We report a robust pillar-layered metal-organic framework,Zn‑tfbdc‑dabco(tfbdc:tetrafluoroterephthal-ate,dabco:1,4-diazabicyclo[2.2.2]octane),featuring the fluorinated pore environment,for the preferential binding of ...We report a robust pillar-layered metal-organic framework,Zn‑tfbdc‑dabco(tfbdc:tetrafluoroterephthal-ate,dabco:1,4-diazabicyclo[2.2.2]octane),featuring the fluorinated pore environment,for the preferential binding of propane over propylene and thus highly inverse selective separation of propane/propylene mixture.The inverse propane-selective performance of Zn‑tfbdc‑dabco for the propane/propylene separation was validated by single-component gas adsorption isotherms,isosteric enthalpy of adsorption calculations,ideal adsorbed solution theory calculations,along with the breakthrough experiment.The customized fluorinated networks served as a propane-trap to form more interactions with the exposed hydrogen atoms of propane,as unveiled by the simulation studies at the molecular level.With the advantage of inverse propane-selective adsorption behavior,high adsorption capacity,good cycling stability,and low isosteric enthalpy of adsorption,Zn‑tfbdc‑dabco can be a promising candidate adsorbent for the challenging propane/propylene separation to realize one-step purification of the target propylene substance.展开更多
In this work,a novel composite material based on β-cyclodextrin-immobilized sodium alginate aerogel(β-CD/NaAlg) was developed utilizing cross-linker of epichlorohydrin and applied as an adsorbent to remove tetracycl...In this work,a novel composite material based on β-cyclodextrin-immobilized sodium alginate aerogel(β-CD/NaAlg) was developed utilizing cross-linker of epichlorohydrin and applied as an adsorbent to remove tetracycline antibiotics from reclaimed wastewater.A series of characterizations were utilized to confirm the successful synthesis of the adsorbent and this β-CD/NaAlg presented a three-dimensional network at the nanoscale or microscale.Under optimal conditions(pH=4,t=8 h,β-CD:NaAlg=9,adsorbent dosage = 1.5 g·L-1),the maximum removal rate of β-CD/NaAlg to tetracycline was 70%.The adsorption behavior of tetracycline on β-CD/NaAlg conformed to the Freundlich isotherm model(R2=0.9977) and the pseudo-second-order kinetic model(R^(2)=0.9993).Moreover,the adsorbent still removed 55.3% of tetracycline after five cycles.Specially,the adsorbent was integrated with ultrafiltration to adsorb tetracycline antibiotics from simulated reclaimed wastewater,and the removal rate of tetracycline reached 78.9% within 2 h.The existence of Cr(Ⅵ) had a negligible impact on tetracycline removal,while the presence of humic acid exhibited a promoting effect.The possible adsorption mechanisms were also elucidated through X-ray photoelectron spectroscopy and density functional theory analysis.In summary,β-CD/NaAlg represents an environmentally friendly,efficient,and sustainable adsorbent for removing tetracycline antibiotics from reclaimed water.展开更多
A novel Ni(Ⅱ) ion-imprinted silica gel polymer was prepared via the surface imprinting technique combined with aqueous solution polymerization by using 2-acrylamido-2-methyl-1-propanesulfonic acid(AMPS) as a func...A novel Ni(Ⅱ) ion-imprinted silica gel polymer was prepared via the surface imprinting technique combined with aqueous solution polymerization by using 2-acrylamido-2-methyl-1-propanesulfonic acid(AMPS) as a functional monomer for the selective separation of Ni(Ⅱ) from aqueous solution. The sorbent showed good chemical and thermal stability. Kinetics studies indicated that the equilibrium adsorption was achieved within 10 min and the adsorption kinetics fitted well with the pseudo-second-order kinetic model. The maximum adsorption capacity of the ion-imprinted polymer towards Ni(Ⅱ) at the optimal p H of 7.0 was 66.22 mg·g^(-1). The relative selectivity coefficients of the sorbent were 9.23, 15.71, 14.72 and 20.15 for Ni(Ⅱ)/Co(Ⅱ), Ni(Ⅱ)/Cu(Ⅱ), Ni(Ⅱ)/Zn(Ⅱ) and Ni(Ⅱ)/Pb(Ⅱ), respectively. The adsorption isotherm fitted well with Langmuir isotherm model. The thermodynamic results indicated that the adsorption of Ni(Ⅱ) was a spontaneous and endothermic process. The sorbent showed good reusability evidenced by six cycles of adsorption/desorption experiments. The precision of this method is satisfactory. Thus, the prepared sorbent can be considered as a promising sorbent for selective separation of Ni(Ⅱ) in real water samples.展开更多
A novel silica-supported tert-butyl 2-picolyamino-N-acetate chelating resin (Si-AMPY-1) was successfully synthesized and characterized by elemental analysis, FT-IR, SEM and 13 C CP/MAS NMR. The adsorption behaviors of...A novel silica-supported tert-butyl 2-picolyamino-N-acetate chelating resin (Si-AMPY-1) was successfully synthesized and characterized by elemental analysis, FT-IR, SEM and 13 C CP/MAS NMR. The adsorption behaviors of the Si-AMPY-1 resin for Cu(Ⅱ) and Ni(Ⅱ) were studied with batch and column methods. The batch experiments indicated that the Si-AMPY-1 resin adsorbed Ni(Ⅱ) mainly via physisorption, while adsorbed Cu(II) via chemisorption. The column dynamic breakthrough curves revealed thatthe Si-AMPY-1 resin can efficiently separate Cu(Ⅱ) from the simulated nickel electrolyte before the breakthrough point. Moreover, the concentration of Cu(Ⅱ) in the column effluent was decreased to be less than 3 mg/L within the first 43 BV (bed volumes), and the mass ratio of Cu/Ni was 21:1 in the saturated resin, which completely satisfied the industrial requirements of the nickel electrorefining process. Therefore, it was concluded that the Si-AMPY-1 resin can be a promising candidate for the deep removal of Cu(Ⅱ) from the nickel electrolyte.展开更多
Achieving efficient adsorption and desorption processes by controllably tuning the properties of adsorbents at different technical stages is extremely attractive.However,it is difficult for traditional adsorbents to r...Achieving efficient adsorption and desorption processes by controllably tuning the properties of adsorbents at different technical stages is extremely attractive.However,it is difficult for traditional adsorbents to reach the target because of their fixed active sites.Herein,we report on the fabrication of a smart adsorbent,which was achieved by introducing photoresponsive azobenzene derivatives with cis/trans isomers to Ce-doped mesoporous silica.These photoresponsive groups serve as “molecular switches”by sheltering and exposing active sites,leading to efficient adsorption and desorption.Ce is also doped to provide additional active sites in order to enhance the adsorption performance.The results show that the cis isomers effectively shelter the active sites,leading to the selective adsorption of methylene blue(MB)over brilliant blue(BB),while the trans isomers completely expose the active sites,resulting in the convenient release of the adsorbates.Both selective adsorption and efficient desorption can be realized controllably by these smart adsorbents through photostimulation.Moreover,the performance of the obtained materials is well maintained after five cycles.展开更多
Surface modification offers an alternative strategy to improve both ageing resistance and electrochemical performance of cathode materials for lithium-ion batteries.From the viewpoint of real application,surface modif...Surface modification offers an alternative strategy to improve both ageing resistance and electrochemical performance of cathode materials for lithium-ion batteries.From the viewpoint of real application,surface modification of the cathode materials should be designed with scientificity,effectiveness,low cost,less Li+leaching,and remained tap density.In this contribution,a selective adsorption-involved in-situ growth of polyaniline(PANI)nanoparticles on LiNi_(0.5)Mn_(0.3)Co_(0.2)O_(2)(NMC532)has been designed through a room-temperature-and-pressure chemical vapor deposition technique.The selective growth of PANTI on NMC532 is based on theoretical computation results that multivalent Ni,Mn,and Co are capable of specifically conjugating and activating aniline molecules and,hence,initiating in-situ oxidation polymerization.With only trace amount of aniline monomer,the resulting PANI nanoparticles-inlaid NMC532 microparticles can endure four-month ageing in ambient atmosphere and exhibit improved electrochemical performance at both room temperature and 55℃ compared with pristine NMC532.The improved electrochemical performance of NMC532/PANI is attributed to the enhanced structural stability of NMC532 and inhibited side reactions related to Li_(2)CO_(3) formation,PVDF degradation,electrolyte decomposition,and transition-metal dissolution,owing to PANI modification.展开更多
Silver‐modified semiconductor photocatalysts typically exhibit enhanced photocatalytic activitytoward the degradation of organic substances.In comparison,their hydrogen‐evolution rates arerelatively low owing to poo...Silver‐modified semiconductor photocatalysts typically exhibit enhanced photocatalytic activitytoward the degradation of organic substances.In comparison,their hydrogen‐evolution rates arerelatively low owing to poor interfacial catalytic reactions to producing hydrogen.In the presentstudy,thiocyanate anions(SCN–)as interfacial catalytic active sites were selectively adsorbed ontothe Ag surface of g‐C3N4/Ag photocatalyst to promote interfacial H2‐evolution reactions.The thiocyanate‐modified g‐C3N4/Ag(g‐C3N4/Ag‐SCN)photocatalysts were synthesized via photodepositionof metallic Ag on g‐C3N4and subsequent selective adsorption of SCN– ions on the Ag surface by animpregnation method.The resulting g‐C3N4/Ag‐SCN photocatalysts exhibited considerably higherphotocatalytic H2‐evolution activity than the g‐C3N4,g‐C3N4/Ag,and g‐C3N4/SCN photocatalysts.Furthermore,the g‐C3N4/Ag‐SCN photocatalyst displayed the highest H2‐evolution rate(3.9μmolh?1)when the concentration of the SCN– ions was adjusted to0.3mmol L?1.The H2‐evolution rateobtained was higher than those of g‐C3N4(0.15μmol h?1)and g‐C3N4/Ag(0.71μmol h?1).Consideringthe enhanced performance of g‐C3N4/Ag upon minimal addition of SCN– ions,a synergistic effectof metallic Ag and SCN– ions is proposed―the Ag nanoparticles act as an effective electron‐transfermediator for the steady capture and rapid transportation of photogenerated electrons,while theadsorbed SCN– ions serve as an interfacial active site to effectively absorb protons from solution andpromote rapid interfacial H2‐evolution reactions.Considering the present facile synthesis and itshigh efficacy,the present work may provide new insights into preparing high‐performance photocatalytic materials展开更多
In the field of volatile organic compounds(VOCs)pollution control,adsorption is one of the major control methods,and effective adsorbents are desired in this technology.In this work,the density functional theory(DFT)c...In the field of volatile organic compounds(VOCs)pollution control,adsorption is one of the major control methods,and effective adsorbents are desired in this technology.In this work,the density functional theory(DFT)calculations are employed to investigate the adsorption of typical VOCs molecules on the two-dimensional material borophenes.The results demonstrate that both structure ofχBorophene;2D material;Volatile organic compounds(VOCs);Selective adsorption;Electronic structure andβ12 borophene can chemically adsorb ethylene and formaldehyde with forming chemical bonds and releasing large energy.However,other VOCs,including ethane,methanol,formic acid,methyl chloride,benzene and toluene,are physically adsorbed with weak interaction.The analysis of density of states(DOS)reveals that the chemical adsorption changes the conductivity of borophenes,while the physical adsorption has no distinct effect on the conductivity.Therefore,bothχ^(3)andβ_(12) borophene are appropriate adsorbents for selective adsorption of ethylene and formaldehyde,and they also have potential in gas sensor applications due to the obvious conductivity change during the adsorption.展开更多
Porous carbon membranes were favorably fabricated through the pyrolysis of polyacrylonitrile(PAN) precursors, which were prepared with a template-free technique-thermally induced phase separation. These carbon membr...Porous carbon membranes were favorably fabricated through the pyrolysis of polyacrylonitrile(PAN) precursors, which were prepared with a template-free technique-thermally induced phase separation. These carbon membranes possess hierarchical pores, including cellular macropores across the whole membranes and much small pores in the matrix as well as on the pore walls. Nitrogen adsorption indicates micropores(1.47 and 1.84 nm) and mesopores(2.21 nm) exist inside the carbon membranes, resulting in their specific surface area as large as 1062 m2/g. The carbon membranes were used to adsorb organic dyes(methyl orange, Congo red, and rhodamine B) from aqueous solutions based on their advantages of hierarchical pore structures and large specific surface area. It is particularly noteworthy that the membranes present a selective adsorption towards methyl orange, whose molecular size(1.2 nm) is smaller than those of Congo red(2.3 nm) and rhodamine B(1.8 nm). This attractive result can be attributed to the steric structure matching between the molecular size and the pore size, rather than electrostatic attraction. Furthermore, the used carbon membranes can be easily regenerated by hydrochloric acid, and their recovery adsorption ratio maintains above 90% even in the third cycle. This work may provide a new route for carbon-based adsorbents with hierarchical pores via a template-free approach, which could be promisingly applied to selectively remove dye contaminants in aqueous effluents.展开更多
An unexpected in-situ hydrolysis reaction occurred during the solvothermal reaction of N,N’-bis(4-carboxy-2-methylphenyl)pyromellitic di-imide)and Ba(NO3)2,and a novel porous Ba-MOF,[H_(2)N(CH_(3))_(2)]_(0.5)[Ba_(1.5...An unexpected in-situ hydrolysis reaction occurred during the solvothermal reaction of N,N’-bis(4-carboxy-2-methylphenyl)pyromellitic di-imide)and Ba(NO3)2,and a novel porous Ba-MOF,[H_(2)N(CH_(3))_(2)]_(0.5)[Ba_(1.5)(L)(DMA)]·1.5 DMA·1.5 H_(2)O(UPC-70,H_(3)L=2-(4-ca rboxy-2-methylphenyl)-1,3-dioxoisoindoline-5,6-dicarboxylic acid,DMA=N,N-dimethylacetamide),was obtained on the basis of the partial hydrolysate.The as-synthesized 3 D network with 1 D open channels of different sizes(24 A and 10 A)contains abundant open metal sites after removal of solvents,which is conducive to the preferential adsorption of CO_(2).The subsequent gas sorption measurement reveals the high separation selectivity of UPC-70 for CO_(2)/CH_(4)(15)and CO_(2)/N_(2)(32)at ambient conditions,and GCMC theoretical simulation provides good verification of the experimental results,indicating that UPC-70 is a potential candidate for CO_(2)capture from flue gas and natural gas.展开更多
Rare earth elements(REE)are strategic resources and the recycling of REE in alternative resources is urgent and gets increasingly attention.However,the separation of REE in these alternative resources is still a chall...Rare earth elements(REE)are strategic resources and the recycling of REE in alternative resources is urgent and gets increasingly attention.However,the separation of REE in these alternative resources is still a challenge due to the low concentration of REE and multi coexisted ions in acidic system.In this study,the species distribution of REE within the pH 0-8.0 was calculated.The SBA-15 originated from coal fly ash was modified by two steps with(3-aminopropyl)triethoxysilane(APTES)and diethylenetriaminepentaacetic dianhydride(DTPADA)to obtain DTPADA-SBA-15 adsorbent,which was applied to the selective adsorption of REE.The results showed that DTPADA-SBA-15 possessed excellent adsorption performance on the selective adsorption of REE,including Eu,Gd,Tb,Nd and Sm,in acidic solution(pH 2)with multi competing ions.The FT-IR and Zeta potential characterization verified that the chemical adsorption through the coordination of O in DTPADA-SBA-15 with REE was dominant at lower pH value.The study of adsorption kinetics indicated that the adsorption of rare earth metal ions followed pseudosecond-order kinetic,of which the adsorption process followed the Langmuir isotherm model.展开更多
We report a synthesis of microporous organic nanotube networks(MONNs) by a combination of hyper cross-linking and molecular templating of core-shell bottlebrush copolymers. The intrabrush and interbrush cross-linkin...We report a synthesis of microporous organic nanotube networks(MONNs) by a combination of hyper cross-linking and molecular templating of core-shell bottlebrush copolymers. The intrabrush and interbrush cross-linking of polystyrene(PS) shell layer in the core-shell bottlebrush copolymers led to the formation of micropores and large-sized nanopores(meso/macrospores) in MONNs, respectively, while selective removal of polylactide(PLA) core layer generated mesoporous tubular structure. The size of PLA-templated mesoporous cores and porous structure both at micro-and meso-scale could be controlled by simple tuning of the ratio of core/shell or the PLA core fraction in the bottlebrush precursors. Moreover, the resultant MONNs showed a highly selective adsorption capacity for the positively charged dyes on the basis of multi-porosity and carboxylate group-rich structure. In addition, MONNs also exhibited effective performance in size-selective adsorption of biomacromolecules. This work represents a new avenue for the preparation of MONNs and also provides a new application for molecular bottlebrushes in nanotechnology.展开更多
Here,the selective adsorption behaviors of vip molecule COR in two hexamer host grids were investigated by means of scanning tunnelling microscope(STM).The assembled structures of small functional organic molecules ...Here,the selective adsorption behaviors of vip molecule COR in two hexamer host grids were investigated by means of scanning tunnelling microscope(STM).The assembled structures of small functional organic molecules TTBTA and TATBA were thermodynamically stable.Interestingly,the introduction of the vip molecule COR destroyed the original hexamer structure of TTBTA and combined with it to form a new triangular host-vip system.Different from TTBTA,the introduction of the vip molecule COR did not affect the six-membered ring structure of TATBA.Furthermore,the co-assembly structure of TTBTA/TATBA/COR was established and the vip molecule COR showed preferential adsorption to the TATBA host grid.Density functional theory(DFT)calculations had been performed to disclose the mechanism of the involved assemblies.展开更多
Nano porous polymer film with a hexagonal colum nar(Coln)structure was fabricated by templated hydroge n-bonding discotic liquid crystals containing methacrylate functional group.The supramolecular hydrogen-bonded com...Nano porous polymer film with a hexagonal colum nar(Coln)structure was fabricated by templated hydroge n-bonding discotic liquid crystals containing methacrylate functional group.The supramolecular hydrogen-bonded complex T3Ph-L is composed of a 1,3/5-tris(1Hbenzo[d]imidazol-2-yl)benzene(T3Ph)core molecule as the hydrogen-bonding acceptor and 3,4,5-tris((11-(methacryloyloxy)undecyl)oxy)benzoic acid(L)peripheral molecules as donors.And the Colh structure is always retained after self-assembly,photo-crosslinking,and removal of the template T3Ph.The nanoporous polymer film can retain the Colh phase even under the dry condition,which indicates more possibilities for practical applicati ons.After chemical modificati on of the inner wall of the nano pores,the nan oporous polymer film with pores of about 1 nm selectively adsorbs ionic dyes,and the adsorption process is spontaneous and exothermic in nature.Homeotropic alignment can be obtained when the blend complex was sandwiched between two modified glasses after annealing by slow cooling,which shows that the nanoporous polymer film has potential in applications such as nanofiltration.展开更多
By taking the functional adva ntages of both pyrazolate and carboxylate ligands,a unique dual-functional pyrazolate-carboxylate ligand acid,4-(3,6-di(pyrazol-4-yl)-9-carbazol-9-yl)benzoic acid(H3PCBA) was designed and...By taking the functional adva ntages of both pyrazolate and carboxylate ligands,a unique dual-functional pyrazolate-carboxylate ligand acid,4-(3,6-di(pyrazol-4-yl)-9-carbazol-9-yl)benzoic acid(H3PCBA) was designed and synthesized.Using it,a new Co(Ⅱ)-based metal-organic framework(MOF),Co_(3)(PCBA)_(2)(H_(2)O)_(2)(BUT-75) has been constructed.It revealed a(3,6)-connected net based on the 6-connected linear trinuclear metal node,and showed good chemical stability in a wide pH range from 3 to 12 at room temperature,as well as in boiling water.Due to the presence of rich exposed Co(Ⅱ) sites in pores,BUT-75 presented high selective CO_(2) adsorption capacity over N2 at 298 K.Simultaneously,it demonstrated fine catalytic performance for the cycloaddition of CO_(2) with epoxides into cyclic carbonates under ambient conditions.This work has not only enriched the MOF community through integrating diverse functio nalities into one ligand but also contributed a versatile platform for CO_(2) fixation,thereby pushing MOF chemistry forward by stability enhancement and application expansion.展开更多
A novel biosorbent was synthesized by grafting bisthiourea(BTU)on a silk sericin(SS)matrix.This biosorbent was denoted as BTU-SS and characterized by Fourier transform infrared spectroscopy(FTIR),zeta potential measur...A novel biosorbent was synthesized by grafting bisthiourea(BTU)on a silk sericin(SS)matrix.This biosorbent was denoted as BTU-SS and characterized by Fourier transform infrared spectroscopy(FTIR),zeta potential measurements,elemental analysis,and X-ray photoelectron spectroscopy(XPS).As revealed by the adsorption experiments,both BTU-SS and SS showed low affinity towards coexisting base metallic ions in Ag(I)-Cu(II)-Zn(II)-Ni(II)-Pb(II)electronic waste leachate mixtures,while their adsorption capacities towards Ag(I)reached 30.5 and 10.4 mg∙g-1 at a pH of 5.0,respectively.BTU-SS showed higher selectivity towards Ag(I)than SS,as revealed by the Ag(I)partition coefficients between the biosorbents and the leachate(16634.6 and 403.3,respectively).As further demonstrated by column experiments,BTU-SS allowed the separation of Ag(I)from an electronic waste leachate.Thermodynamic studies showed that the adsorption of Ag(I)was exothermic and spontaneous,while adsorption kinetic experiments revealed that chemisorption dominated the adsorption process with activation energies of 47.67 and 53.27 kJ∙mol-1 for BTU-SS and SS,respectively.FTIR and XPS analyses of fresh and Ag(I)-loaded BTU-SS further revealed an adsorption mechanism mainly involving electrostatic and coordination interactions.展开更多
A novel,porous and doubly interpenetrated MOF(FJU-29) was synthesized and characterized by FT-IR,TGA and X-ray single-crystal/powder diffraction.FJU-29 crystallizes in monoclinic,space group C2/c with a = 22.2890(7...A novel,porous and doubly interpenetrated MOF(FJU-29) was synthesized and characterized by FT-IR,TGA and X-ray single-crystal/powder diffraction.FJU-29 crystallizes in monoclinic,space group C2/c with a = 22.2890(7),b = 10.9175(2),c = 21.5601(7) ?,β = 112.908(4)o,V = 4832.7(3) ?~3,Z = 8,Mr = 450.26,D_c = 1.238 g/cm^3,F(000) = 1832,μ(CuKα) = 5.885 mm^(-1),R = 0.0585 and wR = 0.1544 for 4789 observed reflections(I 〉 2s(I)),and R = 0.0726 and wR = 0.1627 for all data.FJU-29 possesses paddle-wheel {Co_2(COO)_4} clusters bridged by bi-pyrazolate naphthalene diimide ligands(H_2NDI) and H_2BDC to from a 3D framework with a pcu-topology.The desolvated FJU-29a shows the BET surface area of 560.44 m^2·g^(-1) accompanies with discriminating uptakes in CO_2 and N_2.The adsorption selectivity determined by ideal adsorbed solution theory(IAST) indicated that FJU-29 a has high CO_2/N_2(18/85) selectivity(75.5) at 296 K and 100 kPa.The relatively high selectivity further implies that FJU-29 a is a potential material for practical flue gas purification.展开更多
Rhenium separation from molybdenum in molybdenite minerals and waste leachate has become an emerging challenge.Addressing this challenge,we prepared a set of protein-based alkylamine/alkylammonium salts complexes as e...Rhenium separation from molybdenum in molybdenite minerals and waste leachate has become an emerging challenge.Addressing this challenge,we prepared a set of protein-based alkylamine/alkylammonium salts complexes as extractants for selective uptake of rhenium from molybdenum,where the protein component turned into the insoluble amyloid-like structure when its internal disulfide bonds were reduced,namely phase-transition process.Among them,the phase-transited lysozyme and methyletrioctyleammonium chloride complex(PTL-N263)exhibited the most efficient adsorption at the alkaline condition for the electrostatic interaction between negatively charged metal ions with positively charged center(R_(4)N^(+))in N263,where negatively charged protein residues hindered the ion exchange of Cl^(-)in N263 for larger size Mo species(Mo_(7)O_(24)^(6-))than smaller size Re species(ReO^(4-)).The adsorption follows the Freundlich model and pseudo-second-order kinetics,which exhibits toplevel adsorption performance with a maximum adsorption capacity of 124 mg/g and a separation factor(β_(Re/Mo))of 2.78×10^(3)for Re.The adsorption capacity per unit area(57.2 mg/(g m^(2)))is 1.6–41 times higher than previously reported adsorbents,and the cost for adsorbing 1 g of Re(VII)is$1.07,indicating its industrial capability.This adsorption strategy can be applied to separating Re from Mo in binary solutions and industrial wastewater with other competing ions.展开更多
Herein,we constructed defective UiO-66 with rich Zr vacancy structure model,in which the defective structure was verified by various characterizations.Also,the Pb adsorption experiments affirmed that defective UiO-66 ...Herein,we constructed defective UiO-66 with rich Zr vacancy structure model,in which the defective structure was verified by various characterizations.Also,the Pb adsorption experiments affirmed that defective UiO-66 could display better adsorption and selective adsorption ability than that of perfect UiO-66.The results of partial density of states(PDOS)and Mulliken charge population indicated that the blue shift of O 2p and Zr 4d orbit induced the electron rearrangement of atoms closed to the bonding sites,while the positive charge number of Zr atoms decreased than before.Combining with the expansion of pore size,Pb atom was more inclined to transfer and bond with unsaturated coordination oxygens.More significantly,quantitative structure-activity relationships(QSARs)demonstrated that selective capture of Pb instead of Zn,Cu,Cd and Hg displayed by defective UiO-66 was determined jointly by bond strength,adsorption energy and electron transfer.This work provided some theoretical direction for the purpose of the fabrication of adsorbent and the investigation of mechanism.展开更多
Selective perchlorate(ClO_(4)^(−))removal from surface water is a pressing need due to the stringent perchlorate drinking water limits around the world.Herein,we anchored N^(+)–C–H hydrogen bond donors in hydrophobi...Selective perchlorate(ClO_(4)^(−))removal from surface water is a pressing need due to the stringent perchlorate drinking water limits around the world.Herein,we anchored N^(+)–C–H hydrogen bond donors in hydrophobic cavities via interactions of cationic surfactants with montmorillonite to prioritize perchlorate bonding.The prepared adsorbent exhibited high selectivity over commonly occurring competing anions,including SO_(4)^(2−),NO_(3)^(−),PO_(4)^(3−),HCO_(3)^(−),and halide anions.High adsorption capacity,fast adsorption kinetics,and excellent regeneration ability(removal efficiency≥80%after 20 cycles)were confirmed via batch experiments.Unconventional CH···O hydrogen bonding was verified as the primary driving force for perchlorate adsorption,which relies on the higher bond energy(∼80 kcal·mol−1)than conventional bonding.The removal efficiency of anions followed the order of the Hofmeister Series,demonstrating the importance of hydrophobic cavities formed by the tail groups of cationic surfactants.The hydrophobic cavities sheltered the C–H bonds from interacting with anions of low hydration energy(e.g.,perchlorate).Furthermore,a fixed-bed column test demonstrated that about 2900 bed volumes of the feeding streams(∼500μg·L^(−1))can be treated to≤70μg·L^(−1),with an enrichment factor of 10.3.Overall,on the basis of the hydrophobicity-induced hydrogen bonding mechanism,a series of low-cost adsorbents can be synthesized and applied for specific perchlorate removal.展开更多
文摘We report a robust pillar-layered metal-organic framework,Zn‑tfbdc‑dabco(tfbdc:tetrafluoroterephthal-ate,dabco:1,4-diazabicyclo[2.2.2]octane),featuring the fluorinated pore environment,for the preferential binding of propane over propylene and thus highly inverse selective separation of propane/propylene mixture.The inverse propane-selective performance of Zn‑tfbdc‑dabco for the propane/propylene separation was validated by single-component gas adsorption isotherms,isosteric enthalpy of adsorption calculations,ideal adsorbed solution theory calculations,along with the breakthrough experiment.The customized fluorinated networks served as a propane-trap to form more interactions with the exposed hydrogen atoms of propane,as unveiled by the simulation studies at the molecular level.With the advantage of inverse propane-selective adsorption behavior,high adsorption capacity,good cycling stability,and low isosteric enthalpy of adsorption,Zn‑tfbdc‑dabco can be a promising candidate adsorbent for the challenging propane/propylene separation to realize one-step purification of the target propylene substance.
基金supported by the National Key Research and Development Program of China(2022YFC3801101)National Natural Science Foundation of China(52170028)+1 种基金the State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(2023DX11)National Engineering Research Center for Safe Sludge Disposal and Resource Recovery(2021A003).
文摘In this work,a novel composite material based on β-cyclodextrin-immobilized sodium alginate aerogel(β-CD/NaAlg) was developed utilizing cross-linker of epichlorohydrin and applied as an adsorbent to remove tetracycline antibiotics from reclaimed wastewater.A series of characterizations were utilized to confirm the successful synthesis of the adsorbent and this β-CD/NaAlg presented a three-dimensional network at the nanoscale or microscale.Under optimal conditions(pH=4,t=8 h,β-CD:NaAlg=9,adsorbent dosage = 1.5 g·L-1),the maximum removal rate of β-CD/NaAlg to tetracycline was 70%.The adsorption behavior of tetracycline on β-CD/NaAlg conformed to the Freundlich isotherm model(R2=0.9977) and the pseudo-second-order kinetic model(R^(2)=0.9993).Moreover,the adsorbent still removed 55.3% of tetracycline after five cycles.Specially,the adsorbent was integrated with ultrafiltration to adsorb tetracycline antibiotics from simulated reclaimed wastewater,and the removal rate of tetracycline reached 78.9% within 2 h.The existence of Cr(Ⅵ) had a negligible impact on tetracycline removal,while the presence of humic acid exhibited a promoting effect.The possible adsorption mechanisms were also elucidated through X-ray photoelectron spectroscopy and density functional theory analysis.In summary,β-CD/NaAlg represents an environmentally friendly,efficient,and sustainable adsorbent for removing tetracycline antibiotics from reclaimed water.
文摘A novel Ni(Ⅱ) ion-imprinted silica gel polymer was prepared via the surface imprinting technique combined with aqueous solution polymerization by using 2-acrylamido-2-methyl-1-propanesulfonic acid(AMPS) as a functional monomer for the selective separation of Ni(Ⅱ) from aqueous solution. The sorbent showed good chemical and thermal stability. Kinetics studies indicated that the equilibrium adsorption was achieved within 10 min and the adsorption kinetics fitted well with the pseudo-second-order kinetic model. The maximum adsorption capacity of the ion-imprinted polymer towards Ni(Ⅱ) at the optimal p H of 7.0 was 66.22 mg·g^(-1). The relative selectivity coefficients of the sorbent were 9.23, 15.71, 14.72 and 20.15 for Ni(Ⅱ)/Co(Ⅱ), Ni(Ⅱ)/Cu(Ⅱ), Ni(Ⅱ)/Zn(Ⅱ) and Ni(Ⅱ)/Pb(Ⅱ), respectively. The adsorption isotherm fitted well with Langmuir isotherm model. The thermodynamic results indicated that the adsorption of Ni(Ⅱ) was a spontaneous and endothermic process. The sorbent showed good reusability evidenced by six cycles of adsorption/desorption experiments. The precision of this method is satisfactory. Thus, the prepared sorbent can be considered as a promising sorbent for selective separation of Ni(Ⅱ) in real water samples.
基金Project (2014CB643401) supported by the National Basic Research Program of ChinaProjects (51134007,51474256) supported by the National Natural Science Foundation of ChinaProject (2016TP1007) supported by the Hunan Provincial Science and Technology Plan Project in China
文摘A novel silica-supported tert-butyl 2-picolyamino-N-acetate chelating resin (Si-AMPY-1) was successfully synthesized and characterized by elemental analysis, FT-IR, SEM and 13 C CP/MAS NMR. The adsorption behaviors of the Si-AMPY-1 resin for Cu(Ⅱ) and Ni(Ⅱ) were studied with batch and column methods. The batch experiments indicated that the Si-AMPY-1 resin adsorbed Ni(Ⅱ) mainly via physisorption, while adsorbed Cu(II) via chemisorption. The column dynamic breakthrough curves revealed thatthe Si-AMPY-1 resin can efficiently separate Cu(Ⅱ) from the simulated nickel electrolyte before the breakthrough point. Moreover, the concentration of Cu(Ⅱ) in the column effluent was decreased to be less than 3 mg/L within the first 43 BV (bed volumes), and the mass ratio of Cu/Ni was 21:1 in the saturated resin, which completely satisfied the industrial requirements of the nickel electrorefining process. Therefore, it was concluded that the Si-AMPY-1 resin can be a promising candidate for the deep removal of Cu(Ⅱ) from the nickel electrolyte.
基金This work was supported by the National Science Fund for Excellent Young Scholars(21722606)the National Natural Science Foundation of China(21676138,21878149,21808110,and 21576137)+1 种基金the China Postdoctoral Science Foundation(2018M632295)the Six Talent Plan(2016XCL031).
文摘Achieving efficient adsorption and desorption processes by controllably tuning the properties of adsorbents at different technical stages is extremely attractive.However,it is difficult for traditional adsorbents to reach the target because of their fixed active sites.Herein,we report on the fabrication of a smart adsorbent,which was achieved by introducing photoresponsive azobenzene derivatives with cis/trans isomers to Ce-doped mesoporous silica.These photoresponsive groups serve as “molecular switches”by sheltering and exposing active sites,leading to efficient adsorption and desorption.Ce is also doped to provide additional active sites in order to enhance the adsorption performance.The results show that the cis isomers effectively shelter the active sites,leading to the selective adsorption of methylene blue(MB)over brilliant blue(BB),while the trans isomers completely expose the active sites,resulting in the convenient release of the adsorbates.Both selective adsorption and efficient desorption can be realized controllably by these smart adsorbents through photostimulation.Moreover,the performance of the obtained materials is well maintained after five cycles.
基金financially supported by the Natural Science Foundation of Shandong Province(ZR2019MEM015 and ZR2017QB003)Young Taishan Scholar Program of Shandong Province(No.tsqn201909139)the Introduction and Cultivation Plan of Young Innovative Talents in Colleges and Universities of Shandong Province。
文摘Surface modification offers an alternative strategy to improve both ageing resistance and electrochemical performance of cathode materials for lithium-ion batteries.From the viewpoint of real application,surface modification of the cathode materials should be designed with scientificity,effectiveness,low cost,less Li+leaching,and remained tap density.In this contribution,a selective adsorption-involved in-situ growth of polyaniline(PANI)nanoparticles on LiNi_(0.5)Mn_(0.3)Co_(0.2)O_(2)(NMC532)has been designed through a room-temperature-and-pressure chemical vapor deposition technique.The selective growth of PANTI on NMC532 is based on theoretical computation results that multivalent Ni,Mn,and Co are capable of specifically conjugating and activating aniline molecules and,hence,initiating in-situ oxidation polymerization.With only trace amount of aniline monomer,the resulting PANI nanoparticles-inlaid NMC532 microparticles can endure four-month ageing in ambient atmosphere and exhibit improved electrochemical performance at both room temperature and 55℃ compared with pristine NMC532.The improved electrochemical performance of NMC532/PANI is attributed to the enhanced structural stability of NMC532 and inhibited side reactions related to Li_(2)CO_(3) formation,PVDF degradation,electrolyte decomposition,and transition-metal dissolution,owing to PANI modification.
基金supported by the National Natural Science Foundation of China(51472192,21477094,21771142)the Fundamental Research Funds for the Central Universities(WUT 2017IB002)~~
文摘Silver‐modified semiconductor photocatalysts typically exhibit enhanced photocatalytic activitytoward the degradation of organic substances.In comparison,their hydrogen‐evolution rates arerelatively low owing to poor interfacial catalytic reactions to producing hydrogen.In the presentstudy,thiocyanate anions(SCN–)as interfacial catalytic active sites were selectively adsorbed ontothe Ag surface of g‐C3N4/Ag photocatalyst to promote interfacial H2‐evolution reactions.The thiocyanate‐modified g‐C3N4/Ag(g‐C3N4/Ag‐SCN)photocatalysts were synthesized via photodepositionof metallic Ag on g‐C3N4and subsequent selective adsorption of SCN– ions on the Ag surface by animpregnation method.The resulting g‐C3N4/Ag‐SCN photocatalysts exhibited considerably higherphotocatalytic H2‐evolution activity than the g‐C3N4,g‐C3N4/Ag,and g‐C3N4/SCN photocatalysts.Furthermore,the g‐C3N4/Ag‐SCN photocatalyst displayed the highest H2‐evolution rate(3.9μmolh?1)when the concentration of the SCN– ions was adjusted to0.3mmol L?1.The H2‐evolution rateobtained was higher than those of g‐C3N4(0.15μmol h?1)and g‐C3N4/Ag(0.71μmol h?1).Consideringthe enhanced performance of g‐C3N4/Ag upon minimal addition of SCN– ions,a synergistic effectof metallic Ag and SCN– ions is proposed―the Ag nanoparticles act as an effective electron‐transfermediator for the steady capture and rapid transportation of photogenerated electrons,while theadsorbed SCN– ions serve as an interfacial active site to effectively absorb protons from solution andpromote rapid interfacial H2‐evolution reactions.Considering the present facile synthesis and itshigh efficacy,the present work may provide new insights into preparing high‐performance photocatalytic materials
基金supported by the National Natural Science Foundation of China(Nos.21777033 and 41807191)Science and Technology Planning Project of Guangdong Province(No.2017B020216003)+2 种基金Natural Science Foundation of Guangdong Province,China(No.2018A030310524)Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT01Z032)the Innovation Team Project of Guangdong Provincial Department of Education(No.2017KCXTD012)。
文摘In the field of volatile organic compounds(VOCs)pollution control,adsorption is one of the major control methods,and effective adsorbents are desired in this technology.In this work,the density functional theory(DFT)calculations are employed to investigate the adsorption of typical VOCs molecules on the two-dimensional material borophenes.The results demonstrate that both structure ofχBorophene;2D material;Volatile organic compounds(VOCs);Selective adsorption;Electronic structure andβ12 borophene can chemically adsorb ethylene and formaldehyde with forming chemical bonds and releasing large energy.However,other VOCs,including ethane,methanol,formic acid,methyl chloride,benzene and toluene,are physically adsorbed with weak interaction.The analysis of density of states(DOS)reveals that the chemical adsorption changes the conductivity of borophenes,while the physical adsorption has no distinct effect on the conductivity.Therefore,bothχ^(3)andβ_(12) borophene are appropriate adsorbents for selective adsorption of ethylene and formaldehyde,and they also have potential in gas sensor applications due to the obvious conductivity change during the adsorption.
基金financially supported by the National Natural Science Foundation of China(No.21174124)K.C.Wong Magna Fund in Ningbo University
文摘Porous carbon membranes were favorably fabricated through the pyrolysis of polyacrylonitrile(PAN) precursors, which were prepared with a template-free technique-thermally induced phase separation. These carbon membranes possess hierarchical pores, including cellular macropores across the whole membranes and much small pores in the matrix as well as on the pore walls. Nitrogen adsorption indicates micropores(1.47 and 1.84 nm) and mesopores(2.21 nm) exist inside the carbon membranes, resulting in their specific surface area as large as 1062 m2/g. The carbon membranes were used to adsorb organic dyes(methyl orange, Congo red, and rhodamine B) from aqueous solutions based on their advantages of hierarchical pore structures and large specific surface area. It is particularly noteworthy that the membranes present a selective adsorption towards methyl orange, whose molecular size(1.2 nm) is smaller than those of Congo red(2.3 nm) and rhodamine B(1.8 nm). This attractive result can be attributed to the steric structure matching between the molecular size and the pore size, rather than electrostatic attraction. Furthermore, the used carbon membranes can be easily regenerated by hydrochloric acid, and their recovery adsorption ratio maintains above 90% even in the third cycle. This work may provide a new route for carbon-based adsorbents with hierarchical pores via a template-free approach, which could be promisingly applied to selectively remove dye contaminants in aqueous effluents.
基金supported by the National Natural Science Foundation of China(NSFC,No.21771191)the Fundamental Research Funds for the Central Universities(No.19CX05001A)。
文摘An unexpected in-situ hydrolysis reaction occurred during the solvothermal reaction of N,N’-bis(4-carboxy-2-methylphenyl)pyromellitic di-imide)and Ba(NO3)2,and a novel porous Ba-MOF,[H_(2)N(CH_(3))_(2)]_(0.5)[Ba_(1.5)(L)(DMA)]·1.5 DMA·1.5 H_(2)O(UPC-70,H_(3)L=2-(4-ca rboxy-2-methylphenyl)-1,3-dioxoisoindoline-5,6-dicarboxylic acid,DMA=N,N-dimethylacetamide),was obtained on the basis of the partial hydrolysate.The as-synthesized 3 D network with 1 D open channels of different sizes(24 A and 10 A)contains abundant open metal sites after removal of solvents,which is conducive to the preferential adsorption of CO_(2).The subsequent gas sorption measurement reveals the high separation selectivity of UPC-70 for CO_(2)/CH_(4)(15)and CO_(2)/N_(2)(32)at ambient conditions,and GCMC theoretical simulation provides good verification of the experimental results,indicating that UPC-70 is a potential candidate for CO_(2)capture from flue gas and natural gas.
基金the National Natural Science Foundation of China(U1810205)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province(2020L0022)Key Research and Development Program of Shanxi Province(201903D311006).
文摘Rare earth elements(REE)are strategic resources and the recycling of REE in alternative resources is urgent and gets increasingly attention.However,the separation of REE in these alternative resources is still a challenge due to the low concentration of REE and multi coexisted ions in acidic system.In this study,the species distribution of REE within the pH 0-8.0 was calculated.The SBA-15 originated from coal fly ash was modified by two steps with(3-aminopropyl)triethoxysilane(APTES)and diethylenetriaminepentaacetic dianhydride(DTPADA)to obtain DTPADA-SBA-15 adsorbent,which was applied to the selective adsorption of REE.The results showed that DTPADA-SBA-15 possessed excellent adsorption performance on the selective adsorption of REE,including Eu,Gd,Tb,Nd and Sm,in acidic solution(pH 2)with multi competing ions.The FT-IR and Zeta potential characterization verified that the chemical adsorption through the coordination of O in DTPADA-SBA-15 with REE was dominant at lower pH value.The study of adsorption kinetics indicated that the adsorption of rare earth metal ions followed pseudosecond-order kinetic,of which the adsorption process followed the Langmuir isotherm model.
基金financially supported by the National Natural Science Foundation of China (Nos. 51273066 and 21574042)Shanghai Pujiang Program (No. 13PJ1402300)
文摘We report a synthesis of microporous organic nanotube networks(MONNs) by a combination of hyper cross-linking and molecular templating of core-shell bottlebrush copolymers. The intrabrush and interbrush cross-linking of polystyrene(PS) shell layer in the core-shell bottlebrush copolymers led to the formation of micropores and large-sized nanopores(meso/macrospores) in MONNs, respectively, while selective removal of polylactide(PLA) core layer generated mesoporous tubular structure. The size of PLA-templated mesoporous cores and porous structure both at micro-and meso-scale could be controlled by simple tuning of the ratio of core/shell or the PLA core fraction in the bottlebrush precursors. Moreover, the resultant MONNs showed a highly selective adsorption capacity for the positively charged dyes on the basis of multi-porosity and carboxylate group-rich structure. In addition, MONNs also exhibited effective performance in size-selective adsorption of biomacromolecules. This work represents a new avenue for the preparation of MONNs and also provides a new application for molecular bottlebrushes in nanotechnology.
基金supported by the National Basic Research Program of China(No.2016YFA0200700)the National Natural Science Foundation of China(Nos.21773041 and 21972031)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB36000000)。
文摘Here,the selective adsorption behaviors of vip molecule COR in two hexamer host grids were investigated by means of scanning tunnelling microscope(STM).The assembled structures of small functional organic molecules TTBTA and TATBA were thermodynamically stable.Interestingly,the introduction of the vip molecule COR destroyed the original hexamer structure of TTBTA and combined with it to form a new triangular host-vip system.Different from TTBTA,the introduction of the vip molecule COR did not affect the six-membered ring structure of TATBA.Furthermore,the co-assembly structure of TTBTA/TATBA/COR was established and the vip molecule COR showed preferential adsorption to the TATBA host grid.Density functional theory(DFT)calculations had been performed to disclose the mechanism of the involved assemblies.
基金the National Key R&D Program of China(No.2018YFB0703702)the National Natural Science Foundation of China(No.51725301).
文摘Nano porous polymer film with a hexagonal colum nar(Coln)structure was fabricated by templated hydroge n-bonding discotic liquid crystals containing methacrylate functional group.The supramolecular hydrogen-bonded complex T3Ph-L is composed of a 1,3/5-tris(1Hbenzo[d]imidazol-2-yl)benzene(T3Ph)core molecule as the hydrogen-bonding acceptor and 3,4,5-tris((11-(methacryloyloxy)undecyl)oxy)benzoic acid(L)peripheral molecules as donors.And the Colh structure is always retained after self-assembly,photo-crosslinking,and removal of the template T3Ph.The nanoporous polymer film can retain the Colh phase even under the dry condition,which indicates more possibilities for practical applicati ons.After chemical modificati on of the inner wall of the nano pores,the nan oporous polymer film with pores of about 1 nm selectively adsorbs ionic dyes,and the adsorption process is spontaneous and exothermic in nature.Homeotropic alignment can be obtained when the blend complex was sandwiched between two modified glasses after annealing by slow cooling,which shows that the nanoporous polymer film has potential in applications such as nanofiltration.
基金financially supported by the National Natural Science Foundation of China (Nos.21771012,21601008,51621003)the Science & Technology Project of Beijing Municipal Education Committee (No.KZ201810005004)。
文摘By taking the functional adva ntages of both pyrazolate and carboxylate ligands,a unique dual-functional pyrazolate-carboxylate ligand acid,4-(3,6-di(pyrazol-4-yl)-9-carbazol-9-yl)benzoic acid(H3PCBA) was designed and synthesized.Using it,a new Co(Ⅱ)-based metal-organic framework(MOF),Co_(3)(PCBA)_(2)(H_(2)O)_(2)(BUT-75) has been constructed.It revealed a(3,6)-connected net based on the 6-connected linear trinuclear metal node,and showed good chemical stability in a wide pH range from 3 to 12 at room temperature,as well as in boiling water.Due to the presence of rich exposed Co(Ⅱ) sites in pores,BUT-75 presented high selective CO_(2) adsorption capacity over N2 at 298 K.Simultaneously,it demonstrated fine catalytic performance for the cycloaddition of CO_(2) with epoxides into cyclic carbonates under ambient conditions.This work has not only enriched the MOF community through integrating diverse functio nalities into one ligand but also contributed a versatile platform for CO_(2) fixation,thereby pushing MOF chemistry forward by stability enhancement and application expansion.
基金This work was supported by the Natural Science Foundation of Education Department of Shaanxi Provincial Government(2013JK0873).
文摘A novel biosorbent was synthesized by grafting bisthiourea(BTU)on a silk sericin(SS)matrix.This biosorbent was denoted as BTU-SS and characterized by Fourier transform infrared spectroscopy(FTIR),zeta potential measurements,elemental analysis,and X-ray photoelectron spectroscopy(XPS).As revealed by the adsorption experiments,both BTU-SS and SS showed low affinity towards coexisting base metallic ions in Ag(I)-Cu(II)-Zn(II)-Ni(II)-Pb(II)electronic waste leachate mixtures,while their adsorption capacities towards Ag(I)reached 30.5 and 10.4 mg∙g-1 at a pH of 5.0,respectively.BTU-SS showed higher selectivity towards Ag(I)than SS,as revealed by the Ag(I)partition coefficients between the biosorbents and the leachate(16634.6 and 403.3,respectively).As further demonstrated by column experiments,BTU-SS allowed the separation of Ag(I)from an electronic waste leachate.Thermodynamic studies showed that the adsorption of Ag(I)was exothermic and spontaneous,while adsorption kinetic experiments revealed that chemisorption dominated the adsorption process with activation energies of 47.67 and 53.27 kJ∙mol-1 for BTU-SS and SS,respectively.FTIR and XPS analyses of fresh and Ag(I)-loaded BTU-SS further revealed an adsorption mechanism mainly involving electrostatic and coordination interactions.
基金Financially supported by the National Natural Science Foundation of China(21273033,21673039 and 21573042)
文摘A novel,porous and doubly interpenetrated MOF(FJU-29) was synthesized and characterized by FT-IR,TGA and X-ray single-crystal/powder diffraction.FJU-29 crystallizes in monoclinic,space group C2/c with a = 22.2890(7),b = 10.9175(2),c = 21.5601(7) ?,β = 112.908(4)o,V = 4832.7(3) ?~3,Z = 8,Mr = 450.26,D_c = 1.238 g/cm^3,F(000) = 1832,μ(CuKα) = 5.885 mm^(-1),R = 0.0585 and wR = 0.1544 for 4789 observed reflections(I 〉 2s(I)),and R = 0.0726 and wR = 0.1627 for all data.FJU-29 possesses paddle-wheel {Co_2(COO)_4} clusters bridged by bi-pyrazolate naphthalene diimide ligands(H_2NDI) and H_2BDC to from a 3D framework with a pcu-topology.The desolvated FJU-29a shows the BET surface area of 560.44 m^2·g^(-1) accompanies with discriminating uptakes in CO_2 and N_2.The adsorption selectivity determined by ideal adsorbed solution theory(IAST) indicated that FJU-29 a has high CO_2/N_2(18/85) selectivity(75.5) at 296 K and 100 kPa.The relatively high selectivity further implies that FJU-29 a is a potential material for practical flue gas purification.
基金supported by the National Science Fund for Distinguished Young Scholars(Grant No.52225301)the National Key R&D Program of China(Grant Nos.2020YFA0710400 and 2020YFA0710402)+5 种基金the National Natural Science Foundation of China(Grant Nos.21905166,2187513251903147)the 111 Project(Grant No.B14041)the Fundamental Research Funds for the Central Universities(Grant Nos.GK201801003,2020TS092,and GK202205013)the Innovation Capability Support Program of Shaanxi(Grant No.2020TD024)the Science and Technology Innovation Team of Shaanxi Province(Grant No.2022TD-35)。
文摘Rhenium separation from molybdenum in molybdenite minerals and waste leachate has become an emerging challenge.Addressing this challenge,we prepared a set of protein-based alkylamine/alkylammonium salts complexes as extractants for selective uptake of rhenium from molybdenum,where the protein component turned into the insoluble amyloid-like structure when its internal disulfide bonds were reduced,namely phase-transition process.Among them,the phase-transited lysozyme and methyletrioctyleammonium chloride complex(PTL-N263)exhibited the most efficient adsorption at the alkaline condition for the electrostatic interaction between negatively charged metal ions with positively charged center(R_(4)N^(+))in N263,where negatively charged protein residues hindered the ion exchange of Cl^(-)in N263 for larger size Mo species(Mo_(7)O_(24)^(6-))than smaller size Re species(ReO^(4-)).The adsorption follows the Freundlich model and pseudo-second-order kinetics,which exhibits toplevel adsorption performance with a maximum adsorption capacity of 124 mg/g and a separation factor(β_(Re/Mo))of 2.78×10^(3)for Re.The adsorption capacity per unit area(57.2 mg/(g m^(2)))is 1.6–41 times higher than previously reported adsorbents,and the cost for adsorbing 1 g of Re(VII)is$1.07,indicating its industrial capability.This adsorption strategy can be applied to separating Re from Mo in binary solutions and industrial wastewater with other competing ions.
基金supports from the National Natural Science Foundation of China(NSFC,No.52100069)the Shenzhen Science and Technology Program(No.JCYJ20220531093205013)the 2023 Shenzhen Sustainable Supporting Funds for Colleges and Universities(No.20231121170027002)are greatly acknowledged.
文摘Herein,we constructed defective UiO-66 with rich Zr vacancy structure model,in which the defective structure was verified by various characterizations.Also,the Pb adsorption experiments affirmed that defective UiO-66 could display better adsorption and selective adsorption ability than that of perfect UiO-66.The results of partial density of states(PDOS)and Mulliken charge population indicated that the blue shift of O 2p and Zr 4d orbit induced the electron rearrangement of atoms closed to the bonding sites,while the positive charge number of Zr atoms decreased than before.Combining with the expansion of pore size,Pb atom was more inclined to transfer and bond with unsaturated coordination oxygens.More significantly,quantitative structure-activity relationships(QSARs)demonstrated that selective capture of Pb instead of Zn,Cu,Cd and Hg displayed by defective UiO-66 was determined jointly by bond strength,adsorption energy and electron transfer.This work provided some theoretical direction for the purpose of the fabrication of adsorbent and the investigation of mechanism.
基金supported by the National Key Research and Development Program of China(2023YFC3207904).
文摘Selective perchlorate(ClO_(4)^(−))removal from surface water is a pressing need due to the stringent perchlorate drinking water limits around the world.Herein,we anchored N^(+)–C–H hydrogen bond donors in hydrophobic cavities via interactions of cationic surfactants with montmorillonite to prioritize perchlorate bonding.The prepared adsorbent exhibited high selectivity over commonly occurring competing anions,including SO_(4)^(2−),NO_(3)^(−),PO_(4)^(3−),HCO_(3)^(−),and halide anions.High adsorption capacity,fast adsorption kinetics,and excellent regeneration ability(removal efficiency≥80%after 20 cycles)were confirmed via batch experiments.Unconventional CH···O hydrogen bonding was verified as the primary driving force for perchlorate adsorption,which relies on the higher bond energy(∼80 kcal·mol−1)than conventional bonding.The removal efficiency of anions followed the order of the Hofmeister Series,demonstrating the importance of hydrophobic cavities formed by the tail groups of cationic surfactants.The hydrophobic cavities sheltered the C–H bonds from interacting with anions of low hydration energy(e.g.,perchlorate).Furthermore,a fixed-bed column test demonstrated that about 2900 bed volumes of the feeding streams(∼500μg·L^(−1))can be treated to≤70μg·L^(−1),with an enrichment factor of 10.3.Overall,on the basis of the hydrophobicity-induced hydrogen bonding mechanism,a series of low-cost adsorbents can be synthesized and applied for specific perchlorate removal.