Ten physical and environmental variables collected from an on-the-go soil sensor at two field sites (MF3E and MF11S) in Mississippi, USA, were analyzed to assess soil variability and the interrelationships among the m...Ten physical and environmental variables collected from an on-the-go soil sensor at two field sites (MF3E and MF11S) in Mississippi, USA, were analyzed to assess soil variability and the interrelationships among the measurements. At MF3E, moderate variability was observed in apparent electrical conductivity shallow (ECas), slope, and ECa ratio measurements, with coefficients of variation ranging from 20% to 27%. In contrast, MF11S exhibited higher variability, particularly in ECas and ECad (deep) measurements, which exceeded 30% in their coefficient of variation values, indicating significant differences in soil composition and moisture content. Correlation analysis revealed strong positive relationships between the near-infrared-to-red ratio and red reflectance (r = 0.897***) soil values at MF3E. MF11S demonstrated a strong negative correlation between ECas and ECad readings with the x-coordinate (r ***). Scatter plots and fitted models illustrated the complexity of relationships, with many showing nonlinear trends. These findings emphasize the need for continuous monitoring and advanced modeling to understand the dynamic nature of soil properties and their implications for agricultural practices. Future research should explore the underlying mechanisms driving variability in the soil characteristics to enhance soil management strategies at the study sites.展开更多
Agricultural soil is related to food security and human health,antibiotics and heavy metals(HMs),as two typical pollutants,possess a high coexistence rate in the environmental medium,which is extremely prone to induci...Agricultural soil is related to food security and human health,antibiotics and heavy metals(HMs),as two typical pollutants,possess a high coexistence rate in the environmental medium,which is extremely prone to inducing antibiotic-HMs combined pollution.Recently,frequent human activities have led to more prominent antibiotics-HMs combined contamination in agricultural soils,especially the production and spread of antibiotic resistance genes(ARGs),heavy metal resistance genes(MRGs),antibiotic resistant bacteria(ARB),and antibiotics-HMs complexes(AMCs),which seriously threaten soil ecology and human health.This review describes the main sources(Intrinsic and manmade sources),composite mechanisms(co-selective resistance,oxidative stress,and Joint toxicity mechanism),environmental fate and the potential risks(soil ecological and human health risks)of antibiotics and HMs in agricultural soils.Finally,the current effective source blocking,transmission control,and attenuation strategies are classified for discussion,such as the application of additives and barrier materials,as well as plant and animal remediation and bioremediation,etc.,pointing out that future research should focus on the whole chain process of“source-processterminal”,intending to provide a theoretical basis and decision-making reference for future research.展开更多
Black soils represent only one-sixth of the global arable land area but play an important role in maintaining world food security due to their high fertility and gigantic potential for food production.With the ongoing...Black soils represent only one-sixth of the global arable land area but play an important role in maintaining world food security due to their high fertility and gigantic potential for food production.With the ongoing intensification of agricultural practices and negative natural factors,black soils are confronting enhanced degradation.The holistic overview of black soil degradation and the underlying mechanisms for soil health improvement will be key for agricultural sustainability and food security.In this review,the current status and driving factors of soil degradation in the four major black soil regions of the world are summarized,and effective measures for black soil conservation are proposed.The Northeast Plain of China is the research hotspot with 41.5%of the published studies related to black soil degradation,despite its relatively short history of agricultural reclamation,followed by the East European Plain(28.3%),the Great Plains of North America(20.7%),and the Pampas of South American(7.9%).Among the main types of soil degradation,soil erosion and soil fertility decline(especially organic matter loss)have been reported as the most common problems,with 27.6%and 39.4%of the published studies,respectively.In addition to the natural influences of climate and topography,human activities have been reported to have great influences on the degradation of black soils globally.Unsustainable farming practices and excess in agrochemical applications are common factors reported to accelerate the degradation process and threaten the sustainable use of black soils.Global efforts for black soil conservation and utilization should focus on standardizing evaluation criteria including real-time monitoring and the measures of prevention and restoration for sustainable management.International cooperation in technology and policy is crucial for overcoming the challenges and thus achieving the protection,sustainable use,and management of global black soil resources.展开更多
Pyrrolizidine alkaloids(PAs)and their N-oxides(PANOs)are phytotoxins produced by various plant species and have been emerged as environmental pollutants.The sorption/desorption behaviors of PAs/PANOs in soil are cruci...Pyrrolizidine alkaloids(PAs)and their N-oxides(PANOs)are phytotoxins produced by various plant species and have been emerged as environmental pollutants.The sorption/desorption behaviors of PAs/PANOs in soil are crucial due to the horizontal transfer of these natural products from PA-producing plants to soil and subsequently absorbed by plant roots.This study firstly investigated the sorption/desorption behaviors of PAs/PANOs in tea plantation soils with distinct characteristics.Sorption amounts for seneciphylline(Sp)and seneciphylline-N-oxide(SpNO)in three acidic soils ranged from 2.9 to 5.9μg/g and 1.7 to 2.8μg/g,respectively.Desorption percentages for Sp and SpNO were from 22.2%to 30.5%and 36.1%to 43.9%.In the mixed PAs/PANOs systems,stronger sorption of PAs over PANOs was occurred in tested soils.Additionally,the Freundlich models more precisely described the sorption/desorption isotherms.Cation exchange capacity,sand content and total nitrogen were identified as major influencing factors by linear regression models.Overall,the soils exhibiting higher sorption capacities for compounds with greater hydrophobicity.PANOs were more likely to migrate within soils and be absorbed by tea plants.It contributes to the understanding of environmental fate of PAs/PANOs in tea plantations and provides basic data and clues for the development of PAs/PANOs reduction technology.展开更多
Arsenic(As)pollution in soils is a pervasive environmental issue.Biochar immobilization offers a promising solution for addressing soil As contamination.The efficiency of biochar in immobilizing As in soils primarily ...Arsenic(As)pollution in soils is a pervasive environmental issue.Biochar immobilization offers a promising solution for addressing soil As contamination.The efficiency of biochar in immobilizing As in soils primarily hinges on the characteristics of both the soil and the biochar.However,the influence of a specific property on As immobilization varies among different studies,and the development and application of arsenic passivation materials based on biochar often rely on empirical knowledge.To enhance immobilization efficiency and reduce labor and time costs,a machine learning(ML)model was employed to predict As immobilization efficiency before biochar application.In this study,we collected a dataset comprising 182 data points on As immobilization efficiency from 17 publications to construct three ML models.The results demonstrated that the random forest(RF)model outperformed gradient boost regression tree and support vector regression models in predictive performance.Relative importance analysis and partial dependence plots based on the RF model were conducted to identify the most crucial factors influencing As immobilization.These findings highlighted the significant roles of biochar application time and biochar pH in As immobilization efficiency in soils.Furthermore,the study revealed that Fe-modified biochar exhibited a substantial improvement in As immobilization.These insights can facilitate targeted biochar property design and optimization of biochar application conditions to enhance As immobilization efficiency.展开更多
Water level fluctuations in the reservoir deteriorate soils and rocks on the bank landslides by drying-wetting(D-W)cycles,which results in a significant decrease in mechanical properties.A comprehensive understanding ...Water level fluctuations in the reservoir deteriorate soils and rocks on the bank landslides by drying-wetting(D-W)cycles,which results in a significant decrease in mechanical properties.A comprehensive understanding of deterioration mechanism of sliding-zone soils is of great significance for interpreting the deformation behavior of landslides.However,quantitative investigation on the deterioration characteristics of soils considering the structural evolution under D-W cycles is still limited.Here,we carry out a series of laboratory tests to characterize the multi-scale deterioration of sliding-zone soils and reveal the mechanism of shear strength decay under D-W cycles.Firstly,we describe the micropores into five grades by scanning electron microscope and observe a critical change in porosity after the first three cycles.We categorize the mesoscale cracks into five classes using digital photography and observe a stepwise increase in crack area ratio.Secondly,we propose a shear strength decay model based on fractal theory which is verified by the results of consolidated undrained triaxial tests.Cohesion and friction angle of sliding-zone soils are found to show different decay patterns resulting from the staged evolution of structure.Then,structural deterioration processes including cementation destruction,pores expansion,aggregations decomposition,and clusters assembly are considered to occur to decay the shear strength differently.Finally,a three-stage deterioration mechanism associated with four structural deterioration processes is revealed,which helps to better interpret the intrinsic mechanism of shear strength decay.These findings provide the theoretical basis for the further accurate evaluation of reservoir landslides stability under water level fluctuations.展开更多
Fifty agricultural soil samples collected from Fuzhou,southeast China,were first investigated for the occurrence,distribution,and potential risks of twelve organophosphate esters(OPEs).The total concentration of OPEs(...Fifty agricultural soil samples collected from Fuzhou,southeast China,were first investigated for the occurrence,distribution,and potential risks of twelve organophosphate esters(OPEs).The total concentration of OPEs(ΣOPEs)in soil ranged from 1.33 to 96.5 ng/g dry weight(dw),with an average value of 17.1 ng/g dw.Especially,halogenated-OPEs were the predominant group with amean level of 9.75 ng/g dw,and tris(1-chloro-2-propyl)phosphate(TCIPP)was the most abundant OPEs,accounting for 51.1%ofΣOPEs.The concentrations of TCIPP andΣOPEs were found to be significantly higher(P<0.05)in soils of urban areas than those in suburban areas.In addition,the use of agricultural plastic films and total organic carbon had a positive effect on the occurrence of OPE in this study.The positive matrix factorization model suggested complex sources of OPEs in agricultural soils from Fuzhou.The ecological risk assessment demonstrated that tricresyl phosphate presented a medium risk to land-based organisms(0.1≤risk quotient<1.0).Nevertheless,the carcinogenic and noncarcinogenic risks for human exposure to OPEs through soil ingestion and dermal absorption were negligible.These findings would facilitate further investigations into the pollution management and risk control of OPEs.展开更多
Ubiquitous contamination of the soil environment with volatile organic compounds(VOCs)has raised considerable concerns.However,there is still limited comprehensive surveying of soil VOCs on a national scale.Herein,65 ...Ubiquitous contamination of the soil environment with volatile organic compounds(VOCs)has raised considerable concerns.However,there is still limited comprehensive surveying of soil VOCs on a national scale.Herein,65 species of VOCswere simultaneously determined in surface soil samples collected from 63 chemical industrial parks(CIPs)across China.The results showed that the total VOC concentrations ranged from 7.15 to 1842 ng/g with a mean concentration of 326 ng/g(median:179 ng/g).Benzene homologs and halogenated hydrocarbons were identified as the dominant contaminant groups.Positive correlations between many VOC species indicated that these compounds probably originated from similar sources.Spatially,the hotspots of VOC pollution were located in eastern and southern China.Soils with higher clay content and a higher fraction of total organic carbon(TOC)content were significantly associated with higher soil VOC concentrations.Precipitation reduces the levels of highly water-soluble substances in surface soils.Both positive matrix factorization(PMF)and principal component analysis-multiple linear regression(PCA-MLR)identified a high proportion of industrial sources(PMF:59.2%and PCA-MLR:66.5%)and traffic emission sources(PMF:32.3%and PCA-MLR:33.5%).PMF,which had a higher R^(2) value(0.7892)than PCA-MLR(0.7683),was the preferred model for quantitative source analysis of soil VOCs.The health risk assessment indicated that the non-carcinogenic and carcinogenic risks of VOCs were at acceptable levels.Overall,this study provides valuable data on the occurrence of VOCs in soil from Chinese CIPs,which is essential for a comprehensive understanding of their environmental behavior.展开更多
Expansive soils, prone to being influenced by the environmental conditions, undergo expansion when water is introduced and shrinkage upon drying. This persistent volumetric fluctuation can induce differential movement...Expansive soils, prone to being influenced by the environmental conditions, undergo expansion when water is introduced and shrinkage upon drying. This persistent volumetric fluctuation can induce differential movements and result in cracking of structures erected upon them. The present research focuses on characterizing the behavior of pavements erected on expansive clays subjected to swelling and shrinkage cycles. Direct shear tests and oedometer tests were conducted in the laboratory on samples of expansive soils undergoing swelling-shrinkage cycles. The experimental data reveal a significant decrease in shear strength, evidenced by a reduction in shear parameters (internal friction angle, cohesion) and a decrease in the modulus of elasticity as the number of cycles increases. A numerical model based on the finite element method was developed to simulate the behavior of a pavement on an expansive clay substrate. The model results indicate an increase in total displacements with the increase in the number of shrinkage-swelling cycles, demonstrating a progressive degradation of the soil’s mechanical behavior. This study contributes to a better understanding of the complex phenomena governing the behavior of expansive soils and serves as a foundation for developing effective management and mitigation strategies for road infrastructures.展开更多
Background Organic selenium(Se)has gained recognition in poultry nutrition as a feed additive to boost production and Se deposition in eggs and tissues,owing to its high bioavailability,efficient tissue accumulation a...Background Organic selenium(Se)has gained recognition in poultry nutrition as a feed additive to boost production and Se deposition in eggs and tissues,owing to its high bioavailability,efficient tissue accumulation and minimal toxicity.Selenium-enriched yeast(SeY)is a well-established source,while selenium-enriched lactobacilli(SeL),a newer alternative,offers the added benefits of probiotics.This study examined the effects of SeY and SeL on egg quality,antioxidant capacity,Se deposition,and gut health in laying hens.After a two-week pre-treatment with a Sedeficient diet(SeD),450 Hy-Line Brown laying hens(30-week-old)were assigned into five dietary groups with six replicates of 15 hens each.The groups included a SeD,SeD supplemented with 1.5 mg Se/kg from SeY(SeY15),or 1.5,3.0,and 6.0 mg Se/kg from SeL(SeL15,SeL30,SeL60).The feeding trial lasted for 12 weeks.Results SeY15 and SeL15 improved the feed-to-egg ratio(P<0.05)in the latter stages.Haugh units were significantly increased(P<0.05)in the SeY15 and SeL30 groups,while darker yolk color(P<0.05)was observed in the SeY15,SeL15,and SeL60 groups.All Se-supplemented diets increased Se content in whole eggs,albumen,and yolk(P<0.05),while SeL groups showed a dose-dependent effect.Antioxidant enzyme activities increased,and MDA content decreased in the serum(P<0.05),with SeY15 showing the highest GSH-Px levels(P<0.05).SeL60 increased serum alkaline phosphatase and aspartate transaminase,and distorted the liver architecture(P<0.05).Se-diets reduced concentrations of reactive oxygen species(ROS)in the ileum and liver(P<0.05).SeL15 improved the ileal villus height-tocrypt depth ratio(P<0.05).SeY15 and/or SeL15 up-regulated TXNRD1 and SEPHS1 mRNA while down-regulating SCLY expression in the liver.SeY15 altered ileal microbiota by increasing both beneficial and pathogenic bacteria,whereas SeL15 predominantly boosted beneficial bacteria.Conclusion SeL integrates the antioxidant properties of organic Se with the probiotic benefits on gut health,resulting in a performance-enhancing effect comparable to that of SeY.However,high SeL level(6.0 mg Se/kg)compromised productivity and metabolic functions while enhancing Se deposition.展开更多
Evaluation of hydromechanical shear behavior of unsaturated soils is still a challenging issue. The time and cost needed for conducting precise experimental investigation on shear behavior of unsaturated soils have en...Evaluation of hydromechanical shear behavior of unsaturated soils is still a challenging issue. The time and cost needed for conducting precise experimental investigation on shear behavior of unsaturated soils have encouraged several investigators to develop analytical, empirical, or semi-empirical models for predicting the shear behavior of unsaturated soils. However, most of the previously proposed models are for specimens subjected to the isotropic state of stress, without considering the effect of initial shear stress. In this study, a hydromechanical constitutive model is proposed for unsaturated collapsible soils during shearing, with consideration of the effect of the initial shear stress. The model implements an effective stress-based disturbed state concept (DSC) to predict the stress-strain behavior of the soil. Accordingly, material/state variables were defined for both the start of the shearing stage and the critical state of the soil. A series of laboratory tests was performed using a fully automated unsaturated triaxial device to verify the proposed model. The experimental program included 23 suction-controlled unsaturated triaxial shear tests on reconstituted specimens of Gorgan clayey loess wetted to different levels of suctions under both isotropic and anisotropic stress states. The results show excellent agreement between the prediction by the proposed model and the experimental results.展开更多
This work focused on determining the physico-chemical characteristics (pH, carbon and nitrogen) and trace metal elements (TMEs) content (As, Sb, Cd, Hg, Ni, Pb, Cr, Zn) of soils in the Brazzaville city. Soil samples w...This work focused on determining the physico-chemical characteristics (pH, carbon and nitrogen) and trace metal elements (TMEs) content (As, Sb, Cd, Hg, Ni, Pb, Cr, Zn) of soils in the Brazzaville city. Soil samples were taken from a depth of 0 to 20 cm using a hand auger on both banks of five tributaries of the Congo River (Djoué, Mfilou, Mfoa, Tsiémé, Djiri) that flow through the city of Brazzaville. 90 sampling points were defined, with 3 points 250 m apart on the banks and located, for each river, at three sites: upstream, midstream and downstream. Finally, 15 composite samples representative of the study area were taken. The average pH values of the water varied between 6.5 and 7.5. These pH values show that the soils studied are neutral. Total carbon content varied between 0.7% (Djiri) and 1.6% (Djoué). Total nitrogen content ranged from 0.08% (Djiri) to 0.12% (Djoué). TMEs contents varied from 0.5 to 1.8 mg/kg for Sb, from 0.5 to 2.5 mg/kg for As, from 0.1 to 0.18 mg/kg for Cd, from 4.2 to 11.3 mg/kg for Cr, from 0.07 to 0.27 mg/kg for Hg, from 0.7 to 2.4 mg/kg for Ni, from 0 to 158 mg/kg for Pb and from 16 to 105 mg/kg for Zn. The lowest TMEs levels were observed in the soils of the Djiri river, while the highest levels were observed in the soils of the Djoué and Tsiémé rivers. The ANOVA and Bonferroni test did not show significant differences in the means of the parameters measured (p > 0.05). The TMEs levels were below the accepted standards (NF U44-041), with the exception of Pb, which had high levels downstream of the Djoué. According to the pollution index values calculated using soil TME content, the soils on the banks of the Djoué river are considered polluted, while those on the banks of the Tsiémé river are moderately polluted, those on the banks of the Mfoa and Mfilou rivers are slightly polluted, and the soils on the banks of Djiri river are unpolluted.展开更多
Plastic contamination has become a major environmental concern and impacts human health,and yet this is still a topic that remains largely understudied.Effects of macro-and microplastics on soil physical,chemical,and ...Plastic contamination has become a major environmental concern and impacts human health,and yet this is still a topic that remains largely understudied.Effects of macro-and microplastics on soil physical,chemical,and biological properties,including soil biota,are considered adverse for soils.Due to their small size and porous surface,microplastics can also be a new environmental concern because of their ability to act as carriers of contaminants or diseases.展开更多
Gassy soils are distributed in relatively shallow layers the Quaternary deposit in Hangzhou Bay area. The shallow gassy soils significantly affect the construction of underground projects. Proper characterization of s...Gassy soils are distributed in relatively shallow layers the Quaternary deposit in Hangzhou Bay area. The shallow gassy soils significantly affect the construction of underground projects. Proper characterization of spatial distribution of shallow gassy soils is indispensable prior to construction of underground projects in the area. Due to the costly conditions required in the site investigation for gassy soils, only a limited number of gas pressure data can be obtained in engineering practice, which leads to the uncertainty in characterizing spatial distribution of gassy soils. Determining the number of boreholes for investigating gassy soils and their corresponding locations is pivotal to reducing construction risk induced by gassy soils. However, this primarily relies on the engineering experience in the current site investigation practice. This study develops a probabilistic site investigation optimization method for planning investigation schemes (including the number and locations of boreholes) of gassy soils based on the conditional random field and Monte Carlo simulation. The proposed method aims to provide an optimal investigation scheme before the site investigation based on prior knowledge. Finally, the proposed approach is illustrated using a case study.展开更多
Oasis soils in Tunisia are characterized by low soil organic carbon(SOC)stocks,primarily due to their coarse texture and intensive irrigation practices.In the Gataaya Oasis,soils receive 3.000 to 4.000 L/m^(2) annuall...Oasis soils in Tunisia are characterized by low soil organic carbon(SOC)stocks,primarily due to their coarse texture and intensive irrigation practices.In the Gataaya Oasis,soils receive 3.000 to 4.000 L/m^(2) annually through submersion irrigation,leading to a rapid decline in SOC stocks.Despite their sandy texture,which promotes good water infiltration,these soils are enriched with clay,dissolved materials,and fertilizers in deeper horizons.This study aimed to assess SOC content in the Gataaya Oasis soils,investigate the transport of labile carbon in drainage water,and clarify the destiny of this transported carbon.Soil samples were collected systematically at three depths(0–10,10–20,and 20–30 cm),focusing on the top 30 cm depth,which is most affected by amendments.Two sampling points(P1 and P2)were selected,i.e.,P1 profile near the trunk of date palms(with manure input)and P2 profile between two adjacent date palms(without manure input).Water samples were collected from drainage systems within the oasis(W1,W2,and W3)and outside the oasis(W4).A laboratory experiment simulating manure application and irrigation was conducted to complement field observations.Physical-chemical analyses revealed a significant decrease in SOC stocks with soil depths.In P1 profile,SOC stocks declined from 17.71 t/hm^(2) at the 0–10 cm depth to 7.80 t/hm^(2) at the 20–30 cm depth.In P2 profile,SOC stocks were lower,decreasing from 6.73 t/hm^(2) at the 0–10 cm depth to 3.57 t/hm^(2) at the 20–30 cm depth.Labile carbon content in drainage water increased outside the oasis,with chemical oxygen demand(COD)values rising from 73 mg/L in W1 water sample to 290 mg/L in W4 water sample,indicating cumulative leaching effects from surrounding oases.The laboratory experiment confirmed field observations,showing a decline in soil organic matter(SOM)content from 3.27%to 2.62%after 12 irrigations,highlighting the vulnerability of SOC stocks to intensive irrigation.This study underscores the low SOC stocks in the Gataaya Oasis soils and their rapid depletion under successive irrigations.The findings provide insights into the dynamics of labile carbon transport and its contribution to regional carbon cycling,offering valuable information for sustainable soil management and ecological protection in arid ecosystems.展开更多
The conversion of subtropical red soils into farmland involves complex transformations of iron oxides.Investigating iron mineralogy can enhance understanding of magnetic minerals in relation to soil formation on farml...The conversion of subtropical red soils into farmland involves complex transformations of iron oxides.Investigating iron mineralogy can enhance understanding of magnetic minerals in relation to soil formation on farmland in subtropical regions.In this study,we investigated the properties of iron oxide and its environmental implications in the farmland of Meizhou city,Guangdong province.The results showed that farmland soils had higher magnetism than the red soils developed from the same metamorphic rock.The red soils displayed significantly higher concentrations of goethite and hematite than the farmland soils.The dominant factor influencing the magnetic changes in farmland and red soils was the concentration of fine-grained ferromagnetic minerals.Red soil magnetism is an indicator of soil weathering intensity,whereas farmland soil magnetism is closely related to human cultivation activities.In contrast to the red soils,the farmland soils lacked the pronounced transformation of ferromagnetic minerals into hematite and goethite.A vigorous oxidation process catalyzes the transformation of strong magnetic minerals into significant amounts of hematite and goethite,which promotes the reduced magnetism of red soils.The conversion of red soils into farmland soils initially increased the accumulation of ferromagnetic materials due to cultivation processes.However,long-term cultivation led to the gradual loss of fine-grained ferromagnetic minerals,while goethite and lepidocrocite became the dominant magnetic mineral types.展开更多
The effectiveness of using vegetation to stabilise shallow soil slopes heavily depends on the survival of vegetation,yet the amplification of extreme events induced by climate change threatens the health of plants cov...The effectiveness of using vegetation to stabilise shallow soil slopes heavily depends on the survival of vegetation,yet the amplification of extreme events induced by climate change threatens the health of plants covering slopes.Hydrochar is an environmentally friendly soil amender that can achieve the potential benefits of promoting plant growth for slope stabilisation and facilitation of waste upcycling.The mechanism underlying the hydrochar effects on the mechanical behaviour of unsaturated soils remains unclear.This study investigated the influence of grass-derived hydrochar on the water retention,compressibility,and shear strength of a compacted siltyeclay sand.Soil microstructural changes due to hydrochar amendment were measured to explain the soilehydrochar hydromechanical interaction.The increase in suction resulted in a less significant increase in yield stress and a negligible reduction in compressibility of the hydrochar-amended soil compared with the unamended case.This phenomenon was observed because hydrochar addition reduced the large pores with diameters greater than the macropore peak of 60 mm due to pore filling by hydrochar particles,resulting in a less substantial volume contraction during drying.Hydrochar introduced more significant effects on the soil’s shear strength in an unsaturated state compared to a saturated case.Despite the similarity of the unsaturated amended soil with the critical-state friction angle to the saturated case,the former exhibited a greater shear strength because the hydrochar addition improved water retention capability.As a result,the degree of saturation and,hence,Bishop’s effective stress were higher than those for the unamended case for a given suction.展开更多
Rationale: The contamination of soil with crude oil poses significant environmental and ecological threats. Bioremediation, particularly through the use of organisms like Pleurotus ostreatus (mushroom) and Eisenia fet...Rationale: The contamination of soil with crude oil poses significant environmental and ecological threats. Bioremediation, particularly through the use of organisms like Pleurotus ostreatus (mushroom) and Eisenia fetida (earthworm), has emerged as a promising approach to mitigate crude oil pollution. Understanding the effectiveness of these organisms in reducing hydrocarbon levels in contaminated soil is crucial for devising sustainable remediation strategies. Objectives: This study aimed to evaluate the efficacy of Pleurotus ostreatus and Eisenia fetida in remediating crude oil-polluted soil. Specifically, it sought to assess the hydrocarbon profiles in soil treated with these organisms across varying concentrations of crude oil pollution. Method: Crude oil concentration levels ranging from 0% to 10% were applied to soil samples alongside control treatments, including soil only, soil with earthworms, and soil with mushrooms. Each treatment was replicated five times using a randomized complete block design. Standard methods were employed to determine the hydrocarbon contents of the soil. Results: The results indicated a significant increase (P Pleurotus ostreatus and Eisenia fetida exhibited noteworthy reductions in these hydrocarbon levels. At the three-month mark, mushrooms demonstrated a remarkable ability to reduce hydrocarbon content by 70% - 90% compared to the pollution treatment. In contrast, earthworms exhibited minimal potential for hydrocarbon reduction, particularly at both three and six-month intervals. For instance, TOC reduction reached a maximum of 96% with mushroom treatment and 85% with earthworm treatment at 5% crude oil pollution over six months. Conclusion: The findings highlight the effectiveness of Pleurotus ostreatus in significantly reducing hydrocarbon levels in crude oil-polluted soil compared to Eisenia fetida. Mushroom-treated soils consistently exhibited substantial reductions in TOC, TPH, TOG, PAH, and THC over the study period, suggesting their potential as a viable bioremediation agent. In contrast, while earthworms showed some capability in reducing hydrocarbon content, their effectiveness was comparatively limited. Recommendation: Based on the results, it is recommended to utilize Pleurotus ostreatus for the bioremediation of crude oil-polluted soils. Further research could explore optimizing remediation protocols involving mushroom-based treatments for enhanced efficiency. Statement of Significance: This study contributes valuable insights into the application of bioremediation techniques for mitigating crude oil contamination in soil. The demonstrated efficacy of Pleurotus ostreatus underscores its potential as a sustainable and eco-friendly solution for remediating hydrocarbon-polluted environments, offering a promising avenue for environmental restoration and conservation efforts.展开更多
Cadmium(Cd)contamination of soil is a global environmental issue.Traditional remediation techniques such as immobilization,leaching,and phytoextraction have numerous shortcomings,which has led to growing interest in t...Cadmium(Cd)contamination of soil is a global environmental issue.Traditional remediation techniques such as immobilization,leaching,and phytoextraction have numerous shortcomings,which has led to growing interest in the development of low-cost,high-efficiency,and environmentally friendly agents for removing Cd from soil.In this study,four magnetite(Fe_(3)O_(4))/polyaniline(PANI)nanocomposites,Fe_(3)O_(4)(1.0)/PANI,Fe_(3)O_(4)(1.5)/PANI,Fe_(3)O_(4)(2.0)/PANI,and Fe_(3)O_(4)(2.5)/PANI,were developed using 4 mL aniline monomer and 1.0,1.5,2.0,and 2.5 g Fe_(3)O_(4),respectively,and used as remediation agents with magnetic separation and regeneration capabilities.The Cd adsorption isotherms showed a better fit to the Langmuir model,with Fe_(3)O_(4)(1.5)/PANI exhibiting the highest Cd adsorption capacity of 47.62 mg g^(-1) at 25℃.Then,Fe_(3)O_(4)(1.5)/PANI was used to remediate four Cd-contaminated soils typical in China(black,brown,cinnamon,and red),all with a Cd content of 180 mg kg^(-1) after spiking.The results showed that the total Cd removal efficiency was satisfactory at 25.25%–38.91%and the exchangeable Cd removal efficiency was 36.03%on average.In addition,soil basic properties did not show significant changes after remediation.Regarding the regeneration performance,a higher total Cd removal efficiency(27.89%–44.96%)was achieved after the first regeneration cycle of Fe_(3)O_(4)(1.5)/PANI.After two regeneration cycles,Fe_(3)O_(4)(1.5)/PANI exhibited decreased total Cd removal efficiency compared to after the first regeneration,but its efficiency remained above 95%of or higher than those of virgin Fe_(3)O_(4)(1.5)/PANI.The synthetic process of Fe_(3)O_(4)/PANI was simple and cost-effective,and Fe_(3)O_(4)/PANI exhibited a high Cd removal efficiency with easy recovery and recyclability.Therefore,Fe_(3)O_(4)/PANI is a promising solution for the sustainable and efficient remediation of Cd-contaminated soils,especially for the reclamation of highly contaminated development land.展开更多
Fungi play a crucial role in the utilization and storage of soil organic carbon(SOC).Biochars can potentially influence soil carbon(C)turnover by mediating extracellular electron transfer,which can be facilitated by f...Fungi play a crucial role in the utilization and storage of soil organic carbon(SOC).Biochars can potentially influence soil carbon(C)turnover by mediating extracellular electron transfer,which can be facilitated by fungi.However,the effects of biochar and soil type on the community,abundance,enzyme secretion,and necromass of fungi mediating SOC storage remain unclear.A mesocosm incubation experiment was conducted using forest and paddy soils from southern China to study the impact of biochars pyrolyzed at low(300℃BL)and high(700℃BH)temperatures on fungal abundance,community composition,necromass abundance,and C-degrading enzyme activities.The SOC retention ratio was higher under BL(84.0%)than under BH(76.3%).Addition of BL increased fungal abundance in the forest soil by 230%.In contrast,addition of BH decreased fungal abundance in the paddy soil by 20.8%.Biochar addition affected fungal necromass accumulation and oxidase activity and regulated SOC turnover.The high available C content and moderate liming effect of BL significantly increased fungal abundance and necromass abundance in the forest soil compared to the paddy soil.Moreover,after 16 weeks of incubation,BL addition decreased peroxidase activity by 32.1%in the forest soil due to the higher C use efficiency of fungi(i.e.,the enrichment of Talaromyces,Umbelopsis,and Trichoderma),decreasing C-degrading enzyme secretion and reducing SOC degradation compared to the paddy soil.However,BH addition increased the Fusarium abundance,which regulated the polyphenol oxidase activity and promoted SOC degradation in the paddy soil.We concluded that biochars could alter the soil environment and extracellular electron transfer to mediate fungal necromass content and C-degrading enzyme activities,thus affecting SOC storage in the forest and paddy soils.展开更多
文摘Ten physical and environmental variables collected from an on-the-go soil sensor at two field sites (MF3E and MF11S) in Mississippi, USA, were analyzed to assess soil variability and the interrelationships among the measurements. At MF3E, moderate variability was observed in apparent electrical conductivity shallow (ECas), slope, and ECa ratio measurements, with coefficients of variation ranging from 20% to 27%. In contrast, MF11S exhibited higher variability, particularly in ECas and ECad (deep) measurements, which exceeded 30% in their coefficient of variation values, indicating significant differences in soil composition and moisture content. Correlation analysis revealed strong positive relationships between the near-infrared-to-red ratio and red reflectance (r = 0.897***) soil values at MF3E. MF11S demonstrated a strong negative correlation between ECas and ECad readings with the x-coordinate (r ***). Scatter plots and fitted models illustrated the complexity of relationships, with many showing nonlinear trends. These findings emphasize the need for continuous monitoring and advanced modeling to understand the dynamic nature of soil properties and their implications for agricultural practices. Future research should explore the underlying mechanisms driving variability in the soil characteristics to enhance soil management strategies at the study sites.
基金supported by the National Natural Science Foundation of China(No.32171615)the National Key R&D Program of China(2019YFC1804102)。
文摘Agricultural soil is related to food security and human health,antibiotics and heavy metals(HMs),as two typical pollutants,possess a high coexistence rate in the environmental medium,which is extremely prone to inducing antibiotic-HMs combined pollution.Recently,frequent human activities have led to more prominent antibiotics-HMs combined contamination in agricultural soils,especially the production and spread of antibiotic resistance genes(ARGs),heavy metal resistance genes(MRGs),antibiotic resistant bacteria(ARB),and antibiotics-HMs complexes(AMCs),which seriously threaten soil ecology and human health.This review describes the main sources(Intrinsic and manmade sources),composite mechanisms(co-selective resistance,oxidative stress,and Joint toxicity mechanism),environmental fate and the potential risks(soil ecological and human health risks)of antibiotics and HMs in agricultural soils.Finally,the current effective source blocking,transmission control,and attenuation strategies are classified for discussion,such as the application of additives and barrier materials,as well as plant and animal remediation and bioremediation,etc.,pointing out that future research should focus on the whole chain process of“source-processterminal”,intending to provide a theoretical basis and decision-making reference for future research.
基金funded by the Science and Technology Plan for the Belt and Road Innovation Cooperation Project of Jiangsu Province,China(No.BZ2023003)the National Key Research and Development Program of China(No.2021YFD1500202)+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA28010100)the“14th Five-Year Plan”Self-Deployment Project of the Institute of Soil Science,Chinese Academy of Sciences(No.ISSAS2418)the National Natural Science Foundation of China(No.42107334)。
文摘Black soils represent only one-sixth of the global arable land area but play an important role in maintaining world food security due to their high fertility and gigantic potential for food production.With the ongoing intensification of agricultural practices and negative natural factors,black soils are confronting enhanced degradation.The holistic overview of black soil degradation and the underlying mechanisms for soil health improvement will be key for agricultural sustainability and food security.In this review,the current status and driving factors of soil degradation in the four major black soil regions of the world are summarized,and effective measures for black soil conservation are proposed.The Northeast Plain of China is the research hotspot with 41.5%of the published studies related to black soil degradation,despite its relatively short history of agricultural reclamation,followed by the East European Plain(28.3%),the Great Plains of North America(20.7%),and the Pampas of South American(7.9%).Among the main types of soil degradation,soil erosion and soil fertility decline(especially organic matter loss)have been reported as the most common problems,with 27.6%and 39.4%of the published studies,respectively.In addition to the natural influences of climate and topography,human activities have been reported to have great influences on the degradation of black soils globally.Unsustainable farming practices and excess in agrochemical applications are common factors reported to accelerate the degradation process and threaten the sustainable use of black soils.Global efforts for black soil conservation and utilization should focus on standardizing evaluation criteria including real-time monitoring and the measures of prevention and restoration for sustainable management.International cooperation in technology and policy is crucial for overcoming the challenges and thus achieving the protection,sustainable use,and management of global black soil resources.
基金supported by the earmarked fund for the Modern Agro-Industry Technology Research System (No.CARS-19)the Innovative Research Team in Chinese Academy of Agricultural Sciences (No.CAAS ASTIP-2014-TRICAAS).
文摘Pyrrolizidine alkaloids(PAs)and their N-oxides(PANOs)are phytotoxins produced by various plant species and have been emerged as environmental pollutants.The sorption/desorption behaviors of PAs/PANOs in soil are crucial due to the horizontal transfer of these natural products from PA-producing plants to soil and subsequently absorbed by plant roots.This study firstly investigated the sorption/desorption behaviors of PAs/PANOs in tea plantation soils with distinct characteristics.Sorption amounts for seneciphylline(Sp)and seneciphylline-N-oxide(SpNO)in three acidic soils ranged from 2.9 to 5.9μg/g and 1.7 to 2.8μg/g,respectively.Desorption percentages for Sp and SpNO were from 22.2%to 30.5%and 36.1%to 43.9%.In the mixed PAs/PANOs systems,stronger sorption of PAs over PANOs was occurred in tested soils.Additionally,the Freundlich models more precisely described the sorption/desorption isotherms.Cation exchange capacity,sand content and total nitrogen were identified as major influencing factors by linear regression models.Overall,the soils exhibiting higher sorption capacities for compounds with greater hydrophobicity.PANOs were more likely to migrate within soils and be absorbed by tea plants.It contributes to the understanding of environmental fate of PAs/PANOs in tea plantations and provides basic data and clues for the development of PAs/PANOs reduction technology.
基金supported by the National Key Research and Development Program of China(No.2020YFC1808701).
文摘Arsenic(As)pollution in soils is a pervasive environmental issue.Biochar immobilization offers a promising solution for addressing soil As contamination.The efficiency of biochar in immobilizing As in soils primarily hinges on the characteristics of both the soil and the biochar.However,the influence of a specific property on As immobilization varies among different studies,and the development and application of arsenic passivation materials based on biochar often rely on empirical knowledge.To enhance immobilization efficiency and reduce labor and time costs,a machine learning(ML)model was employed to predict As immobilization efficiency before biochar application.In this study,we collected a dataset comprising 182 data points on As immobilization efficiency from 17 publications to construct three ML models.The results demonstrated that the random forest(RF)model outperformed gradient boost regression tree and support vector regression models in predictive performance.Relative importance analysis and partial dependence plots based on the RF model were conducted to identify the most crucial factors influencing As immobilization.These findings highlighted the significant roles of biochar application time and biochar pH in As immobilization efficiency in soils.Furthermore,the study revealed that Fe-modified biochar exhibited a substantial improvement in As immobilization.These insights can facilitate targeted biochar property design and optimization of biochar application conditions to enhance As immobilization efficiency.
基金funding support from the NSFC Key Projects of International Cooperation and Exchanges (Grant No.42020104006)the National Key Research and Development Program of China (Grant No.2023YFC3007001)the National Natural Science Foundation of China (Grant No.42307227).
文摘Water level fluctuations in the reservoir deteriorate soils and rocks on the bank landslides by drying-wetting(D-W)cycles,which results in a significant decrease in mechanical properties.A comprehensive understanding of deterioration mechanism of sliding-zone soils is of great significance for interpreting the deformation behavior of landslides.However,quantitative investigation on the deterioration characteristics of soils considering the structural evolution under D-W cycles is still limited.Here,we carry out a series of laboratory tests to characterize the multi-scale deterioration of sliding-zone soils and reveal the mechanism of shear strength decay under D-W cycles.Firstly,we describe the micropores into five grades by scanning electron microscope and observe a critical change in porosity after the first three cycles.We categorize the mesoscale cracks into five classes using digital photography and observe a stepwise increase in crack area ratio.Secondly,we propose a shear strength decay model based on fractal theory which is verified by the results of consolidated undrained triaxial tests.Cohesion and friction angle of sliding-zone soils are found to show different decay patterns resulting from the staged evolution of structure.Then,structural deterioration processes including cementation destruction,pores expansion,aggregations decomposition,and clusters assembly are considered to occur to decay the shear strength differently.Finally,a three-stage deterioration mechanism associated with four structural deterioration processes is revealed,which helps to better interpret the intrinsic mechanism of shear strength decay.These findings provide the theoretical basis for the further accurate evaluation of reservoir landslides stability under water level fluctuations.
基金supported by the Open Fund of the Laboratory for Earth Surface Processes,Ministry of Education,Peking University,Beijing,China,and the Cultivation Fund Program for Excellent Dissertation in Fujian Normal University,China(No.LWPYS202315)the Research Start-up Fund of Fujian Normal University,China(No.Y0720304X13).
文摘Fifty agricultural soil samples collected from Fuzhou,southeast China,were first investigated for the occurrence,distribution,and potential risks of twelve organophosphate esters(OPEs).The total concentration of OPEs(ΣOPEs)in soil ranged from 1.33 to 96.5 ng/g dry weight(dw),with an average value of 17.1 ng/g dw.Especially,halogenated-OPEs were the predominant group with amean level of 9.75 ng/g dw,and tris(1-chloro-2-propyl)phosphate(TCIPP)was the most abundant OPEs,accounting for 51.1%ofΣOPEs.The concentrations of TCIPP andΣOPEs were found to be significantly higher(P<0.05)in soils of urban areas than those in suburban areas.In addition,the use of agricultural plastic films and total organic carbon had a positive effect on the occurrence of OPE in this study.The positive matrix factorization model suggested complex sources of OPEs in agricultural soils from Fuzhou.The ecological risk assessment demonstrated that tricresyl phosphate presented a medium risk to land-based organisms(0.1≤risk quotient<1.0).Nevertheless,the carcinogenic and noncarcinogenic risks for human exposure to OPEs through soil ingestion and dermal absorption were negligible.These findings would facilitate further investigations into the pollution management and risk control of OPEs.
基金supported by the Medical and Health Projects in Zhejiang Province(No.2022PY049)the Basic Scientific Research Project of Hangzhou Medical College(No.YS2021006)Key Discipline of Zhejiang Province in Public Health and Preventive Medicine(First Class,Category A),Hangzhou Medical College.
文摘Ubiquitous contamination of the soil environment with volatile organic compounds(VOCs)has raised considerable concerns.However,there is still limited comprehensive surveying of soil VOCs on a national scale.Herein,65 species of VOCswere simultaneously determined in surface soil samples collected from 63 chemical industrial parks(CIPs)across China.The results showed that the total VOC concentrations ranged from 7.15 to 1842 ng/g with a mean concentration of 326 ng/g(median:179 ng/g).Benzene homologs and halogenated hydrocarbons were identified as the dominant contaminant groups.Positive correlations between many VOC species indicated that these compounds probably originated from similar sources.Spatially,the hotspots of VOC pollution were located in eastern and southern China.Soils with higher clay content and a higher fraction of total organic carbon(TOC)content were significantly associated with higher soil VOC concentrations.Precipitation reduces the levels of highly water-soluble substances in surface soils.Both positive matrix factorization(PMF)and principal component analysis-multiple linear regression(PCA-MLR)identified a high proportion of industrial sources(PMF:59.2%and PCA-MLR:66.5%)and traffic emission sources(PMF:32.3%and PCA-MLR:33.5%).PMF,which had a higher R^(2) value(0.7892)than PCA-MLR(0.7683),was the preferred model for quantitative source analysis of soil VOCs.The health risk assessment indicated that the non-carcinogenic and carcinogenic risks of VOCs were at acceptable levels.Overall,this study provides valuable data on the occurrence of VOCs in soil from Chinese CIPs,which is essential for a comprehensive understanding of their environmental behavior.
文摘Expansive soils, prone to being influenced by the environmental conditions, undergo expansion when water is introduced and shrinkage upon drying. This persistent volumetric fluctuation can induce differential movements and result in cracking of structures erected upon them. The present research focuses on characterizing the behavior of pavements erected on expansive clays subjected to swelling and shrinkage cycles. Direct shear tests and oedometer tests were conducted in the laboratory on samples of expansive soils undergoing swelling-shrinkage cycles. The experimental data reveal a significant decrease in shear strength, evidenced by a reduction in shear parameters (internal friction angle, cohesion) and a decrease in the modulus of elasticity as the number of cycles increases. A numerical model based on the finite element method was developed to simulate the behavior of a pavement on an expansive clay substrate. The model results indicate an increase in total displacements with the increase in the number of shrinkage-swelling cycles, demonstrating a progressive degradation of the soil’s mechanical behavior. This study contributes to a better understanding of the complex phenomena governing the behavior of expansive soils and serves as a foundation for developing effective management and mitigation strategies for road infrastructures.
基金supported by the National Natural Science Foundation of China(32302774)Beijing Innovation Consortium of Agriculture Research System(BAIC04)+1 种基金China Agriculture Research System(CARS-40)the Agricultural Science and Technology Innovation Program of the Feed Research Institute of the Chinese Academy of Agricultural Sciences(CAASIFR-ZDRW202402).
文摘Background Organic selenium(Se)has gained recognition in poultry nutrition as a feed additive to boost production and Se deposition in eggs and tissues,owing to its high bioavailability,efficient tissue accumulation and minimal toxicity.Selenium-enriched yeast(SeY)is a well-established source,while selenium-enriched lactobacilli(SeL),a newer alternative,offers the added benefits of probiotics.This study examined the effects of SeY and SeL on egg quality,antioxidant capacity,Se deposition,and gut health in laying hens.After a two-week pre-treatment with a Sedeficient diet(SeD),450 Hy-Line Brown laying hens(30-week-old)were assigned into five dietary groups with six replicates of 15 hens each.The groups included a SeD,SeD supplemented with 1.5 mg Se/kg from SeY(SeY15),or 1.5,3.0,and 6.0 mg Se/kg from SeL(SeL15,SeL30,SeL60).The feeding trial lasted for 12 weeks.Results SeY15 and SeL15 improved the feed-to-egg ratio(P<0.05)in the latter stages.Haugh units were significantly increased(P<0.05)in the SeY15 and SeL30 groups,while darker yolk color(P<0.05)was observed in the SeY15,SeL15,and SeL60 groups.All Se-supplemented diets increased Se content in whole eggs,albumen,and yolk(P<0.05),while SeL groups showed a dose-dependent effect.Antioxidant enzyme activities increased,and MDA content decreased in the serum(P<0.05),with SeY15 showing the highest GSH-Px levels(P<0.05).SeL60 increased serum alkaline phosphatase and aspartate transaminase,and distorted the liver architecture(P<0.05).Se-diets reduced concentrations of reactive oxygen species(ROS)in the ileum and liver(P<0.05).SeL15 improved the ileal villus height-tocrypt depth ratio(P<0.05).SeY15 and/or SeL15 up-regulated TXNRD1 and SEPHS1 mRNA while down-regulating SCLY expression in the liver.SeY15 altered ileal microbiota by increasing both beneficial and pathogenic bacteria,whereas SeL15 predominantly boosted beneficial bacteria.Conclusion SeL integrates the antioxidant properties of organic Se with the probiotic benefits on gut health,resulting in a performance-enhancing effect comparable to that of SeY.However,high SeL level(6.0 mg Se/kg)compromised productivity and metabolic functions while enhancing Se deposition.
文摘Evaluation of hydromechanical shear behavior of unsaturated soils is still a challenging issue. The time and cost needed for conducting precise experimental investigation on shear behavior of unsaturated soils have encouraged several investigators to develop analytical, empirical, or semi-empirical models for predicting the shear behavior of unsaturated soils. However, most of the previously proposed models are for specimens subjected to the isotropic state of stress, without considering the effect of initial shear stress. In this study, a hydromechanical constitutive model is proposed for unsaturated collapsible soils during shearing, with consideration of the effect of the initial shear stress. The model implements an effective stress-based disturbed state concept (DSC) to predict the stress-strain behavior of the soil. Accordingly, material/state variables were defined for both the start of the shearing stage and the critical state of the soil. A series of laboratory tests was performed using a fully automated unsaturated triaxial device to verify the proposed model. The experimental program included 23 suction-controlled unsaturated triaxial shear tests on reconstituted specimens of Gorgan clayey loess wetted to different levels of suctions under both isotropic and anisotropic stress states. The results show excellent agreement between the prediction by the proposed model and the experimental results.
文摘This work focused on determining the physico-chemical characteristics (pH, carbon and nitrogen) and trace metal elements (TMEs) content (As, Sb, Cd, Hg, Ni, Pb, Cr, Zn) of soils in the Brazzaville city. Soil samples were taken from a depth of 0 to 20 cm using a hand auger on both banks of five tributaries of the Congo River (Djoué, Mfilou, Mfoa, Tsiémé, Djiri) that flow through the city of Brazzaville. 90 sampling points were defined, with 3 points 250 m apart on the banks and located, for each river, at three sites: upstream, midstream and downstream. Finally, 15 composite samples representative of the study area were taken. The average pH values of the water varied between 6.5 and 7.5. These pH values show that the soils studied are neutral. Total carbon content varied between 0.7% (Djiri) and 1.6% (Djoué). Total nitrogen content ranged from 0.08% (Djiri) to 0.12% (Djoué). TMEs contents varied from 0.5 to 1.8 mg/kg for Sb, from 0.5 to 2.5 mg/kg for As, from 0.1 to 0.18 mg/kg for Cd, from 4.2 to 11.3 mg/kg for Cr, from 0.07 to 0.27 mg/kg for Hg, from 0.7 to 2.4 mg/kg for Ni, from 0 to 158 mg/kg for Pb and from 16 to 105 mg/kg for Zn. The lowest TMEs levels were observed in the soils of the Djiri river, while the highest levels were observed in the soils of the Djoué and Tsiémé rivers. The ANOVA and Bonferroni test did not show significant differences in the means of the parameters measured (p > 0.05). The TMEs levels were below the accepted standards (NF U44-041), with the exception of Pb, which had high levels downstream of the Djoué. According to the pollution index values calculated using soil TME content, the soils on the banks of the Djoué river are considered polluted, while those on the banks of the Tsiémé river are moderately polluted, those on the banks of the Mfoa and Mfilou rivers are slightly polluted, and the soils on the banks of Djiri river are unpolluted.
基金funded by the research project Env Agro(No.XG-IDI24-05/04)of Universidade de Vigo(Spain)and Universidade do Minho(Portugal)the financial support of the Consellería de Cultura,Educación e Universidade,Xunta de Galicia(Spain)through the contract(No.ED431C2021/46-GCR)granted to the research group BV1 of Universidade de Vigo+3 种基金a postdoctoral fellowship(No.ED481B-2022081)funded by Xunta de Galiciaa pre-doctoral Formación de Profesorado Universitario contract(No.FPU19/03758)funded by the Ministry of Universities(Spanish Government)supported by a JdCi research contract(No.IJC2020044197-I)funded by MICIU/AEI/10.13039/501100011033 and European Union EU/PRTREuropean Cooperation in Science and Technology(COST)Action CA20101 Plastics Monitoring Detection Remediation Recovery—PRIORITY,supported by COST(www.cost.eu)。
文摘Plastic contamination has become a major environmental concern and impacts human health,and yet this is still a topic that remains largely understudied.Effects of macro-and microplastics on soil physical,chemical,and biological properties,including soil biota,are considered adverse for soils.Due to their small size and porous surface,microplastics can also be a new environmental concern because of their ability to act as carriers of contaminants or diseases.
文摘Gassy soils are distributed in relatively shallow layers the Quaternary deposit in Hangzhou Bay area. The shallow gassy soils significantly affect the construction of underground projects. Proper characterization of spatial distribution of shallow gassy soils is indispensable prior to construction of underground projects in the area. Due to the costly conditions required in the site investigation for gassy soils, only a limited number of gas pressure data can be obtained in engineering practice, which leads to the uncertainty in characterizing spatial distribution of gassy soils. Determining the number of boreholes for investigating gassy soils and their corresponding locations is pivotal to reducing construction risk induced by gassy soils. However, this primarily relies on the engineering experience in the current site investigation practice. This study develops a probabilistic site investigation optimization method for planning investigation schemes (including the number and locations of boreholes) of gassy soils based on the conditional random field and Monte Carlo simulation. The proposed method aims to provide an optimal investigation scheme before the site investigation based on prior knowledge. Finally, the proposed approach is illustrated using a case study.
基金financially supported by the Ministry of Higher Education and Scientific Research of Tunisia.
文摘Oasis soils in Tunisia are characterized by low soil organic carbon(SOC)stocks,primarily due to their coarse texture and intensive irrigation practices.In the Gataaya Oasis,soils receive 3.000 to 4.000 L/m^(2) annually through submersion irrigation,leading to a rapid decline in SOC stocks.Despite their sandy texture,which promotes good water infiltration,these soils are enriched with clay,dissolved materials,and fertilizers in deeper horizons.This study aimed to assess SOC content in the Gataaya Oasis soils,investigate the transport of labile carbon in drainage water,and clarify the destiny of this transported carbon.Soil samples were collected systematically at three depths(0–10,10–20,and 20–30 cm),focusing on the top 30 cm depth,which is most affected by amendments.Two sampling points(P1 and P2)were selected,i.e.,P1 profile near the trunk of date palms(with manure input)and P2 profile between two adjacent date palms(without manure input).Water samples were collected from drainage systems within the oasis(W1,W2,and W3)and outside the oasis(W4).A laboratory experiment simulating manure application and irrigation was conducted to complement field observations.Physical-chemical analyses revealed a significant decrease in SOC stocks with soil depths.In P1 profile,SOC stocks declined from 17.71 t/hm^(2) at the 0–10 cm depth to 7.80 t/hm^(2) at the 20–30 cm depth.In P2 profile,SOC stocks were lower,decreasing from 6.73 t/hm^(2) at the 0–10 cm depth to 3.57 t/hm^(2) at the 20–30 cm depth.Labile carbon content in drainage water increased outside the oasis,with chemical oxygen demand(COD)values rising from 73 mg/L in W1 water sample to 290 mg/L in W4 water sample,indicating cumulative leaching effects from surrounding oases.The laboratory experiment confirmed field observations,showing a decline in soil organic matter(SOM)content from 3.27%to 2.62%after 12 irrigations,highlighting the vulnerability of SOC stocks to intensive irrigation.This study underscores the low SOC stocks in the Gataaya Oasis soils and their rapid depletion under successive irrigations.The findings provide insights into the dynamics of labile carbon transport and its contribution to regional carbon cycling,offering valuable information for sustainable soil management and ecological protection in arid ecosystems.
基金Technology Program of Jiaying University,No.2024KJZ01Open Funding of Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas,No.2023JYKF08National Natural Science Foundation of China,No.42277442。
文摘The conversion of subtropical red soils into farmland involves complex transformations of iron oxides.Investigating iron mineralogy can enhance understanding of magnetic minerals in relation to soil formation on farmland in subtropical regions.In this study,we investigated the properties of iron oxide and its environmental implications in the farmland of Meizhou city,Guangdong province.The results showed that farmland soils had higher magnetism than the red soils developed from the same metamorphic rock.The red soils displayed significantly higher concentrations of goethite and hematite than the farmland soils.The dominant factor influencing the magnetic changes in farmland and red soils was the concentration of fine-grained ferromagnetic minerals.Red soil magnetism is an indicator of soil weathering intensity,whereas farmland soil magnetism is closely related to human cultivation activities.In contrast to the red soils,the farmland soils lacked the pronounced transformation of ferromagnetic minerals into hematite and goethite.A vigorous oxidation process catalyzes the transformation of strong magnetic minerals into significant amounts of hematite and goethite,which promotes the reduced magnetism of red soils.The conversion of red soils into farmland soils initially increased the accumulation of ferromagnetic materials due to cultivation processes.However,long-term cultivation led to the gradual loss of fine-grained ferromagnetic minerals,while goethite and lepidocrocite became the dominant magnetic mineral types.
基金supported by grants funded by the Hong Kong Research Grants Council(Grant No.CRF/C6006-20G)a grant provided by the Joint NSFC/RGC Joint Research Scheme(Grant No.N_HKUST603/22)the Fundamental Research Funds for the Central Universities(Grant No.Z1090125018).
文摘The effectiveness of using vegetation to stabilise shallow soil slopes heavily depends on the survival of vegetation,yet the amplification of extreme events induced by climate change threatens the health of plants covering slopes.Hydrochar is an environmentally friendly soil amender that can achieve the potential benefits of promoting plant growth for slope stabilisation and facilitation of waste upcycling.The mechanism underlying the hydrochar effects on the mechanical behaviour of unsaturated soils remains unclear.This study investigated the influence of grass-derived hydrochar on the water retention,compressibility,and shear strength of a compacted siltyeclay sand.Soil microstructural changes due to hydrochar amendment were measured to explain the soilehydrochar hydromechanical interaction.The increase in suction resulted in a less significant increase in yield stress and a negligible reduction in compressibility of the hydrochar-amended soil compared with the unamended case.This phenomenon was observed because hydrochar addition reduced the large pores with diameters greater than the macropore peak of 60 mm due to pore filling by hydrochar particles,resulting in a less substantial volume contraction during drying.Hydrochar introduced more significant effects on the soil’s shear strength in an unsaturated state compared to a saturated case.Despite the similarity of the unsaturated amended soil with the critical-state friction angle to the saturated case,the former exhibited a greater shear strength because the hydrochar addition improved water retention capability.As a result,the degree of saturation and,hence,Bishop’s effective stress were higher than those for the unamended case for a given suction.
文摘Rationale: The contamination of soil with crude oil poses significant environmental and ecological threats. Bioremediation, particularly through the use of organisms like Pleurotus ostreatus (mushroom) and Eisenia fetida (earthworm), has emerged as a promising approach to mitigate crude oil pollution. Understanding the effectiveness of these organisms in reducing hydrocarbon levels in contaminated soil is crucial for devising sustainable remediation strategies. Objectives: This study aimed to evaluate the efficacy of Pleurotus ostreatus and Eisenia fetida in remediating crude oil-polluted soil. Specifically, it sought to assess the hydrocarbon profiles in soil treated with these organisms across varying concentrations of crude oil pollution. Method: Crude oil concentration levels ranging from 0% to 10% were applied to soil samples alongside control treatments, including soil only, soil with earthworms, and soil with mushrooms. Each treatment was replicated five times using a randomized complete block design. Standard methods were employed to determine the hydrocarbon contents of the soil. Results: The results indicated a significant increase (P Pleurotus ostreatus and Eisenia fetida exhibited noteworthy reductions in these hydrocarbon levels. At the three-month mark, mushrooms demonstrated a remarkable ability to reduce hydrocarbon content by 70% - 90% compared to the pollution treatment. In contrast, earthworms exhibited minimal potential for hydrocarbon reduction, particularly at both three and six-month intervals. For instance, TOC reduction reached a maximum of 96% with mushroom treatment and 85% with earthworm treatment at 5% crude oil pollution over six months. Conclusion: The findings highlight the effectiveness of Pleurotus ostreatus in significantly reducing hydrocarbon levels in crude oil-polluted soil compared to Eisenia fetida. Mushroom-treated soils consistently exhibited substantial reductions in TOC, TPH, TOG, PAH, and THC over the study period, suggesting their potential as a viable bioremediation agent. In contrast, while earthworms showed some capability in reducing hydrocarbon content, their effectiveness was comparatively limited. Recommendation: Based on the results, it is recommended to utilize Pleurotus ostreatus for the bioremediation of crude oil-polluted soils. Further research could explore optimizing remediation protocols involving mushroom-based treatments for enhanced efficiency. Statement of Significance: This study contributes valuable insights into the application of bioremediation techniques for mitigating crude oil contamination in soil. The demonstrated efficacy of Pleurotus ostreatus underscores its potential as a sustainable and eco-friendly solution for remediating hydrocarbon-polluted environments, offering a promising avenue for environmental restoration and conservation efforts.
基金financially supported by the National Natural Science Foundation of China(No.41807116)the Natural Science Foundation of Fujian Province,China(Nos.2023J01418,2019J05035,and 2022N0024)+2 种基金the Scientific and Technological Innovation Project of China Metallurgical Geology Bureau(No.CMGBKY202301)the Independent Innovation Foundation of Tianjin University and Fuzhou University,China(No.TF2023-3)the Fuzhou University Testing Fund of Precious Apparatus,China(No.2023T014).
文摘Cadmium(Cd)contamination of soil is a global environmental issue.Traditional remediation techniques such as immobilization,leaching,and phytoextraction have numerous shortcomings,which has led to growing interest in the development of low-cost,high-efficiency,and environmentally friendly agents for removing Cd from soil.In this study,four magnetite(Fe_(3)O_(4))/polyaniline(PANI)nanocomposites,Fe_(3)O_(4)(1.0)/PANI,Fe_(3)O_(4)(1.5)/PANI,Fe_(3)O_(4)(2.0)/PANI,and Fe_(3)O_(4)(2.5)/PANI,were developed using 4 mL aniline monomer and 1.0,1.5,2.0,and 2.5 g Fe_(3)O_(4),respectively,and used as remediation agents with magnetic separation and regeneration capabilities.The Cd adsorption isotherms showed a better fit to the Langmuir model,with Fe_(3)O_(4)(1.5)/PANI exhibiting the highest Cd adsorption capacity of 47.62 mg g^(-1) at 25℃.Then,Fe_(3)O_(4)(1.5)/PANI was used to remediate four Cd-contaminated soils typical in China(black,brown,cinnamon,and red),all with a Cd content of 180 mg kg^(-1) after spiking.The results showed that the total Cd removal efficiency was satisfactory at 25.25%–38.91%and the exchangeable Cd removal efficiency was 36.03%on average.In addition,soil basic properties did not show significant changes after remediation.Regarding the regeneration performance,a higher total Cd removal efficiency(27.89%–44.96%)was achieved after the first regeneration cycle of Fe_(3)O_(4)(1.5)/PANI.After two regeneration cycles,Fe_(3)O_(4)(1.5)/PANI exhibited decreased total Cd removal efficiency compared to after the first regeneration,but its efficiency remained above 95%of or higher than those of virgin Fe_(3)O_(4)(1.5)/PANI.The synthetic process of Fe_(3)O_(4)/PANI was simple and cost-effective,and Fe_(3)O_(4)/PANI exhibited a high Cd removal efficiency with easy recovery and recyclability.Therefore,Fe_(3)O_(4)/PANI is a promising solution for the sustainable and efficient remediation of Cd-contaminated soils,especially for the reclamation of highly contaminated development land.
基金supported by the National Natural Science Foundation of China(Nos.32101397,42177195,42307527,and 42307567)the Guangdong Basic and Applied Basic Research Foundation,China(Nos.2021A1515011559,2024A1515012566,and 2023A1515012248)+1 种基金the Guangdong Foundation for Program of Science and Technology Research,China(No.2023B1212060044)GDAS'Project of Science and Technology Development,China(Nos.2023 GDASZH-2023010103 and 2020GDASYL-20200103074).
文摘Fungi play a crucial role in the utilization and storage of soil organic carbon(SOC).Biochars can potentially influence soil carbon(C)turnover by mediating extracellular electron transfer,which can be facilitated by fungi.However,the effects of biochar and soil type on the community,abundance,enzyme secretion,and necromass of fungi mediating SOC storage remain unclear.A mesocosm incubation experiment was conducted using forest and paddy soils from southern China to study the impact of biochars pyrolyzed at low(300℃BL)and high(700℃BH)temperatures on fungal abundance,community composition,necromass abundance,and C-degrading enzyme activities.The SOC retention ratio was higher under BL(84.0%)than under BH(76.3%).Addition of BL increased fungal abundance in the forest soil by 230%.In contrast,addition of BH decreased fungal abundance in the paddy soil by 20.8%.Biochar addition affected fungal necromass accumulation and oxidase activity and regulated SOC turnover.The high available C content and moderate liming effect of BL significantly increased fungal abundance and necromass abundance in the forest soil compared to the paddy soil.Moreover,after 16 weeks of incubation,BL addition decreased peroxidase activity by 32.1%in the forest soil due to the higher C use efficiency of fungi(i.e.,the enrichment of Talaromyces,Umbelopsis,and Trichoderma),decreasing C-degrading enzyme secretion and reducing SOC degradation compared to the paddy soil.However,BH addition increased the Fusarium abundance,which regulated the polyphenol oxidase activity and promoted SOC degradation in the paddy soil.We concluded that biochars could alter the soil environment and extracellular electron transfer to mediate fungal necromass content and C-degrading enzyme activities,thus affecting SOC storage in the forest and paddy soils.