To quantify the seismic effectiveness of the most commonly used fishing line tie up method for securing museum collections and optimize fixed strategies for exhibitions,shaking table tests of the seismic systems used ...To quantify the seismic effectiveness of the most commonly used fishing line tie up method for securing museum collections and optimize fixed strategies for exhibitions,shaking table tests of the seismic systems used for typical museum collection replicas have been carried out.The influence of body shape and fixed measure parameters on the seismic responses of replicas and the interaction behavior between replicas and fixed measures have been explored.Based on the results,seismic effectiveness evaluation indexes of the tie up method are proposed.Reasonable suggestions for fixed strategies are given,which provide a basis for the exhibition of delicate museum collections considering the principle of minimizing seismic responses and intervention.The analysis results show that a larger ratio of height of mass center to bottom diameter led to more intense rocking responses.Increasing the initial pretension of fishing lines was conducive to reducing the seismic responses and stress variation of the lines.Through comprehensive consideration of the interaction forces and effective securement,it is recommended to apply 20%of breaking stress as the initial pretension.For specific museum collections that cannot be effectively protected by the independent tie up method,an optimized strategy of a combination of fishing lines and fasteners is recommended.展开更多
Using the PSGRN/PSCMP software and the fault model offered by USGS and on the basis of finite rectangular dislocation theory and the local layered wave velocity structures of the crust-upper-mantle, the in- fluences o...Using the PSGRN/PSCMP software and the fault model offered by USGS and on the basis of finite rectangular dislocation theory and the local layered wave velocity structures of the crust-upper-mantle, the in- fluences of crustal layering and thickness on co-seismic gravity changes and deformation of Wenchuan earthquake have been simulated. The results indicate that: the influences have a relationship with the attitude of faults and the relative position between calculated points and fault. The difference distribution form of simula- ted results between the two models is similar to that of co-seismic effect. For the per centum distribution, it' s restricted by the zero line of the co-seismic effects obviously. Its positive is far away from the zero line. For the crustal thickness, the effect is about 10% -20%. The negative and the effect over 30% focus around the zero line. The average influences of crustal layering and thickness for the E-W displacement, N-S displacement, vertical displacement and gravity changes are 18.4 % , 18.0% , 15.8 % and 16.2% respectively, When the crustal thickness is 40 km, they are 4.6% ,5.3% ,3.8% and 3.8%. Then the crustal thickness is 70 kin, the average influences are 3.5%, 4. 6% ,3.0% and 2.5% respectively.展开更多
Using the ATG-6138 mercury detector recently developed by the Hangzhou Aadtech Co.Ltd.,a record of the co-seismic effect of mercury(Hg)vapor accompanying the 2015 Nepal M_S8.1 earthquake was obtained in the Mile monit...Using the ATG-6138 mercury detector recently developed by the Hangzhou Aadtech Co.Ltd.,a record of the co-seismic effect of mercury(Hg)vapor accompanying the 2015 Nepal M_S8.1 earthquake was obtained in the Mile monitoring well,Yunnan Province.This is the first record of co-seismic effect obtained by mercury vapor observation in China.Such a fact implies that it would be possible to record more information about crustal dynamic effects,such as solid tide,co-seismic effect,etc.,by further improving observation instrument precision and increasing the sampling frequency of the chemical quantity of subsurface fluids.This may help us to raise the capability of earthquake precursor monitoring and forecasting in the future.展开更多
The conventional pseudo-static approach often neglects the effect of the vertical' seismic acceleration on the stability of a slope, but some analyses under plane-strain (2D) conditions show a significant effect on...The conventional pseudo-static approach often neglects the effect of the vertical' seismic acceleration on the stability of a slope, but some analyses under plane-strain (2D) conditions show a significant effect on the slope stability. The purpose of this study is to investigate the effect of the vertical acceleration on the safety of three-dimensional (3D) slopes. In the strict framework of limit analysis, a 3D kinematically admissible rotational failure mechanism is adopted here for 3D homogeneous slopes in frictional/cohesive soils. A set of stability charts is presented in a wide range of parameters for 3D slopes under combined horizontal and vertical seismic loading conditions. Accounting for the effects of the vertical seismic acceleration, the difference in safety factors for 3D slopes can exceed 10%, which will significantly overestimate the safety of the 3D slopes.展开更多
Seismic safety evaluation is a basic work for determining the seismic resistance requirements of major construc-tion projects. The effect, especially the economic effect of the seismic safety evaluation has been gener...Seismic safety evaluation is a basic work for determining the seismic resistance requirements of major construc-tion projects. The effect, especially the economic effect of the seismic safety evaluation has been generally con-cerned. The paper gives a model for estimating the effect of seismic safety evaluation and calculates roughly the economic effect of seismic safety evaluation with some examples.展开更多
This study presents a systematic analysis of double-frequency(DF) microseisms recorded on the unconsolidated sediments in the eastern and southeastern coasts of United States. For all recordings, the site effect param...This study presents a systematic analysis of double-frequency(DF) microseisms recorded on the unconsolidated sediments in the eastern and southeastern coasts of United States. For all recordings, the site effect parameters(predominant frequency(f_(0)), amplification factor and unconsolidated sediment thickness(UST)) are obtained by Nakamura method and the DF spectra are classified into five groups in terms of the DF peak patterns and the recording locations relative to the coastline. The frequencies and energy levels of the DF peaks in horizontal direction and the amplification factors are associated with the UST which is resulted from seismic site effect. By polarization analysis, the primary vibration directions of the DF peaks are identified and presented as great circles passing through the recording stations intersecting mainly along the continental slope. Correlation analyses of time histories of the DF energy and the ocean wave climate observed at buoys show that the low(<0.2 Hz) and high(>0.2 Hz) frequency DF microseisms are generated in the deep ocean and the continental shelf respectively. It is concluded that the continental slope plays a significant role in the generation of DF microseisms as it causes reflection of waves from the open ocean, initiating standing waves.展开更多
Topography can strongly affect ground motion,and studies of the quantification of hill surfaces’topographic effect are relatively rare.In this paper,a new quantitative seismic topographic effect prediction method bas...Topography can strongly affect ground motion,and studies of the quantification of hill surfaces’topographic effect are relatively rare.In this paper,a new quantitative seismic topographic effect prediction method based upon the BP neural network algorithm and three-dimensional finite element method(FEM)was developed.The FEM simulation results were compared with seismic records and the results show that the PGA and response spectra have a tendency to increase with increasing elevation,but the correlation between PGA amplification factors and slope is not obvious for low hills.New BP neural network models were established for the prediction of amplification factors of PGA and response spectra.Two kinds of input variables’combinations which are convenient to achieve are proposed in this paper for the prediction of amplification factors of PGA and response spectra,respectively.The absolute values of prediction errors can be mostly within 0.1 for PGA amplification factors,and they can be mostly within 0.2 for response spectra’s amplification factors.One input variables’combination can achieve better prediction performance while the other one has better expandability of the predictive region.Particularly,the BP models only employ one hidden layer with about a hundred nodes,which makes it efficient for training.展开更多
The Loess Plateau is an earthquake prone region of China, where the effects of loess deposit on ground motion were discovered during the 2008 Wenchuan earthquake(Ms8.0) and the 2013 Minxian-Zhangxian earthquake(Ms6.6)...The Loess Plateau is an earthquake prone region of China, where the effects of loess deposit on ground motion were discovered during the 2008 Wenchuan earthquake(Ms8.0) and the 2013 Minxian-Zhangxian earthquake(Ms6.6). The field investigations, observations, and analyses indicated that large number of casualties and tremendous economic losses were caused not only by collapse and damage of houses with poor seismic performance, landslides, but also amplification effects of site conditions, topography and thickness of loess deposit, on ground motion. In this paper, we chose Dazhai Village and Majiagou Village as the typical loess site affected by the two earthquakes for intensity evaluation, borehole exploration, temporary strong motion array, micro tremor survey, and numerical analysis. The aim is to explore the relations between amplification factors and site conditions in terms of topography and thickness of loess deposit. We also developed site amplification factors of ground motion for engineering design consideration at loess sites. The results showed that the amplification effects are more predominant with increase in thickness of loess deposit and slope height. The amplification mayincrease seismic intensity by 1 degree, PGA and predominant period by 2 times, respectively.展开更多
The seismotectonic method is used to study the seismogenic structures and the maximum potential earthquake around an engineering site in order to determine the seismic risk at the site. Analysis of seismic risk from s...The seismotectonic method is used to study the seismogenic structures and the maximum potential earthquake around an engineering site in order to determine the seismic risk at the site. Analysis of seismic risk from site effect seismic intensity data, in combination with regional seismo_geological data, using the seismotectonic method can provide a more reliable result. In this paper, taking the area of six reservoir dam sites in western Anhui as an example, we analyze the seismic risk from site effect seismic intensity data in combination with the seismotectonic conditions and find that P (I≥i)=10% over 50 years. The result shows that the seismogenic structure and the maximum potential earthquake have a controlling effect on seismic risk from future earthquakes in the area around the site.展开更多
Topography can have signifi cant eff ects on seismic ground response during an earthquake because topographic irregularities cause considerable diff erences between the seismic waves emitted by the source and the wave...Topography can have signifi cant eff ects on seismic ground response during an earthquake because topographic irregularities cause considerable diff erences between the seismic waves emitted by the source and the waves reaching the ground surface. When a seismic motion happens in a topographically irregular area, seismic waves are trapped and refl ected between the topographic features. Therefore, the interaction between topographies can amplify seismic ground response. In order to reveal how interaction between topographies infl uences seismic response, several numerical fi nite element studies have been performed by using the ABAQUS program. The results show that topographic features a greater distance between the seismic source and the site would cause greater seismic motion amplifi cation and is perceptible for the hills far away from the source and the ridges. Also, site acceleration response is impacted by surrounding topography further than site velocity and displacement response.展开更多
In this work,a numerical study of the effects of soil-structure interaction(SSI)and granular material-structure interaction(GSI)on the nonlinear response and seismic capacity of flat-bottomed storage silos is conducte...In this work,a numerical study of the effects of soil-structure interaction(SSI)and granular material-structure interaction(GSI)on the nonlinear response and seismic capacity of flat-bottomed storage silos is conducted.A series of incremental dynamic analyses(IDA)are performed on a case of large reinforced concrete silo using 10 seismic recordings.The IDA results are given by two average IDA capacity curves,which are represented,as well as the seismic capacity of the studied structure,with and without a consideration of the SSI while accounting for the effect of GSI.These curves are used to quantify and evaluate the damage of the studied silo by utilizing two damage indices,one based on dissipated energy and the other on displacement and dissipated energy.The cumulative energy dissipation curves obtained by the average IDA capacity curves with and without SSI are presented as a function of the base shear,and these curves allow one to obtain the two critical points and the different limit states of the structure.It is observed that the SSI and GSI significantly influence the seismic response and capacity of the studied structure,particularly at higher levels of PGA.Moreover,the effect of the SSI reduces the damage index of the studied structure by 4%.展开更多
The available models for eff ective periods of site and structure are reviewed in context of frequency tuning in the inelastic seismic response of soil-structure system. The eff ect of seismic intensity and ductility ...The available models for eff ective periods of site and structure are reviewed in context of frequency tuning in the inelastic seismic response of soil-structure system. The eff ect of seismic intensity and ductility demand, on the eff ective periods, is investigated, and inelastic site amplifi cation is shown to be strongly correlated to the normalized eff ective period. Two non-dimensional parameters, analogous to the conventional site amplifi cation factors in codes, are defi ned to quantify the inelastic site amplifi cation. It is shown that the inelastic site amplifi cation factor (i.e. ratio of constant ductility spectral ordinates at soil site to those at rock outcrop) is able to represent the site eff ects more clearly, as compared to the inelastic site amplifi cation ratio (i.e. ratio of inelastic spectral ordinates at soil site to the corresponding elastic spectral ordinates at rock outcrop). Further, the peak in the amplifi cation factor corresponding to the eff ective site period diminishes rapidly with increasing ductility demand.展开更多
Seismic safety evaluation is a basic work for determining the seismic resistance requirements of major construc-tion projects. The effect, especially the economic effect of the seismic safety evaluation has been gener...Seismic safety evaluation is a basic work for determining the seismic resistance requirements of major construc-tion projects. The effect, especially the economic effect of the seismic safety evaluation has been generally con-cerned. The paper gives a model for estimating the effect of seismic safety evaluation and calculates roughly the economic effect of seismic safety evaluation with some examples.展开更多
In the paper, for the application of stochastic simulation of ground motion, we put forward a method to determine ″the combined effect of amplification and attenuation″ (combined effect for short) of soft rock site...In the paper, for the application of stochastic simulation of ground motion, we put forward a method to determine ″the combined effect of amplification and attenuation″ (combined effect for short) of soft rock site by using digital seismic data of moderate and small earthquakes. Our approach aims at solving the problem of the combined effect of soft rock site, which is difficult to determine in most regions of China because fewer measures were done for S-wave velocity structure. The combined effect of soft rock site can be determined by using the approach recom- mended by us. An example is given to discuss the practical application of the method.展开更多
In this paper, the reservoir temperatures of 14 hot spring samples collected from the northern segment of theRed River Fault are calculated by using the mixing-model of SiO2-geothermometer. Based on the features ofres...In this paper, the reservoir temperatures of 14 hot spring samples collected from the northern segment of theRed River Fault are calculated by using the mixing-model of SiO2-geothermometer. Based on the features ofreservoir temperatures and densities of hot springs, the northern segment of the Red River Fault is furtherdivided into 4 sub-segments. The influence of weakening effect of water on seismic activities is discussed fromthe view point of fault-weakening effect of water. It is suggested that the difference in seismic activity between various sub-segments is principally caused by the difference in intensity of the fault-weakening effect ofwater of these sub-segments. The Eryuan sub-segment where the reservoir temperatures are high and the hotsprings are dense corresponds to a slipped region, however, the Jianchuan and Midu sub-segments where thereservoir temperatures are lower and the hot springs are fewer as well as the Dan sub-segment where the hotspring are very few all correspond to locked regions. It is suggested that Dan sub-segment is the riskiest region for strong earthquake preparation, while the possibility for strong earthquake preparation is very little inthe Eryuan sub-segment.展开更多
A new characterization method of explosion seismic wave is suggested on the basis of the analysis of experimental measured results. The seismic wave function is resolved into amplitude modulation part and random one. ...A new characterization method of explosion seismic wave is suggested on the basis of the analysis of experimental measured results. The seismic wave function is resolved into amplitude modulation part and random one. For the latter, the fractal dimension and the relevant characterization parameters are yielded by using the Weirstrass Mandelbrot (W M) fractal function. In contrast with conventional statistical parameters, the new set of parameters is independent of the chosen time length scales and the measuring instruments. A modeling example is presented which shows that the theoretical results are in agreement with the experimental results.展开更多
Electric field effect on animals has been studied to investigate its relation with seismic anomalous animal behaviors(SAABs)in China.Freshwater eel,crucian carp,catfish,and soft-shelled turtle responded to the thresho...Electric field effect on animals has been studied to investigate its relation with seismic anomalous animal behaviors(SAABs)in China.Freshwater eel,crucian carp,catfish,and soft-shelled turtle responded to the threshold electric field of 1-10 V/m,while duck,goose,cat,sheep,pig,dog,and chicken all responded to the ground electric field of about tens of V/m,depending on the species as well as on individuals.Most of the behaviors caused by electric field were similar to those reported as SAABs such as alignment,sudden movement,panic,and convulsion.The intensity of electric field due to a major earthquake would have been over these threshold values.Numerical estimation based on an electromagnetic model of a fault has been made to induce SAABs as electric shocks to pulsed electric fields in electro-physiology.The seismic electric signals(SES)intensity might be estimated from the observation of SAABs.展开更多
To evaluate the importance of the canyon topography effects on large structures, based on a rigid frame bridge across a 137-m-deep and 600-m-wide canyon, the seismic response of the canyon site is analyzed using a two...To evaluate the importance of the canyon topography effects on large structures, based on a rigid frame bridge across a 137-m-deep and 600-m-wide canyon, the seismic response of the canyon site is analyzed using a two-dimensional finite element model under different seismic SV waves with the assumptions of vertical incidence and oblique incidence to obtain the ground motions, which are used as the excitation input on the pier foundations of the bridge with improved large mass method. The results indicate that canyon topography has significant influences on the ground motions in terms of inci- dent angle. The peak ground acceleration values vary greatly from the bottom of the canyon to the upper comers. Under ver- tical incident SV waves, at the upper comers of canyon the peak ground accelerations greatly increase; whereas the peak ground accelerations diminish at the bottom comers of canyon. Under oblique incident SV waves, the shaking of the canyon slope perpendicular to the incidence direction is much more severe than that of the opposite side of canyon. And the ground surface has been characterized by larger deformations in the case of oblique incident waves. It is also concluded that the low piers and frame of the continuous rigid frame bridge ape more sensitive to the multi-support seismic excitations than the flexible high piers. The canyon topography as well as the oblique incidence of the waves brings the continuous rigid frame bridge severe responses, which should be taken into account in bridge design.展开更多
Many destructive earthquakes happened in Tehran, Iran in the last centuries. The existence of active faults like the North Tehran is the main cause of seismicity in this city. According to past investigations, it is e...Many destructive earthquakes happened in Tehran, Iran in the last centuries. The existence of active faults like the North Tehran is the main cause of seismicity in this city. According to past investigations, it is estimated that in the scenario of activation of the North Tehran fault, many structures in Tehran will collapse. Therefore, it is necessary to incorporate the near field rupture directivity effects of this fault into the seismic hazard assessment of important sites in Tehran. In this study, using calculations coded in MATLAB, Probabilistic Seismic Hazard Analysis (PSHA) is conducted for an important site in Tehran. Following that, deaggregation technique is performed on PSHA and the contribution of seis- mic scenarios to hazard is obtained in the range of distance and magnitude. After identifying the North Tehran fault as the most hazardous source affecting the site in 10000-year return period, rupture directivity effects of this fault is incorporated into the seismic hazard assessment using Somerville et al. (1997) model with broadband approach and Shahi and Baker (2011) model with narrowband approach. The results show that the narrowband approach caused a 27% increase in the peak of response spectrum in 10000-year return period compared with the conventional PSHA. Therefore, it is necessary to incorporate the near fault rupture directivity effects into the higher levels of seismic hazard assessment attributed to important sites.展开更多
The 1°×1° distribution map of crustmantle structural ratio R for the lithosphere along the Longitudinal Seismic Belt of China has been compiled using computer based on the results of geophysical prospec...The 1°×1° distribution map of crustmantle structural ratio R for the lithosphere along the Longitudinal Seismic Belt of China has been compiled using computer based on the results of geophysical prospecting by previous researchers, and the latest results by the present authors. Based on this map, an insight into the structural features of the crustmantle assemblage along the Longitudinal Seismic Belt has been gained, while their relation to seismic activity and the distributions of geothermal flux and intracrustal high conductivitylow velocity layers, as well as their tectonic effect to seismicity have been discussed.展开更多
基金Beijing Nova Program under Grant No.2022036National Key Research and Development Program under Grant No.2019YFC1521000。
文摘To quantify the seismic effectiveness of the most commonly used fishing line tie up method for securing museum collections and optimize fixed strategies for exhibitions,shaking table tests of the seismic systems used for typical museum collection replicas have been carried out.The influence of body shape and fixed measure parameters on the seismic responses of replicas and the interaction behavior between replicas and fixed measures have been explored.Based on the results,seismic effectiveness evaluation indexes of the tie up method are proposed.Reasonable suggestions for fixed strategies are given,which provide a basis for the exhibition of delicate museum collections considering the principle of minimizing seismic responses and intervention.The analysis results show that a larger ratio of height of mass center to bottom diameter led to more intense rocking responses.Increasing the initial pretension of fishing lines was conducive to reducing the seismic responses and stress variation of the lines.Through comprehensive consideration of the interaction forces and effective securement,it is recommended to apply 20%of breaking stress as the initial pretension.For specific museum collections that cannot be effectively protected by the independent tie up method,an optimized strategy of a combination of fishing lines and fasteners is recommended.
基金supported by the National Natural Science Foundation of China(40574012)the Earthquake Science Joint Foundation(A07030)
文摘Using the PSGRN/PSCMP software and the fault model offered by USGS and on the basis of finite rectangular dislocation theory and the local layered wave velocity structures of the crust-upper-mantle, the in- fluences of crustal layering and thickness on co-seismic gravity changes and deformation of Wenchuan earthquake have been simulated. The results indicate that: the influences have a relationship with the attitude of faults and the relative position between calculated points and fault. The difference distribution form of simula- ted results between the two models is similar to that of co-seismic effect. For the per centum distribution, it' s restricted by the zero line of the co-seismic effects obviously. Its positive is far away from the zero line. For the crustal thickness, the effect is about 10% -20%. The negative and the effect over 30% focus around the zero line. The average influences of crustal layering and thickness for the E-W displacement, N-S displacement, vertical displacement and gravity changes are 18.4 % , 18.0% , 15.8 % and 16.2% respectively, When the crustal thickness is 40 km, they are 4.6% ,5.3% ,3.8% and 3.8%. Then the crustal thickness is 70 kin, the average influences are 3.5%, 4. 6% ,3.0% and 2.5% respectively.
基金sponsored by the Earthquake Science and Technology Spark Plan,China (XH15041Y)
文摘Using the ATG-6138 mercury detector recently developed by the Hangzhou Aadtech Co.Ltd.,a record of the co-seismic effect of mercury(Hg)vapor accompanying the 2015 Nepal M_S8.1 earthquake was obtained in the Mile monitoring well,Yunnan Province.This is the first record of co-seismic effect obtained by mercury vapor observation in China.Such a fact implies that it would be possible to record more information about crustal dynamic effects,such as solid tide,co-seismic effect,etc.,by further improving observation instrument precision and increasing the sampling frequency of the chemical quantity of subsurface fluids.This may help us to raise the capability of earthquake precursor monitoring and forecasting in the future.
基金National Natural Science Foundation of China under Grant No.51508160,No.51479050 and No.51278382National Key Basic Research Program of China under Grant No.2015CB057901+3 种基金the Public Service Sector R&D Project of the Ministry of Water Resource of China under Grant No.201501035-03the Fundamental Research Funds for the Central Universities under Grant No.2014B06814,No.2014B33414 and No.B15020060the 111 Project under Grant No.B13024the Graduate Education Innovation Project of Jiangsu Province of China under Grant No.CXZZ13_0242
文摘The conventional pseudo-static approach often neglects the effect of the vertical' seismic acceleration on the stability of a slope, but some analyses under plane-strain (2D) conditions show a significant effect on the slope stability. The purpose of this study is to investigate the effect of the vertical acceleration on the safety of three-dimensional (3D) slopes. In the strict framework of limit analysis, a 3D kinematically admissible rotational failure mechanism is adopted here for 3D homogeneous slopes in frictional/cohesive soils. A set of stability charts is presented in a wide range of parameters for 3D slopes under combined horizontal and vertical seismic loading conditions. Accounting for the effects of the vertical seismic acceleration, the difference in safety factors for 3D slopes can exceed 10%, which will significantly overestimate the safety of the 3D slopes.
文摘Seismic safety evaluation is a basic work for determining the seismic resistance requirements of major construc-tion projects. The effect, especially the economic effect of the seismic safety evaluation has been generally con-cerned. The paper gives a model for estimating the effect of seismic safety evaluation and calculates roughly the economic effect of seismic safety evaluation with some examples.
文摘This study presents a systematic analysis of double-frequency(DF) microseisms recorded on the unconsolidated sediments in the eastern and southeastern coasts of United States. For all recordings, the site effect parameters(predominant frequency(f_(0)), amplification factor and unconsolidated sediment thickness(UST)) are obtained by Nakamura method and the DF spectra are classified into five groups in terms of the DF peak patterns and the recording locations relative to the coastline. The frequencies and energy levels of the DF peaks in horizontal direction and the amplification factors are associated with the UST which is resulted from seismic site effect. By polarization analysis, the primary vibration directions of the DF peaks are identified and presented as great circles passing through the recording stations intersecting mainly along the continental slope. Correlation analyses of time histories of the DF energy and the ocean wave climate observed at buoys show that the low(<0.2 Hz) and high(>0.2 Hz) frequency DF microseisms are generated in the deep ocean and the continental shelf respectively. It is concluded that the continental slope plays a significant role in the generation of DF microseisms as it causes reflection of waves from the open ocean, initiating standing waves.
基金supported by the National Natural Science Foundation of China(No.51878625)the Collaboratory for the Study of Earthquake Predictability in China Seismic Experimental Site(No.2018YFE0109700)the General Scientific Research Foundation of Shandong Earthquake Agency(No.YB2208).
文摘Topography can strongly affect ground motion,and studies of the quantification of hill surfaces’topographic effect are relatively rare.In this paper,a new quantitative seismic topographic effect prediction method based upon the BP neural network algorithm and three-dimensional finite element method(FEM)was developed.The FEM simulation results were compared with seismic records and the results show that the PGA and response spectra have a tendency to increase with increasing elevation,but the correlation between PGA amplification factors and slope is not obvious for low hills.New BP neural network models were established for the prediction of amplification factors of PGA and response spectra.Two kinds of input variables’combinations which are convenient to achieve are proposed in this paper for the prediction of amplification factors of PGA and response spectra,respectively.The absolute values of prediction errors can be mostly within 0.1 for PGA amplification factors,and they can be mostly within 0.2 for response spectra’s amplification factors.One input variables’combination can achieve better prediction performance while the other one has better expandability of the predictive region.Particularly,the BP models only employ one hidden layer with about a hundred nodes,which makes it efficient for training.
基金financially supported by National Natural Science Foundation of China (No.51478444 & No.41472297)
文摘The Loess Plateau is an earthquake prone region of China, where the effects of loess deposit on ground motion were discovered during the 2008 Wenchuan earthquake(Ms8.0) and the 2013 Minxian-Zhangxian earthquake(Ms6.6). The field investigations, observations, and analyses indicated that large number of casualties and tremendous economic losses were caused not only by collapse and damage of houses with poor seismic performance, landslides, but also amplification effects of site conditions, topography and thickness of loess deposit, on ground motion. In this paper, we chose Dazhai Village and Majiagou Village as the typical loess site affected by the two earthquakes for intensity evaluation, borehole exploration, temporary strong motion array, micro tremor survey, and numerical analysis. The aim is to explore the relations between amplification factors and site conditions in terms of topography and thickness of loess deposit. We also developed site amplification factors of ground motion for engineering design consideration at loess sites. The results showed that the amplification effects are more predominant with increase in thickness of loess deposit and slope height. The amplification mayincrease seismic intensity by 1 degree, PGA and predominant period by 2 times, respectively.
文摘The seismotectonic method is used to study the seismogenic structures and the maximum potential earthquake around an engineering site in order to determine the seismic risk at the site. Analysis of seismic risk from site effect seismic intensity data, in combination with regional seismo_geological data, using the seismotectonic method can provide a more reliable result. In this paper, taking the area of six reservoir dam sites in western Anhui as an example, we analyze the seismic risk from site effect seismic intensity data in combination with the seismotectonic conditions and find that P (I≥i)=10% over 50 years. The result shows that the seismogenic structure and the maximum potential earthquake have a controlling effect on seismic risk from future earthquakes in the area around the site.
文摘Topography can have signifi cant eff ects on seismic ground response during an earthquake because topographic irregularities cause considerable diff erences between the seismic waves emitted by the source and the waves reaching the ground surface. When a seismic motion happens in a topographically irregular area, seismic waves are trapped and refl ected between the topographic features. Therefore, the interaction between topographies can amplify seismic ground response. In order to reveal how interaction between topographies infl uences seismic response, several numerical fi nite element studies have been performed by using the ABAQUS program. The results show that topographic features a greater distance between the seismic source and the site would cause greater seismic motion amplifi cation and is perceptible for the hills far away from the source and the ridges. Also, site acceleration response is impacted by surrounding topography further than site velocity and displacement response.
文摘In this work,a numerical study of the effects of soil-structure interaction(SSI)and granular material-structure interaction(GSI)on the nonlinear response and seismic capacity of flat-bottomed storage silos is conducted.A series of incremental dynamic analyses(IDA)are performed on a case of large reinforced concrete silo using 10 seismic recordings.The IDA results are given by two average IDA capacity curves,which are represented,as well as the seismic capacity of the studied structure,with and without a consideration of the SSI while accounting for the effect of GSI.These curves are used to quantify and evaluate the damage of the studied silo by utilizing two damage indices,one based on dissipated energy and the other on displacement and dissipated energy.The cumulative energy dissipation curves obtained by the average IDA capacity curves with and without SSI are presented as a function of the base shear,and these curves allow one to obtain the two critical points and the different limit states of the structure.It is observed that the SSI and GSI significantly influence the seismic response and capacity of the studied structure,particularly at higher levels of PGA.Moreover,the effect of the SSI reduces the damage index of the studied structure by 4%.
文摘The available models for eff ective periods of site and structure are reviewed in context of frequency tuning in the inelastic seismic response of soil-structure system. The eff ect of seismic intensity and ductility demand, on the eff ective periods, is investigated, and inelastic site amplifi cation is shown to be strongly correlated to the normalized eff ective period. Two non-dimensional parameters, analogous to the conventional site amplifi cation factors in codes, are defi ned to quantify the inelastic site amplifi cation. It is shown that the inelastic site amplifi cation factor (i.e. ratio of constant ductility spectral ordinates at soil site to those at rock outcrop) is able to represent the site eff ects more clearly, as compared to the inelastic site amplifi cation ratio (i.e. ratio of inelastic spectral ordinates at soil site to the corresponding elastic spectral ordinates at rock outcrop). Further, the peak in the amplifi cation factor corresponding to the eff ective site period diminishes rapidly with increasing ductility demand.
文摘Seismic safety evaluation is a basic work for determining the seismic resistance requirements of major construc-tion projects. The effect, especially the economic effect of the seismic safety evaluation has been generally con-cerned. The paper gives a model for estimating the effect of seismic safety evaluation and calculates roughly the economic effect of seismic safety evaluation with some examples.
基金The Special Funds for Major State Basic Research Project under Grant No.2002CB412706 and National Natural Science Foundation of China (50468003).
文摘In the paper, for the application of stochastic simulation of ground motion, we put forward a method to determine ″the combined effect of amplification and attenuation″ (combined effect for short) of soft rock site by using digital seismic data of moderate and small earthquakes. Our approach aims at solving the problem of the combined effect of soft rock site, which is difficult to determine in most regions of China because fewer measures were done for S-wave velocity structure. The combined effect of soft rock site can be determined by using the approach recom- mended by us. An example is given to discuss the practical application of the method.
文摘In this paper, the reservoir temperatures of 14 hot spring samples collected from the northern segment of theRed River Fault are calculated by using the mixing-model of SiO2-geothermometer. Based on the features ofreservoir temperatures and densities of hot springs, the northern segment of the Red River Fault is furtherdivided into 4 sub-segments. The influence of weakening effect of water on seismic activities is discussed fromthe view point of fault-weakening effect of water. It is suggested that the difference in seismic activity between various sub-segments is principally caused by the difference in intensity of the fault-weakening effect ofwater of these sub-segments. The Eryuan sub-segment where the reservoir temperatures are high and the hotsprings are dense corresponds to a slipped region, however, the Jianchuan and Midu sub-segments where thereservoir temperatures are lower and the hot springs are fewer as well as the Dan sub-segment where the hotspring are very few all correspond to locked regions. It is suggested that Dan sub-segment is the riskiest region for strong earthquake preparation, while the possibility for strong earthquake preparation is very little inthe Eryuan sub-segment.
文摘A new characterization method of explosion seismic wave is suggested on the basis of the analysis of experimental measured results. The seismic wave function is resolved into amplitude modulation part and random one. For the latter, the fractal dimension and the relevant characterization parameters are yielded by using the Weirstrass Mandelbrot (W M) fractal function. In contrast with conventional statistical parameters, the new set of parameters is independent of the chosen time length scales and the measuring instruments. A modeling example is presented which shows that the theoretical results are in agreement with the experimental results.
文摘Electric field effect on animals has been studied to investigate its relation with seismic anomalous animal behaviors(SAABs)in China.Freshwater eel,crucian carp,catfish,and soft-shelled turtle responded to the threshold electric field of 1-10 V/m,while duck,goose,cat,sheep,pig,dog,and chicken all responded to the ground electric field of about tens of V/m,depending on the species as well as on individuals.Most of the behaviors caused by electric field were similar to those reported as SAABs such as alignment,sudden movement,panic,and convulsion.The intensity of electric field due to a major earthquake would have been over these threshold values.Numerical estimation based on an electromagnetic model of a fault has been made to induce SAABs as electric shocks to pulsed electric fields in electro-physiology.The seismic electric signals(SES)intensity might be estimated from the observation of SAABs.
基金supported by National Natural Science Foundation of China (No. 50708100)National Science and Technology Support Project of China (No. 2006BAC13B02)partially by Basic Research Program of Institute of Mechanics Engineering, China Earthquake Administration (No. 2007B02)
文摘To evaluate the importance of the canyon topography effects on large structures, based on a rigid frame bridge across a 137-m-deep and 600-m-wide canyon, the seismic response of the canyon site is analyzed using a two-dimensional finite element model under different seismic SV waves with the assumptions of vertical incidence and oblique incidence to obtain the ground motions, which are used as the excitation input on the pier foundations of the bridge with improved large mass method. The results indicate that canyon topography has significant influences on the ground motions in terms of inci- dent angle. The peak ground acceleration values vary greatly from the bottom of the canyon to the upper comers. Under ver- tical incident SV waves, at the upper comers of canyon the peak ground accelerations greatly increase; whereas the peak ground accelerations diminish at the bottom comers of canyon. Under oblique incident SV waves, the shaking of the canyon slope perpendicular to the incidence direction is much more severe than that of the opposite side of canyon. And the ground surface has been characterized by larger deformations in the case of oblique incident waves. It is also concluded that the low piers and frame of the continuous rigid frame bridge ape more sensitive to the multi-support seismic excitations than the flexible high piers. The canyon topography as well as the oblique incidence of the waves brings the continuous rigid frame bridge severe responses, which should be taken into account in bridge design.
文摘Many destructive earthquakes happened in Tehran, Iran in the last centuries. The existence of active faults like the North Tehran is the main cause of seismicity in this city. According to past investigations, it is estimated that in the scenario of activation of the North Tehran fault, many structures in Tehran will collapse. Therefore, it is necessary to incorporate the near field rupture directivity effects of this fault into the seismic hazard assessment of important sites in Tehran. In this study, using calculations coded in MATLAB, Probabilistic Seismic Hazard Analysis (PSHA) is conducted for an important site in Tehran. Following that, deaggregation technique is performed on PSHA and the contribution of seis- mic scenarios to hazard is obtained in the range of distance and magnitude. After identifying the North Tehran fault as the most hazardous source affecting the site in 10000-year return period, rupture directivity effects of this fault is incorporated into the seismic hazard assessment using Somerville et al. (1997) model with broadband approach and Shahi and Baker (2011) model with narrowband approach. The results show that the narrowband approach caused a 27% increase in the peak of response spectrum in 10000-year return period compared with the conventional PSHA. Therefore, it is necessary to incorporate the near fault rupture directivity effects into the higher levels of seismic hazard assessment attributed to important sites.
文摘The 1°×1° distribution map of crustmantle structural ratio R for the lithosphere along the Longitudinal Seismic Belt of China has been compiled using computer based on the results of geophysical prospecting by previous researchers, and the latest results by the present authors. Based on this map, an insight into the structural features of the crustmantle assemblage along the Longitudinal Seismic Belt has been gained, while their relation to seismic activity and the distributions of geothermal flux and intracrustal high conductivitylow velocity layers, as well as their tectonic effect to seismicity have been discussed.