The application of support vector machines to forecasting problems is becoming popular, lately. Several comparisons between neural networks trained with error backpropagation and support vector machines have shown adv...The application of support vector machines to forecasting problems is becoming popular, lately. Several comparisons between neural networks trained with error backpropagation and support vector machines have shown advantage for the latter in different domains of application. However, some difficulties still deteriorate the performance of the support vector machines. The main one is related to the setting of the hyperparameters involved in their training. Techniques based on meta-heuristics have been employed to determine appropriate values for those hyperparameters. However, because of the high noneonvexity of this estimation problem, which makes the search for a good solution very hard, an approach based on Bayesian inference, called relevance vector machine, has been proposed more recently. The present paper aims at investigating the suitability of this new approach to the short-term load forecasting problem.展开更多
Big data has the ability to open up innovative and ground-breaking prospects for the electrical grid,which also supports to obtain a variety of technological,social,and financial benefits.There is an unprecedented amo...Big data has the ability to open up innovative and ground-breaking prospects for the electrical grid,which also supports to obtain a variety of technological,social,and financial benefits.There is an unprecedented amount of heterogeneous big data as a consequence of the growth of power grid technologies,along with data processing and advanced tools.The main obstacles in turning the heterogeneous large dataset into useful results are computational burden and information security.The original contribution of this paper is to develop a new big data framework for detecting various intrusions from the smart grid systems with the use of AI mechanisms.Here,an AdaBelief Exponential Feature Selection(AEFS)technique is used to efficiently handle the input huge datasets from the smart grid for boosting security.Then,a Kernel based Extreme Neural Network(KENN)technique is used to anticipate security vulnerabilities more effectively.The Polar Bear Optimization(PBO)algorithm is used to efficiently determine the parameters for the estimate of radial basis function.Moreover,several types of smart grid network datasets are employed during analysis in order to examine the outcomes and efficiency of the proposed AdaBelief Exponential Feature Selection-Kernel based Extreme Neural Network(AEFS-KENN)big data security framework.The results reveal that the accuracy of proposed AEFS-KENN is increased up to 99.5%with precision and AUC of 99%for all smart grid big datasets used in this study.展开更多
文摘The application of support vector machines to forecasting problems is becoming popular, lately. Several comparisons between neural networks trained with error backpropagation and support vector machines have shown advantage for the latter in different domains of application. However, some difficulties still deteriorate the performance of the support vector machines. The main one is related to the setting of the hyperparameters involved in their training. Techniques based on meta-heuristics have been employed to determine appropriate values for those hyperparameters. However, because of the high noneonvexity of this estimation problem, which makes the search for a good solution very hard, an approach based on Bayesian inference, called relevance vector machine, has been proposed more recently. The present paper aims at investigating the suitability of this new approach to the short-term load forecasting problem.
文摘Big data has the ability to open up innovative and ground-breaking prospects for the electrical grid,which also supports to obtain a variety of technological,social,and financial benefits.There is an unprecedented amount of heterogeneous big data as a consequence of the growth of power grid technologies,along with data processing and advanced tools.The main obstacles in turning the heterogeneous large dataset into useful results are computational burden and information security.The original contribution of this paper is to develop a new big data framework for detecting various intrusions from the smart grid systems with the use of AI mechanisms.Here,an AdaBelief Exponential Feature Selection(AEFS)technique is used to efficiently handle the input huge datasets from the smart grid for boosting security.Then,a Kernel based Extreme Neural Network(KENN)technique is used to anticipate security vulnerabilities more effectively.The Polar Bear Optimization(PBO)algorithm is used to efficiently determine the parameters for the estimate of radial basis function.Moreover,several types of smart grid network datasets are employed during analysis in order to examine the outcomes and efficiency of the proposed AdaBelief Exponential Feature Selection-Kernel based Extreme Neural Network(AEFS-KENN)big data security framework.The results reveal that the accuracy of proposed AEFS-KENN is increased up to 99.5%with precision and AUC of 99%for all smart grid big datasets used in this study.