期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
Seismic Hazard Analysis of China's Mainland Based on a New Seismicity Model
1
作者 Weijin Xu Jian Wu Mengtan Gao 《International Journal of Disaster Risk Science》 SCIE CSCD 2023年第2期280-297,共18页
Based on the seismic source model in the Fifth Generation Seismic Ground Motion Parameters Zonation Map of China(FGSGMPZMC),a new seismic fault model,the new zonation of seismic risk areas(SRAs),and the estimation of ... Based on the seismic source model in the Fifth Generation Seismic Ground Motion Parameters Zonation Map of China(FGSGMPZMC),a new seismic fault model,the new zonation of seismic risk areas(SRAs),and the estimation of seismicity rates for 2021-2030,this study constructed a new time-dependent seismic source model of China’s mainland,and used the probabilistic seismic hazard analysis method to calculate seismic hazard by selecting the ground motion models(GMMs)suitable for seismic sources in China.It also provided the probabilities of China’s mainland being affected by earthquakes of modified Mercalli intensity(MMI)Ⅵ,Ⅶ,Ⅷ,Ⅸ,and≥Ⅹin 2021-2030.The spatial pattern of seismic hazards presented in this article is similar to the pattern of the FGSGMPZMC,but shows more details.The seismic hazards in this study are higher than those in the FGSGMPZMC in the SRAs and fault zones that can produce large earthquakes.This indicates that the seismic source model construction in this study is scientific and reasonable.There are certain similarities between the results in this study and those of Rong et al.(2020)and Feng et al.(2020),but also disparities for specific sites due to differences in seismic source models,seismicity parameters,and GMMs.The results of seismic hazard may serve as parameter input for future seismic risk assessments.The hazard results can also be used as a basis for the formulation of earthquake prevention and mitigation policies for China’s mainland. 展开更多
关键词 China’s mainland New seismicity model Probabilistic seismic hazard analysis(PSHA) Seismic fault model Seismic risk areas
原文传递
Seismicity acceleration model and its application to several earthquake regions in China 被引量:2
2
作者 杨文政 马丽 《Acta Seismologica Sinica(English Edition)》 CSCD 1999年第1期35-45,共11页
With the theory of subcritical crack growth, we can deduce the fundamental equation of regional seismicity acceleration model. Applying this model to intraplate earthquake regions, we select three earthquake subplates... With the theory of subcritical crack growth, we can deduce the fundamental equation of regional seismicity acceleration model. Applying this model to intraplate earthquake regions, we select three earthquake subplates: North China Subplate, Chuan Dian Block and Xinjiang Subplate, and divide the three subplates into seven researched regions by the difference of seismicity and tectonic conditions. With the modified equation given by Sornette and Sammis (1995), we analysis the seismicity of each region. To those strong earthquakes already occurred in these region, the model can give close fitting of magnitude and occurrence time, and the result in this article indicates that the seismicity acceleration model can also be used for describing the seismicity of intraplate. In the article, we give the magnitude and occurrence time of possible strong earthquakes in Shanxi, Ordos, Bole Tuokexun, Ayinke Wuqia earthquake regions. In the same subplate or block, the earthquake periods for each earthquake region are similar in time interval. The constant α in model can be used to describe the intensity of regional seismicity, and for the Chinese Mainland, α is 0.4 generally. To the seismicity in Taiwan and other regions with complex tectonic conditions, the model does not fit well at present. 展开更多
关键词 seismicity acceleration model subcritical crack growth China earthquake region FIT
在线阅读 下载PDF
The effect of pore fluid on seismicity: a computer model 被引量:1
3
作者 李丽 石耀霖 张国民 《Acta Seismologica Sinica(English Edition)》 CSCD 1999年第1期84-92,共9页
The influence of fluid on seismicity of a computerized system is analyzed in this paper. The diffusion equation of fluid in a crustal fault area is developed and used in the calculation of a spring slide damper mode... The influence of fluid on seismicity of a computerized system is analyzed in this paper. The diffusion equation of fluid in a crustal fault area is developed and used in the calculation of a spring slide damper model. With mirror imagin boundary condition and three initial conditions, the equation is solved for a dynamic model that consists of six seismic belts and eight seismogenous sources in each belt with both explicit algorithm and implicit algorithm. The analysis of the model with water sources shows that the implicit algorithm is better to be used to calculate the model. Taking a constant proportion of the pore pressure of a broken element to that of its neighboring elements, the seismicity of the model is calculated with mirror boundary condition and no water source initial condition. The results shows that the frequency and magnitude of shocks are both higher than those in the model with no water pore pressure, which provides more complexity to earthquake prediction. 展开更多
关键词 water pore pressure pore fluid seismic model
在线阅读 下载PDF
Large-scale complex physical modeling and precisionanalysis 被引量:6
4
作者 吴满生 狄帮让 +4 位作者 魏建新 梁向豪 周翼 刘依谋 孔昭举 《Applied Geophysics》 SCIE CSCD 2014年第2期245-251,255,共8页
Large-scale 3D physical models of complex structures can be used to simulate hydrocarbon exploration areas. The high-fidelity simulation of actual structures poses challenges to model building and quality control. Suc... Large-scale 3D physical models of complex structures can be used to simulate hydrocarbon exploration areas. The high-fidelity simulation of actual structures poses challenges to model building and quality control. Such models can be used to collect wideazimuth, multi-azimuth, and full-azimuth seismic data that can be used to verify various 3D processing and interpretation methods. Faced with nonideal imaging problems owing to the extensive complex surface conditions and subsurface structures in the oil-rich foreland basins of western China, we designed and built the KS physical model based on the complex subsurface structure. This is the largest and most complex 3D physical model built to date. The physical modeling technology advancements mainly involve 1) the model design method, 2) the model casting flow, and 3) data acquisition. A 3D velocity model of the physical model was obtained for the first time, and the model building precision was quantitatively analyzed. The absolute error was less than 3 mm, which satisfies the experimental requirements. The 3D velocity model obtained from 3D measurements of the model layers is the basis for testing various imaging methods. Furthermore, the model is considered a standard in seismic physical modeling technology. 展开更多
关键词 complex structure seismic physical modeling modeling construction ACQUISITION
在线阅读 下载PDF
Brittleness index and seismic rock physics model for anisotropic tight-oil sandstone reservoirs 被引量:7
5
作者 黄欣芮 黄建平 +3 位作者 李振春 杨勤勇 孙启星 崔伟 《Applied Geophysics》 SCIE CSCD 2015年第1期11-22,120,共13页
Brittleness analysis becomes important when looking for sweet spots in tightoil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock ph... Brittleness analysis becomes important when looking for sweet spots in tightoil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock physics model for tight-oil sandstone reservoirs with vertical fractures. Because of the complexities in lithology and pore structure and the anisotropic characteristics of tight-oil sandstone reservoirs, the proposed model is based on the solid components, pore connectivity, pore type, and fractures to better describe the sandstone reservoir microstructure. Using the model, we analyze the brittleness sensitivity of the elastic parameters in an anisotropic medium and establish a new brittleness index. We show the applicability of the proposed brittleness index for tight-oil sandstone reservoirs by considering the brittleness sensitivity, the rock physics response characteristics, and cross-plots. Compared with conventional brittleness indexes, the new brittleness index has high brittleness sensitivity and it is the highest in oil-bearing brittle zones with relatively high porosity. The results also suggest that the new brittleness index is much more sensitive to elastic properties variations, and thus can presumably better predict the brittleness characteristics of sweet spots in tight-oil sandstone reservoirs. 展开更多
关键词 brittleness index tight-oil sandstone reservoirs seismic rock physics model brittleness sensitivity anisotropy
在线阅读 下载PDF
Fractured reservoir modeling by discrete fracture network and seismic modeling in the Tarim Basin,China 被引量:4
6
作者 Sam Zandong Sun Zhou Xinyuan +3 位作者 Yang Haijun Wang Yueying WangDi Liu Zhishui 《Petroleum Science》 SCIE CAS CSCD 2011年第4期433-445,共13页
Fractured reservoirs are an important target for oil and gas exploration in the Tarim Basin and the prediction of this type of reservoir is challenging.Due to the complicated fracture system in the Tarim Basin,the con... Fractured reservoirs are an important target for oil and gas exploration in the Tarim Basin and the prediction of this type of reservoir is challenging.Due to the complicated fracture system in the Tarim Basin,the conventional AVO inversion method based on HTI theory to predict fracture development will result in some errors.Thus,an integrated research concept for fractured reservoir prediction is put forward in this paper.Seismic modeling plays a bridging role in this concept,and the establishment of an anisotropic fracture model by Discrete Fracture Network (DFN) is the key part.Because the fracture system in the Tarim Basin shows complex anisotropic characteristics,it is vital to build an effective anisotropic model.Based on geological,well logging and seismic data,an effective anisotropic model of complex fracture systems can be set up with the DFN method.The effective elastic coefficients,and the input data for seismic modeling can be calculated.Then seismic modeling based on this model is performed,and the seismic response characteristics are analyzed.The modeling results can be used in the following AVO inversion for fracture detection. 展开更多
关键词 Fractured reservoir Discrete Fracture Network (DFN) equivalent medium seismic modeling azimuth-angle gathers
原文传递
One-way wave equation seismic prestack forward modeling with irregular surfaces 被引量:9
7
作者 Xiong Xiaojun He Zhenhua Huang Deji 《Applied Geophysics》 SCIE CSCD 2006年第1期13-17,共5页
Mathematical geophone (MG) and equal-time stacking (ETS) principles are used to implement seismic prestack forward modeling with irregular surfaces using the oneway acoustic wave-equation. This method receives sei... Mathematical geophone (MG) and equal-time stacking (ETS) principles are used to implement seismic prestack forward modeling with irregular surfaces using the oneway acoustic wave-equation. This method receives seismic primary reflections from the subsurface using a set of virtual MGs. The receivers can be located anywhere on an irregular observing surface. Moreover, the ETS method utilizes the one-way acoustic wave equation to easily and quickly image and extrapolate seismic reflection data. The method is illustrated using high single-noise ratio common shot gathers computed by numerical forward modeling of two simple models, one with a flat surface and one with an irregular surface, and a complex normal fault model. A prestack depth migration method for irregular surface topography was used to reoroduce the normal fault model with high accuracy. 展开更多
关键词 mathematical geophone equal-time stacking principle seismic prestack forward modeling irregular surfaces and one-way wave-equation.
在线阅读 下载PDF
Ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer using a beam collimator and its application for ultrasonic imaging of seismic physical models 被引量:3
8
作者 Zhi-Hua Shao Xue-Guang Qiao +1 位作者 Feng-Yi Chen and Qiang-Zhou Rongt 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第9期128-136,共9页
An ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer (FPI) is proposed and employed for ultra- sonic imaging of seismic physical models (SPMs). The FPI comprises a flexible ultra-thin gold fil... An ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer (FPI) is proposed and employed for ultra- sonic imaging of seismic physical models (SPMs). The FPI comprises a flexible ultra-thin gold film and the end face of a graded-index multimode fiber (MMF), both of which are enclosed in a ceramic tube. The MMF in a specified length can collimate the diverged light beam and compensate for the light loss inside the air cavity, leading to an increased spectral fringe visibility and thus a steeper spectral slope. By using the spectral sideband filtering technique, the collimated FP1 shows an improved ultrasonic response. Moreover, two-dimensional images of two SPMs are achieved in air by recon- structing the pulse-echo signals through using the time-of-flight approach. The proposed sensor with easy fabrication and compact size can be a good candidate for high-sensitivity and high-precision nondestructive testing of SPMs. 展开更多
关键词 fiber-optic sensor Fabry-Perot interferometer seismic physical model
原文传递
Optimization of a precise integration method for seismic modeling based on graphic processing unit 被引量:2
9
作者 Jingyu Li Genyang Tang Tianyue Hu 《Earthquake Science》 CSCD 2010年第4期387-393,共7页
General purpose graphic processing unit (GPU) calculation technology is gradually widely used in various fields. Its mode of single instruction, multiple threads is capable of seismic numerical simulation which has ... General purpose graphic processing unit (GPU) calculation technology is gradually widely used in various fields. Its mode of single instruction, multiple threads is capable of seismic numerical simulation which has a huge quantity of data and calculation steps. In this study, we introduce a GPU-based parallel calculation method of a precise integration method (PIM) for seismic forward modeling. Compared with CPU single-core calculation, GPU parallel calculating perfectly keeps the features of PIM, which has small bandwidth, high accuracy and capability of modeling complex substructures, and GPU calculation brings high computational efficiency, which means that high-performing GPU parallel calculation can make seismic forward modeling closer to real seismic records. 展开更多
关键词 precise integration method seismic modeling general purpose GPU graphic processing unit
在线阅读 下载PDF
A GIS-based time-dependent seismic source modeling of Northern Iran 被引量:2
10
作者 Mahdi Hashemi Ali Asghar Alesheikh Mohammad Reza Zolfaghari 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第1期33-45,共13页
: The first step in any seismic hazard study is the definition of seismogenic sources and the estimation of magnitude-frequency relationships for each source. There is as yet no standard methodology for source modeli... : The first step in any seismic hazard study is the definition of seismogenic sources and the estimation of magnitude-frequency relationships for each source. There is as yet no standard methodology for source modeling and many researchers have worked on this topic. This study is an effort to define linear and area seismic sources for Northern Iran. The linear or fault sources are developed based on tectonic features and characteristic earthquakes while the area sources are developed based on spatial distribution of small to moderate earthquakes. Time-dependent recurrence relationships are developed for fault sources using renewal approach while time-independent frequency-magnitude relationships are proposed for area sources based on Poisson process. GIS functionalities are used in this study to introduce and incorporate spatial- temporal and geostatistical indices in delineating area seismic sources. The proposed methodology is used to model seismic sources for an area of about 500 by 400 square kilometers around Tehran. Previous researches and reports are studied to compile an earthquake/fault catalog that is as complete as possible. All events are transformed to uniform magnitude scale; duplicate events and dependent shocks are removed. Completeness and time distribution of the compiled catalog is taken into account. The proposed area and linear seismic sources in conjunction with defined recurrence relationships can be used to develop time-dependent probabilistic seismic hazard analysis of Northern Iran. 展开更多
关键词 seismic source modeling geostatistical index seismic hazard GIS
在线阅读 下载PDF
Seismic wavefield modeling based on time-domain symplectic and Fourier finite-difference method 被引量:1
11
作者 Fang Gang Ba Jing +2 位作者 Liu Xin-xin Zhu Kun Liu Guo-Chang 《Applied Geophysics》 SCIE CSCD 2017年第2期258-269,323,共13页
Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time st... Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time steps for long times. Based on the Hamiltonian expression of the acoustic wave equation, we propose a structure-preserving method for seismic wavefield modeling by applying the symplectic finite-difference method on time grids and the Fourier finite-difference method on space grids to solve the acoustic wave equation. The proposed method is called the symplectic Fourier finite-difference (symplectic FFD) method, and offers high computational accuracy and improves the computational stability. Using acoustic approximation, we extend the method to anisotropic media. We discuss the calculations in the symplectic FFD method for seismic wavefield modeling of isotropic and anisotropic media, and use the BP salt model and BP TTI model to test the proposed method. The numerical examples suggest that the proposed method can be used in seismic modeling of strongly variable velocities, offering high computational accuracy and low numerical dispersion. The symplectic FFD method overcomes the residual qSV wave of seismic modeling in anisotropic media and maintains the stability of the wavefield propagation for large time steps. 展开更多
关键词 symplectic algorithm Fourier finite-difference Hamiltonian system seismic modeling ANISOTROPIC
在线阅读 下载PDF
PML Absorbing Boundary Condition for Seismic Numerical Modeling by Convolutional Differentiator in Fluid-Saturated Porous Media 被引量:2
12
作者 李信富 《Journal of Earth Science》 SCIE CAS CSCD 2011年第3期377-385,共9页
The perfectly matched layer(PML) was first introduced by Berenger as an absorbing boundary condition for electromagnetic wave propagation.In this article,a method is developed to ex-tend the PML to simulating seismi... The perfectly matched layer(PML) was first introduced by Berenger as an absorbing boundary condition for electromagnetic wave propagation.In this article,a method is developed to ex-tend the PML to simulating seismic wave propagation in fluid-saturated porous medium.This non-physical boundary is used at the computational edge of a Forsyte polynomial convolutional differenti-ator(FPCD) algorithm as an absorbing boundary condition to truncate unbounded media.The incor-poration of PML in Biot's equations is given.Numerical results show that the PML absorbing bound-ary condition attenuates the outgoing waves effectively and eliminates the reflections adequately. 展开更多
关键词 seismic wave numerical modeling convolutional differentiator PML absorbing boundary condition fluid-saturated porous medium.
原文传递
Seismic modeling by combining the finite-difference scheme with the numerical dispersion suppression neural network 被引量:1
13
作者 Hong-Yong Yan 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3157-3165,共9页
Seismic finite-difference(FD) modeling suffers from numerical dispersion including both the temporal and spatial dispersion, which can decrease the accuracy of the numerical modeling. To improve the accuracy and effic... Seismic finite-difference(FD) modeling suffers from numerical dispersion including both the temporal and spatial dispersion, which can decrease the accuracy of the numerical modeling. To improve the accuracy and efficiency of the conventional numerical modeling, I develop a new seismic modeling method by combining the FD scheme with the numerical dispersion suppression neural network(NDSNN). This method involves the following steps. First, a training data set composed of a small number of wavefield snapshots is generated. The wavefield snapshots with the low-accuracy wavefield data and the high-accuracy wavefield data are paired, and the low-accuracy wavefield snapshots involve the obvious numerical dispersion including both the temporal and spatial dispersion. Second, the NDSNN is trained until the network converges to simultaneously suppress the temporal and spatial dispersion.Third, the entire set of low-accuracy wavefield data is computed quickly using FD modeling with the large time step and the coarse grid. Fourth, the NDSNN is applied to the entire set of low-accuracy wavefield data to suppress the numerical dispersion including the temporal and spatial dispersion.Numerical modeling examples verify the effectiveness of my proposed method in improving the computational accuracy and efficiency. 展开更多
关键词 Finite difference Seismic modeling Numerical dispersion suppression Computational accuracy Computational efficiency
原文传递
Amplitude Variation with Offset Responses Modeling Study of Walkaway Vertical Seismic Profile Data at CO_2 Geological Storage Site,Ketzin,Germany 被引量:1
14
作者 Sayed Hesammoddin KAZEMEINI Christopher JUHLIN 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2011年第5期1118-1126,共9页
An important component of any CO_2 sequestration project is seismic monitoring for tracking changes in subsurface physical properties,such as velocity and density.Different reservoirs have different amplitude variatio... An important component of any CO_2 sequestration project is seismic monitoring for tracking changes in subsurface physical properties,such as velocity and density.Different reservoirs have different amplitude variation with offset(AVO) responses,which can define underground conditions. In the present paper we investigate walkaway vertical seismic profile(VSP) AVO response to CO_2 injection at the Ketzin site,the first European onshore CO_2 sequestration pilot study dealing with research on geological storage of CO_2.First,we performed rock physics analysis to evaluate the effect of injected CO_2 on seismic velocity using the Biot-Gassmann equation.On the basis of this model,the seismic response for different CO_2 injection saturation was studied using ray tracing modeling.We then created synthetic walkaway VSP data,which we then processed.In contrast,synthetic seismic traces were created from borehole data.Finally,we found that the amplitude of CO_2 injected sand layer with different gas saturations were increased with the offset when compared with the original brine target layer.This is the typical classⅢAVO anomaly for gas sand layer.The AVO responses matched the synthetic seismic traces very well.Therefore,walkaway VSP AVO response can monitor CO_2 distribution in the Ketzin area. 展开更多
关键词 CO_2 injection rock physics amplitude variation with offset walkaway vertical seismic profile seismic modeling
在线阅读 下载PDF
Seismic Physical Modeling Technology and Its Applications 被引量:1
15
作者 Di Bangrang Wei Jianxin Mou Yongguang 《Petroleum Science》 SCIE CAS CSCD 2006年第2期39-46,共8页
This paper introduces the seismic physical modeling technology in the CNPC Key Lab of Geophysical Exploration. It includes the seismic physical model positioning system, the data acquisition system, sources, transduce... This paper introduces the seismic physical modeling technology in the CNPC Key Lab of Geophysical Exploration. It includes the seismic physical model positioning system, the data acquisition system, sources, transducers, model materials, model building techniques, precision measurements of model geometry, the basic principles of the seismic physical modeling and experimental methods, and two physical model examples. 展开更多
关键词 Seismic physical modeling similarity principle experimental system TRANSDUCER
原文传递
Accuracy of the staggered-grid finite-difference method of the acoustic wave equation for marine seismic reflection modeling 被引量:1
16
作者 钱进 吴时国 崔若飞 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2013年第1期169-177,共9页
Seismic wave modeling is a cornerstone of geophysical data acquisition, processing, and interpretation, for which finite-difference methods are often applied. In this paper, we extend the velocity- pressure formulatio... Seismic wave modeling is a cornerstone of geophysical data acquisition, processing, and interpretation, for which finite-difference methods are often applied. In this paper, we extend the velocity- pressure formulation of the acoustic wave equation to marine seismic modeling using the staggered-grid finite-difference method. The scheme is developed using a fourth-order spatial and a second-order temporal operator. Then, we define a stability coefficient (SC) and calculate its maximum value under the stability condition. Based on the dispersion relationship, we conduct a detailed dispersion analysis for submarine sediments in terms of the phase and group velocity over a range of angles, stability coefficients, and orders. We also compare the numerical solution with the exact solution for a P-wave line source in a homogeneous submarine model. Additionally, the numerical results determined by a Marmousi2 model with a rugged seafloor indicate that this method is sufficient for modeling complex submarine structures. 展开更多
关键词 marine seismic reflection modeling stability condition dispersion relation staggered grid finite-difference
原文传递
3D seismic forward modeling from the multiphysical inversion at the Ketzin CO_(2) storage site 被引量:1
17
作者 Yi-kang Zheng Chong Wang +2 位作者 Hao-hong Liang Yi-bo Wang Rong-shu Zeng 《Applied Geophysics》 SCIE CSCD 2024年第3期593-605,620,共14页
From June 2008 to August 2013,approximately 67 kt of CO_(2) was injected into a deep saline formation at the Ketzin pilot CO_(2) storage site.During injection,3D seismic surveys have been performed to monitor the migr... From June 2008 to August 2013,approximately 67 kt of CO_(2) was injected into a deep saline formation at the Ketzin pilot CO_(2) storage site.During injection,3D seismic surveys have been performed to monitor the migration of sequestered CO_(2).Seismic monitoring results are limited by the acquisition and signal-to-noise ratio of the acquired data.The multiphysical reservoir simulation provides information regarding the CO_(2) fluid behavior,and the approximated model should be calibrated with the monitoring results.In this work,property models are delivered from the multiphysical model during 3D repeated seismic surveys.The simulated seismic data based on the models are compared with the real data,and the results validate the effectiveness of the multiphysical inversion method.Time-lapse analysis shows the trend of CO_(2) migration during and after injection. 展开更多
关键词 Seismic forward modeling reservoir simulation CO_(2)storage time-lapse analysis
在线阅读 下载PDF
Seismic physical modeling and quality factor 被引量:1
18
作者 Gao Feng Wei Jian-Xin and Di Bang-Rang 《Applied Geophysics》 SCIE CSCD 2018年第1期46-56,148,共12页
Accurate Q parameter is hard to be obtained, but there is great difference between Q measurements from different measurement methods in seismic physical modelling. The influence factors, stability and accuracy of diff... Accurate Q parameter is hard to be obtained, but there is great difference between Q measurements from different measurement methods in seismic physical modelling. The influence factors, stability and accuracy of different methods are analyzed through standard sample experiment and the seismic physical modelling. Based on this, we proposed an improved method for improving accuracy of pulse transmission method, in which the samples with similar acoustic properties to the test sample are selected as the reference samples. We assess the stability and accuracy of the pulse transmission, pulse transmission insertion, and reflection wave methods for obtaining the quality factor Q using standard and reference samples and seismic physical modeling. The results suggest that the Q-values obtained by the pulse transmission method are strongly affected by diffraction and the error is 50% or greater, whereas the relative error of the improved pulse transmission method is about 10%. By using a theoretical diffraction correction method and the improved measurement method, the differences among the Q-measuring methods can be limited to within 10%. 展开更多
关键词 Seismic physical modeling Q-VALUE diffraction effect
在线阅读 下载PDF
Global SH-wave propagation in a 2D whole Moon model using the parallel hybrid PSM/FDM method 被引量:3
19
作者 Xianghua Jiang Yanbin Wang +1 位作者 Yanfang Qin Hiroshi Takenaka 《Earthquake Science》 CSCD 2015年第3期163-174,共12页
We present numerical modeling of SH-wave propagation for the recently proposed whole Moon model and try to improve our understanding of lunar seismic wave propagation. We use a hybrid PSM/FDM method on staggered grids... We present numerical modeling of SH-wave propagation for the recently proposed whole Moon model and try to improve our understanding of lunar seismic wave propagation. We use a hybrid PSM/FDM method on staggered grids to solve the wave equations and implement the calculation on a parallel PC cluster to improve the computing efficiency. Features of global SH-wave propagation are firstly discussed for a 100-km shallow and900-km deep moonquakes, respectively. Effects of frequency range and lateral variation of crust thickness are then investigated with various models. Our synthetic waveforms are finally compared with observed Apollo data to show the features of wave propagation that were produced by our model and those not reproduced by our models. Our numerical modeling show that the low-velocity upper crust plays significant role in the development of reverberating wave trains. Increasing frequency enhances the strength and duration of the reverberations.Surface multiples dominate wavefields for shallow event.Core–mantle reflections can be clearly identified for deep event at low frequency. The layered whole Moon model and the low-velocity upper crust produce the reverberating wave trains following each phases consistent with observation. However, more realistic Moon model should be considered in order to explain the strong and slow decay scattering between various phases shown on observation data. 展开更多
关键词 Whole Moon model Seismic wavefield SH-wave propagation Hybrid method Parallel computing
在线阅读 下载PDF
Numerical analysis of the resonance mechanism of the lumped parameter system model for acoustic mine detection 被引量:2
20
作者 王驰 周瑜秋 +2 位作者 沈高炜 吴文雯 丁卫 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期308-314,共7页
The method of numerical analysis is employed to study the resonance mechanism of the lumped parameter system model for acoustic mine detection. Based on the basic principle of the acoustic resonance technique for mine... The method of numerical analysis is employed to study the resonance mechanism of the lumped parameter system model for acoustic mine detection. Based on the basic principle of the acoustic resonance technique for mine detection and the characteristics of low-frequency acoustics, the “soil-mine” system could be equivalent to a damping “mass-spring” resonance model with a lumped parameter analysis method. The dynamic simulation software, Adams, is adopted to analyze the lumped parameter system model numerically. The simulated resonance frequency and anti-resonance frequency are 151 Hz and 512 Hz respectively, basically in agreement with the published resonance frequency of 155 Hz and anti-resonance frequency of 513 Hz, which were measured in the experiment. Therefore, the technique of numerical simulation is validated to have the potential for analyzing the acoustic mine detection model quantitatively. The influences of the soil and mine parameters on the resonance characteristics of the soil–mine system could be investigated by changing the parameter setup in a flexible manner. 展开更多
关键词 acoustic mine detection acoustic–seismic coupling resonance model
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部