In the case of Z+^d(d ≥ 2)-the positive d-dimensional lattice points with partial ordering ≤, {Xk,k∈ Z+^d} i.i.d, random variables with mean 0, Sn =∑k≤nXk and Vn^2 = ∑j≤nXj^2, the precise asymptotics for ∑...In the case of Z+^d(d ≥ 2)-the positive d-dimensional lattice points with partial ordering ≤, {Xk,k∈ Z+^d} i.i.d, random variables with mean 0, Sn =∑k≤nXk and Vn^2 = ∑j≤nXj^2, the precise asymptotics for ∑n1/|n|(log|n|dP(|Sn/Vn|≥ε√log log|n|) and ∑n(logn|)b/|n|(log|n|)^d-1P(|Sn/Vn|≥ε√log n),as ε↓0,is established.展开更多
In this case study, we would like to illustrate the utility of characteristic functions, using an example of a sample statistic defined for samples from Cauchy distribution. The derivation of the corresponding asympto...In this case study, we would like to illustrate the utility of characteristic functions, using an example of a sample statistic defined for samples from Cauchy distribution. The derivation of the corresponding asymptotic probability density function is based on [1], elaborating and expanding the individual steps of their presentation, and including a small extension;our reason for such a plagiarism is to make the technique, its mathematical tools and ingenious arguments available to the widest possible audience.展开更多
Let {X,Xn,n1} be a sequence of independent identically distributed random variables with EX=0 and assume that EX2I(|X|≤x) is slowly varying as x→∞,i.e.,X is in the domain of attraction of the normal law.In this pap...Let {X,Xn,n1} be a sequence of independent identically distributed random variables with EX=0 and assume that EX2I(|X|≤x) is slowly varying as x→∞,i.e.,X is in the domain of attraction of the normal law.In this paper a Strassen-type strong approximation is established for self-normalized sums of such random variables.展开更多
The Berry-Esseen bound provides an upper bound on the Kolmogorov distance between a random variable and the normal distribution.In this paper,we establish Berry-Esseen bounds with optimal rates for self-normalized sum...The Berry-Esseen bound provides an upper bound on the Kolmogorov distance between a random variable and the normal distribution.In this paper,we establish Berry-Esseen bounds with optimal rates for self-normalized sums of locally dependent random variables,assuming only a second-moment condition.Our proof leverages Stein's method and introduces a novel randomized concentration inequality,which may also be of independent interest for other applications.Our main results have applied to self-normalized sums of m-dependent random variables and graph dependency models.展开更多
Let {X n,n≥1} be a stationary LNQD or NA sequence satisfying EX 1=μ,EX 2 1<∞ and (Var S n)/n→σ 2 as n→∞.In this paper a class of self-normalized central limit theorems and estimators of Var S n are ...Let {X n,n≥1} be a stationary LNQD or NA sequence satisfying EX 1=μ,EX 2 1<∞ and (Var S n)/n→σ 2 as n→∞.In this paper a class of self-normalized central limit theorems and estimators of Var S n are studied.The weak and strong consistency of the estimators of Var S n are presented.展开更多
Let variables in the {X, Xn, n ≥ 1} be a sequence of strictly stationary φ-mixing positive random domain of attraction of the normal law. Under some suitable conditions the principle for self-normalized products of ...Let variables in the {X, Xn, n ≥ 1} be a sequence of strictly stationary φ-mixing positive random domain of attraction of the normal law. Under some suitable conditions the principle for self-normalized products of partial sums is obtained.展开更多
With the continuous growth of online news articles,there arises the necessity for an efficient abstractive summarization technique for the problem of information overloading.Abstractive summarization is highly complex...With the continuous growth of online news articles,there arises the necessity for an efficient abstractive summarization technique for the problem of information overloading.Abstractive summarization is highly complex and requires a deeper understanding and proper reasoning to come up with its own summary outline.Abstractive summarization task is framed as seq2seq modeling.Existing seq2seq methods perform better on short sequences;however,for long sequences,the performance degrades due to high computation and hence a two-phase self-normalized deep neural document summarization model consisting of improvised extractive cosine normalization and seq2seq abstractive phases has been proposed in this paper.The novelty is to parallelize the sequence computation training by incorporating feed-forward,the self-normalized neural network in the Extractive phase using Intra Cosine Attention Similarity(Ext-ICAS)with sentence dependency position.Also,it does not require any normalization technique explicitly.Our proposed abstractive Bidirectional Long Short Term Memory(Bi-LSTM)encoder sequence model performs better than the Bidirectional Gated Recurrent Unit(Bi-GRU)encoder with minimum training loss and with fast convergence.The proposed model was evaluated on the Cable News Network(CNN)/Daily Mail dataset and an average rouge score of 0.435 was achieved also computational training in the extractive phase was reduced by 59%with an average number of similarity computations.展开更多
In this article, the unit root test for AR(p) model with GARCH errors is considered. The Dickey-Fuller test statistics are rewritten in the form of self-normalized sums, and the asymptotic distribution of the test s...In this article, the unit root test for AR(p) model with GARCH errors is considered. The Dickey-Fuller test statistics are rewritten in the form of self-normalized sums, and the asymptotic distribution of the test statistics is derived under the weak conditions.展开更多
We give an extension of Delyon's inequality for locally square integrable martingales.The result is very useful for establishing self-normalized exponential inequality for martingales.An application to linear regr...We give an extension of Delyon's inequality for locally square integrable martingales.The result is very useful for establishing self-normalized exponential inequality for martingales.An application to linear regressions is discussed.展开更多
Dear Editor,This letter addresses the impulse game problem for a general scope of deterministic,multi-player,nonzero-sum differential games wherein all participants adopt impulse controls.Our objective is to formulate...Dear Editor,This letter addresses the impulse game problem for a general scope of deterministic,multi-player,nonzero-sum differential games wherein all participants adopt impulse controls.Our objective is to formulate this impulse game problem with the modified objective function including interaction costs among the players in a discontinuous fashion,and subsequently,to derive a verification theorem for identifying the feedback Nash equilibrium strategy.展开更多
Let f,g and h be three distinct primitive holomorphic cusp forms of even integral weights k_(1),k_(2)and k_(3)for the full modular groupΓ=SL(2,Z),and denote byλ_(f)(n),λ_(g)(n),λ_(h)(n)the corresponding normalized...Let f,g and h be three distinct primitive holomorphic cusp forms of even integral weights k_(1),k_(2)and k_(3)for the full modular groupΓ=SL(2,Z),and denote byλ_(f)(n),λ_(g)(n),λ_(h)(n)the corresponding normalized Fourier coefficients,respectively.In this paper,we investigate the correlations of triple sums associated to these Fourier coefficientsλ_(f)(n),λ_(g)(n),λ_(h)(n)over certain polynomials,and obtain some power-saving asymptotic estimates which beat the trivial bounds.展开更多
The complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space is studied.By moment inequality and truncation methods,we establish the...The complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space is studied.By moment inequality and truncation methods,we establish the equivalent conditions of complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space.The results complement the corresponding results in probability space to those for sequences of independent,identically distributed random variables under sublinear expectation space.展开更多
In this paper,by utilizing the Marcinkiewicz-Zygmund inequality and Rosenthal-type inequality of negatively superadditive dependent(NSD)random arrays and truncated method,we investigate the complete f-moment convergen...In this paper,by utilizing the Marcinkiewicz-Zygmund inequality and Rosenthal-type inequality of negatively superadditive dependent(NSD)random arrays and truncated method,we investigate the complete f-moment convergence of NSD random variables.We establish and improve a general result on the complete f-moment convergence for Sung’s type randomly weighted sums of NSD random variables under some general assumptions.As an application,we show the complete consistency for the randomly weighted estimator in a nonparametric regression model based on NSD errors.展开更多
Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small targe...Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target.展开更多
Denoising is an important preprocessing step in seismic exploration that improves the signal-to-noise ratio(SNR)and helps identify oil and minerals.Dictionary learning(DL)is a promising method for noise attenuation.Th...Denoising is an important preprocessing step in seismic exploration that improves the signal-to-noise ratio(SNR)and helps identify oil and minerals.Dictionary learning(DL)is a promising method for noise attenuation.The DL extracts sparse features from noisy seismic data using over-complete dictionaries and performs denoising based on a threshold.However,the choice of threshold in DL greatly impacts the denoising results and the improvement in output SNR.Ramanujan’s sum(s)(RS)is a signal processing tool that exhibits derivative behavior and finds applications in edge detection and noise estimation of signals.Hence,we propose a novel DL method with threshold estimation based on RS to improve the output SNR.In this work,we estimate the noise variance of seismic data based on RS and use it as a threshold value for the DL method to perform denoising.We analyze the results of the proposed work on synthetically generated and field data sets.We perform simulations on noisy seismic data across a wide range of SNR values and tabulate the denoised results using the performance metrics SNR and mean squared error.The results indicate that the proposed method provides superior SNR and reduced mean squared error compared to MAD,SURE-based,and adaptive soft-thresholding techniques.展开更多
文摘In the case of Z+^d(d ≥ 2)-the positive d-dimensional lattice points with partial ordering ≤, {Xk,k∈ Z+^d} i.i.d, random variables with mean 0, Sn =∑k≤nXk and Vn^2 = ∑j≤nXj^2, the precise asymptotics for ∑n1/|n|(log|n|dP(|Sn/Vn|≥ε√log log|n|) and ∑n(logn|)b/|n|(log|n|)^d-1P(|Sn/Vn|≥ε√log n),as ε↓0,is established.
文摘In this case study, we would like to illustrate the utility of characteristic functions, using an example of a sample statistic defined for samples from Cauchy distribution. The derivation of the corresponding asymptotic probability density function is based on [1], elaborating and expanding the individual steps of their presentation, and including a small extension;our reason for such a plagiarism is to make the technique, its mathematical tools and ingenious arguments available to the widest possible audience.
基金supported by an NSERC Canada Discovery Grant of M.Csrgo at Carleton UniversityNational Natural Science Foundation of China(Grant No.10801122)+1 种基金Research Fund for the Doctoral Program of Higher Education of China(Grant No.200803581009)the Fundamental Research Funds for the Central Universities
文摘Let {X,Xn,n1} be a sequence of independent identically distributed random variables with EX=0 and assume that EX2I(|X|≤x) is slowly varying as x→∞,i.e.,X is in the domain of attraction of the normal law.In this paper a Strassen-type strong approximation is established for self-normalized sums of such random variables.
基金supported by the Singapore Ministry of Education Academic Research Fund Tier 2(Grant No.MOE2018-T2-2-076)。
文摘The Berry-Esseen bound provides an upper bound on the Kolmogorov distance between a random variable and the normal distribution.In this paper,we establish Berry-Esseen bounds with optimal rates for self-normalized sums of locally dependent random variables,assuming only a second-moment condition.Our proof leverages Stein's method and introduces a novel randomized concentration inequality,which may also be of independent interest for other applications.Our main results have applied to self-normalized sums of m-dependent random variables and graph dependency models.
基金the National Natural Science Foundation of China(1 0 0 71 0 72 )
文摘Let {X n,n≥1} be a stationary LNQD or NA sequence satisfying EX 1=μ,EX 2 1<∞ and (Var S n)/n→σ 2 as n→∞.In this paper a class of self-normalized central limit theorems and estimators of Var S n are studied.The weak and strong consistency of the estimators of Var S n are presented.
基金National Natural Science Foundation of China(1067117610771192).
文摘Let variables in the {X, Xn, n ≥ 1} be a sequence of strictly stationary φ-mixing positive random domain of attraction of the normal law. Under some suitable conditions the principle for self-normalized products of partial sums is obtained.
文摘With the continuous growth of online news articles,there arises the necessity for an efficient abstractive summarization technique for the problem of information overloading.Abstractive summarization is highly complex and requires a deeper understanding and proper reasoning to come up with its own summary outline.Abstractive summarization task is framed as seq2seq modeling.Existing seq2seq methods perform better on short sequences;however,for long sequences,the performance degrades due to high computation and hence a two-phase self-normalized deep neural document summarization model consisting of improvised extractive cosine normalization and seq2seq abstractive phases has been proposed in this paper.The novelty is to parallelize the sequence computation training by incorporating feed-forward,the self-normalized neural network in the Extractive phase using Intra Cosine Attention Similarity(Ext-ICAS)with sentence dependency position.Also,it does not require any normalization technique explicitly.Our proposed abstractive Bidirectional Long Short Term Memory(Bi-LSTM)encoder sequence model performs better than the Bidirectional Gated Recurrent Unit(Bi-GRU)encoder with minimum training loss and with fast convergence.The proposed model was evaluated on the Cable News Network(CNN)/Daily Mail dataset and an average rouge score of 0.435 was achieved also computational training in the extractive phase was reduced by 59%with an average number of similarity computations.
基金National Natural Science Foundation of China(1047112610671176).
文摘In this article, the unit root test for AR(p) model with GARCH errors is considered. The Dickey-Fuller test statistics are rewritten in the form of self-normalized sums, and the asymptotic distribution of the test statistics is derived under the weak conditions.
文摘We give an extension of Delyon's inequality for locally square integrable martingales.The result is very useful for establishing self-normalized exponential inequality for martingales.An application to linear regressions is discussed.
基金supported in part by the National Natural Science Foundation of China(62173051)the Fundamental Research Funds for the Central Universities(2024CDJCGJ012,2023CDJXY-010)+1 种基金the Chongqing Technology Innovation and Application Development Special Key Project(CSTB2022TIADCUX0015,CSTB2022TIAD-KPX0162)the China Postdoctoral Science Foundation(2024M763865)
文摘Dear Editor,This letter addresses the impulse game problem for a general scope of deterministic,multi-player,nonzero-sum differential games wherein all participants adopt impulse controls.Our objective is to formulate this impulse game problem with the modified objective function including interaction costs among the players in a discontinuous fashion,and subsequently,to derive a verification theorem for identifying the feedback Nash equilibrium strategy.
基金Supported in part by NSFC(Nos.12401011,12201214)National Key Research and Development Program of China(No.2021YFA1000700)+3 种基金Shaanxi Fundamental Science Research Project for Mathematics and Physics(No.23JSQ053)Science and Technology Program for Youth New Star of Shaanxi Province(No.2025ZC-KJXX-29)Natural Science Basic Research Program of Shaanxi Province(No.2025JC-YBQN-091)Scientific Research Foundation for Young Talents of WNU(No.2024XJ-QNRC-01)。
文摘Let f,g and h be three distinct primitive holomorphic cusp forms of even integral weights k_(1),k_(2)and k_(3)for the full modular groupΓ=SL(2,Z),and denote byλ_(f)(n),λ_(g)(n),λ_(h)(n)the corresponding normalized Fourier coefficients,respectively.In this paper,we investigate the correlations of triple sums associated to these Fourier coefficientsλ_(f)(n),λ_(g)(n),λ_(h)(n)over certain polynomials,and obtain some power-saving asymptotic estimates which beat the trivial bounds.
基金supported by Doctoral Scientific Research Starting Foundation of Jingdezhen Ceramic University(Grant No.102/01003002031)Re-accompanying Funding Project of Academic Achievements of Jingdezhen Ceramic University(Grant Nos.215/20506277,215/20506341)。
文摘The complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space is studied.By moment inequality and truncation methods,we establish the equivalent conditions of complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space.The results complement the corresponding results in probability space to those for sequences of independent,identically distributed random variables under sublinear expectation space.
基金supported by the National Social Science Fundation(Grant No.21BTJ040)the Project of Outstanding Young People in University of Anhui Province(Grant Nos.2023AH020037,SLXY2024A001).
文摘In this paper,by utilizing the Marcinkiewicz-Zygmund inequality and Rosenthal-type inequality of negatively superadditive dependent(NSD)random arrays and truncated method,we investigate the complete f-moment convergence of NSD random variables.We establish and improve a general result on the complete f-moment convergence for Sung’s type randomly weighted sums of NSD random variables under some general assumptions.As an application,we show the complete consistency for the randomly weighted estimator in a nonparametric regression model based on NSD errors.
基金Supported by the Key Laboratory Fund for Equipment Pre-Research(6142207210202)。
文摘Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target.
文摘Denoising is an important preprocessing step in seismic exploration that improves the signal-to-noise ratio(SNR)and helps identify oil and minerals.Dictionary learning(DL)is a promising method for noise attenuation.The DL extracts sparse features from noisy seismic data using over-complete dictionaries and performs denoising based on a threshold.However,the choice of threshold in DL greatly impacts the denoising results and the improvement in output SNR.Ramanujan’s sum(s)(RS)is a signal processing tool that exhibits derivative behavior and finds applications in edge detection and noise estimation of signals.Hence,we propose a novel DL method with threshold estimation based on RS to improve the output SNR.In this work,we estimate the noise variance of seismic data based on RS and use it as a threshold value for the DL method to perform denoising.We analyze the results of the proposed work on synthetically generated and field data sets.We perform simulations on noisy seismic data across a wide range of SNR values and tabulate the denoised results using the performance metrics SNR and mean squared error.The results indicate that the proposed method provides superior SNR and reduced mean squared error compared to MAD,SURE-based,and adaptive soft-thresholding techniques.