期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Feature Engineering Methods for Analyzing Blood Samples for Early Diagnosis of Hepatitis Using Machine Learning Approaches
1
作者 Mohamed A.G.Hazber Ebrahim Mohammed Senan Hezam Saud Alrashidi 《Computer Modeling in Engineering & Sciences》 2025年第3期3229-3254,共26页
Hepatitis is an infection that affects the liver through contaminated foods or blood transfusions,and it has many types,from normal to serious.Hepatitis is diagnosed through many blood tests and factors;Artificial Int... Hepatitis is an infection that affects the liver through contaminated foods or blood transfusions,and it has many types,from normal to serious.Hepatitis is diagnosed through many blood tests and factors;Artificial Intelligence(AI)techniques have played an important role in early diagnosis and help physicians make decisions.This study evaluated the performance of Machine Learning(ML)algorithms on the hepatitis data set.The dataset contains missing values that have been processed and outliers removed.The dataset was counterbalanced by the Synthetic Minority Over-sampling Technique(SMOTE).The features of the data set were processed in two ways:first,the application of the Recursive Feature Elimination(RFE)algorithm to arrange the percentage of contribution of each feature to the diagnosis of hepatitis,then selection of important features using the t-distributed Stochastic Neighbor Embedding(t-SNE)and Principal Component Analysis(PCA)algorithms.Second,the SelectKBest function was applied to give scores for each attribute,followed by the t-SNE and PCA algorithms.Finally,the classification algorithms K-Nearest Neighbors(KNN),Support Vector Machine(SVM),Artificial Neural Network(ANN),Decision Tree(DT),and Random Forest(RF)were fed by the dataset after processing the features in different methods are RFE with t-SNE and PCA and SelectKBest with t-SNE and PCA).All algorithms yielded promising results for diagnosing hepatitis data sets.The RF with RFE and PCA methods achieved accuracy,Precision,Recall,and AUC of 97.18%,96.72%,97.29%,and 94.2%,respectively,during the training phase.During the testing phase,it reached accuracy,Precision,Recall,and AUC by 96.31%,95.23%,97.11%,and 92.67%,respectively. 展开更多
关键词 HEPATITIS machine learning PCA RFE selectkbest t-SNE
在线阅读 下载PDF
网球比赛结果预测模型的构建
2
作者 张沛潇 《科学技术创新》 2024年第19期33-36,共4页
本文依据2024年美国大学生数学建模竞赛C题,并借鉴2023年温布尔登男子网球公开赛决赛结果数据,进行了比赛优异模型及波动模型的构建及应用,旨在为运动员和教练提供更为精准的训练及比赛策略。首先通过建立比赛优异模型对势头进行量化,... 本文依据2024年美国大学生数学建模竞赛C题,并借鉴2023年温布尔登男子网球公开赛决赛结果数据,进行了比赛优异模型及波动模型的构建及应用,旨在为运动员和教练提供更为精准的训练及比赛策略。首先通过建立比赛优异模型对势头进行量化,并验证该模型的鲁棒性;其次建立比赛波动模型模拟球员的心理状态,模型准确率为72.9%,并分析准确率未达到理想状态的原因,提出相应的建议;最后对模型进行泛化,探讨将其应用于其他比赛的可行性。 展开更多
关键词 网球 selectkbest模型 游程检验 Adaboost模型 GBDT模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部