experimental datasets are input to a data-mining model-a self-organizing map(SOM).The design windows of the process parameters under multiple objectives can be obtained from the visualized maps.The proposed approaches can be utilized in AM and other data-intensive processes.Data-driven linkages between process,structure,and properties have the potential to benefit online process monitoring control in order to derive an ideal microstructure and mechanical properties. 展开更多
关键词 Additive manufacturing Data science MULTIPHYSICS modeling self-organizing map MICROSTRUCTURE MICROHARDNESS NI-BASED SUPERALLOY
在线阅读 下载PDF
Exploring the database of a soil environmental survey using a geo-self-organizing map:A pilot study 被引量:6
11
作者 LIAO Xiaoyong TAO Huan +1 位作者 GONG Xuegang LI You 《Journal of Geographical Sciences》 SCIE CSCD 2019年第10期1610-1624,共15页
A model integrating geo-information and self-organizing map(SOM) for exploring the database of soil environmental surveys was established. The dataset of 5 heavy metals(As, Cd, Cr, Hg, and Pb) was built by the regular... A model integrating geo-information and self-organizing map(SOM) for exploring the database of soil environmental surveys was established. The dataset of 5 heavy metals(As, Cd, Cr, Hg, and Pb) was built by the regular grid sampling in Hechi, Guangxi Zhuang Autonomous Region in southern China. Auxiliary datasets were collected throughout the study area to help interpret the potential causes of pollution. The main findings are as follows:(1) Soil samples of 5 elements exhibited strong variation and high skewness. High pollution risk existed in the case study area, especially Hg and Cd.(2) As and Pb had a similar topological distribution pattern, meaning they behaved similarly in the soil environment. Cr had behaviours in soil different from those of the other 4 elements.(3) From the U-matrix of SOM networks, 3 levels of SEQ were identified, and 11 high risk areas of soil heavy metal-contaminated were found throughout the study area, which were basically near rivers,factories, and ore zones.(4) The variations of contamination index(CI) followed the trend of construction land(1.353)> forestland(1.267)> cropland(1.175)> grassland(1.056), which suggest that decision makers should focus more on the problem of soil pollution surrounding industrial and mining enterprises and farmland. 展开更多
关键词 self-organizing map geo-information HEAVY metal SOIL environmental quality Hechi
原文传递
Patterns of upper layer circulation variability in the South China Sea from satellite altimetry using the self-organizing map 被引量:6
12
作者 WEISBERG Robert H 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2008年第z1期129-144,共16页
Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal... Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal and inter-annual variations of the SCS surface circulation are identified through the evolution of the characteristic circulation patterns.The annual cycle of the SCS general circulation patterns is described as a change between two opposite basin-scale SW-NE oriented gyres embedded with eddies: low sea surface height anomaly (SSHA) (cyclonic) in winter and high SSHA (anticyclonic) in summer half year. The transition starts from July—August (January—February) with a high (low) SSHA tongue east of Vietnam around 12°~14° N, which develops into a big anticyclonic (cyclonic) gyre while moving eastward to the deep basin. During the transitions, a dipole structure, cyclonic (anticyclonic) in the north and anticyclonic (cyclonic) in the south, may be formed southeast off Vietnam with a strong zonal jet around 10°~12° N. The seasonal variation is modulated by the interannual variations. Besides the strong 1997/1998 event in response to the peak Pacific El Nio in 1997, the overall SCS sea level is found to have a significant rise during 1999~2001, however, in summer 2004 the overall SCS sea level is lower and the basin-wide anticyclonic gyre becomes weaker than the other years. 展开更多
关键词 circulation patterns self-organizing map satellite altimetry annual cycle inter-annual variation South China Sea
在线阅读 下载PDF
Hydrogeochemical characterization and quality assessment of groundwater using self-organizing maps in the Hangjinqi gasfield area,Ordos Basin,NW China 被引量:4
13
作者 Chu Wu Chen Fang +2 位作者 Xiong Wu Ge Zhu Yuzhe Zhang 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第2期781-790,共10页
Water resources are scarce in arid or semiarid areas,which not only limits economic development,but also threatens the survival of mankind.The local communities around the Hangjinqi gasfield depend on groundwater sour... Water resources are scarce in arid or semiarid areas,which not only limits economic development,but also threatens the survival of mankind.The local communities around the Hangjinqi gasfield depend on groundwater sources for water supply.A clear understanding of the groundwater hydrogeochemical characteristics and the groundwater quality and its seasonal cycle is invaluable and indispensable for groundwater protection and management.In this study,self-organizing maps were used in combination with the quantization and topographic errors and K-means clustering method to investigate groundwater chemistry datasets.The Piper and Gibbs diagrams and saturation index were systematically applied to investigate the hydrogeochemical characteristics of groundwater from both rainy and dry seasons.Further,the entropy-weighted theory was used to characterize groundwater quality and assess its seasonal variability and suitability for drinking purposes.Our hydrochemical groundwater dataset,consisting of 10 parameters measured during both dry and rainy seasons,was classified into 6 clusters,and the Piper diagram revealed three hydrochemical facies:Cl-Na type(clusters 1,2 and 3),mixed type(clusters 4 and 5),and HCO3-Ca type(cluster 6).The Gibbs diagram and saturation index suggested thatweathering of rock-forming mineralswere the primary process controlling groundwater chemical composition and validated the credibility and practicality of the clustering results.Two-thirds of 45 groundwater samples were categorized as excellent-or good-quality and were suitable as drinking water.Cluster changes within the same and different clusters from the dry season to the rainy season were detected in approximately 78%of the collected samples.The main factors affecting the groundwater quality were hydrogeochemical characteristics,and dry season groundwater quality was better than rainy season groundwater quality.Based on this work,such results can be used to investigate the seasonal variation of hydrogeochemical characteristics and assess water quality accurately in the others similar area. 展开更多
关键词 self-organizing maps Seasonal change Entropy-weighted theory Hydrogeochemical characteristics Groundwater quality
在线阅读 下载PDF
Application of Self-Organizing Feature Map Neural Network Based on K-means Clustering in Network Intrusion Detection 被引量:5
14
作者 Ling Tan Chong Li +1 位作者 Jingming Xia Jun Cao 《Computers, Materials & Continua》 SCIE EI 2019年第7期275-288,共14页
Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one... Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration. 展开更多
关键词 K-means clustering self-organizing feature map neural network network security intrusion detection NSL-KDD data set
在线阅读 下载PDF
Enabling Technology of Multiagent Manufacturing System:A Novel Mode of Self-organizing IoT Manufacturing 被引量:4
15
作者 WANG Liping TANG Dunbing +5 位作者 SUN Hongwei LIAO Liangchuang ZHANG Zequn ZHOU Tong NIE Qingwei SONG Jiaye 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第5期876-892,共17页
As the manufacturing mode focuses more on network and community,the orders and production processes are becoming highly dynamic and unpredictable.The traditional manufacturing system cannot handle those exceptional ev... As the manufacturing mode focuses more on network and community,the orders and production processes are becoming highly dynamic and unpredictable.The traditional manufacturing system cannot handle those exceptional events such as rush orders and machine breakdowns.Nevertheless,the multiagent manufacturing system(MAMS)becomes a critical pattern to deal with these disturbances in a real-time way.However,due to the lack of universality,MAMS is difficult to be applied to industrial sites.A new multiagent architecture and the relay cooperation model based on a positive process relation matrix are proposed to address this paper’s issue.An optimized contract net protocol(CNP)-based negotiation mechanism is developed to improve the efficiency of collaboration in the proposed architecture.Finally,a case study of self-organizing internet of things(Io T)manufacturing system is used to test the feasibility and effectiveness of the method.It is shown that the proposed self-organizing Io T manufacturing mode outperforms the traditional manufacturing system in terms of makespan and critical machine workload balancing under disturbances through comparison. 展开更多
关键词 multiagent manufacturing system(MAMS) contract net protocol(CNP) internet of things(IoT) DISTURBANCE self-organizing
在线阅读 下载PDF
A novel self-organizing E-Learner community model with award and exchange mechanisms 被引量:3
16
作者 杨帆 申瑞民 韩鹏 《Journal of Zhejiang University Science》 CSCD 2004年第11期1343-1351,共9页
How to share experience and resources among learners is becoming one of the hottest topics in the field of E-Learning collaborative techniques. An intuitive way to achieve this objective is to group learners which can... How to share experience and resources among learners is becoming one of the hottest topics in the field of E-Learning collaborative techniques. An intuitive way to achieve this objective is to group learners which can help each other into the same community and help them learn collaboratively. In this paper, we proposed a novel community self-organization model based on multi-agent mechanism, which can automatically group learners with similar preferences and capabilities. In particular, we proposed award and exchange schemas with evaluation and preference track records to raise the performance of this algorithm. The description of learner capability, the matchmaking process, the definition of evaluation and preference track records, the rules of award and exchange schemas and the self-organization algorithm are all discussed in this paper. Meanwhile, a prototype has been built to verify the validity and efficiency of the algorithm. Experiments based on real learner data showed that this mechanism can organize learner communities properly and efficiently; and that it has sustainable improved efficiency and scalability. 展开更多
关键词 self-organizing E-Learner community AWARD EXCHANGE MULTI-AGENT
在线阅读 下载PDF
CLUSTERING PROPERTIES OF FUZZY KOHONEN'S SELF-ORGANIZING FEATURE MAPS 被引量:3
17
作者 彭磊 胡征 《Journal of Electronics(China)》 1995年第2期124-133,共10页
A new clustering algorithm called fuzzy self-organizing feature maps is introduced. It can process not only the exact digital inputs, but also the inexact or fuzzy non-digital inputs, such as natural language inputs. ... A new clustering algorithm called fuzzy self-organizing feature maps is introduced. It can process not only the exact digital inputs, but also the inexact or fuzzy non-digital inputs, such as natural language inputs. Simulation results show that the new algorithm is superior to original Kohonen’s algorithm in clustering performance and learning rate. 展开更多
关键词 self-organizing feature MAPS FUZZY sets MEMBERSHIP measure FUZZINESS mea-sure
在线阅读 下载PDF
Waterlogging risk assessment based on self-organizing map(SOM)artificial neural networks:a case study of an urban storm in Beijing 被引量:4
18
作者 LAI Wen-li WANG Hong-rui +2 位作者 WANG Cheng ZHANG Jie ZHAO Yong 《Journal of Mountain Science》 SCIE CSCD 2017年第5期898-905,共8页
Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annu... Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annuallyinthe urban area of Beijing, the capital of China. Based on a selforganizing map(SOM) artificial neural network(ANN), a graded waterlogging risk assessment was conducted on 56 low-lying points in Beijing, China. Social risk factors, such as Gross domestic product(GDP), population density, and traffic congestion, were utilized as input datasets in this study. The results indicate that SOM-ANNis suitable for automatically and quantitatively assessing risks associated with waterlogging. The greatest advantage of SOM-ANN in the assessment of waterlogging risk is that a priori knowledge about classification categories and assessment indicator weights is not needed. As a result, SOM-ANN can effectively overcome interference from subjective factors,producing classification results that are more objective and accurate. In this paper, the risk level of waterlogging in Beijing was divided into five grades. The points that were assigned risk grades of IV or Vwere located mainly in the districts of Chaoyang, Haidian, Xicheng, and Dongcheng. 展开更多
关键词 Waterlogging risk assessment self-organizing map(SOM) neural network Urban storm
原文传递
Integration of Soil Information System and Interactive Self-Organizing Data for Agricultural Developing Zones in Red Soil Region 被引量:3
19
作者 SHI ZHOU WANG RENCHAO and M. AL-ABED (Institute of Agricultural Remote Sensing and Information System, Zhejiang Agricultural University, Hangzhou 31029, China) 《Pedosphere》 SCIE CAS CSCD 1999年第1期61-68,共8页
Integration of soil information system (SIS) and interactive self-organizing data (ISODATA) was studied to establish proper agricultural developing zones in red soil region of southern China which are of crucial impor... Integration of soil information system (SIS) and interactive self-organizing data (ISODATA) was studied to establish proper agricultural developing zones in red soil region of southern China which are of crucial importance to farmers, researchers, and decision makers while utilizing and managing red soil resources. SIS created by using ARC/INPO was used to provide data acquisition, systematic model parameter assignment, and visual display of analytic results. Topography, temperature, soil component (e.g., organic matter and pH) and condition of agricultural production were selected as parameters of ISODATA model. Taking Longyou County, Zhejiang Province as the case study area, the effect of the integration and recommendations are discussed for future research. 展开更多
关键词 agricultural developing zonest interactive self-organizing data red soil resources soil information system
在线阅读 下载PDF
MLP training in a self-organizing state space model using unscented Kalman particle filter 被引量:3
20
作者 Yanhui Xi Hui Peng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第1期141-146,共6页
Many Bayesian learning approaches to the multi-layer perceptron (MLP) parameter optimization have been proposed such as the extended Kalman filter (EKF). This paper uses the unscented Kalman particle filter (UPF... Many Bayesian learning approaches to the multi-layer perceptron (MLP) parameter optimization have been proposed such as the extended Kalman filter (EKF). This paper uses the unscented Kalman particle filter (UPF) to train the MLP in a self- organizing state space (SOSS) model. This involves forming augmented state vectors consisting of all parameters (the weights of the MLP) and outputs. The UPF is used to sequentially update the true system states and high dimensional parameters that are inherent to the SOSS moder for the MLP simultaneously. Simulation results show that the new method performs better than traditional optimization methods. 展开更多
关键词 multi-layer perceptron (MLP) Bayesian method self-organizing state space (SOSS) unscented Kalman particle filter(UPF).
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部