The phase transformation temperature, segregation behavior of elements and as-cast microstructure were investigated in experimental nickel-base superalloys with different levels of carbon and boron. The results show t...The phase transformation temperature, segregation behavior of elements and as-cast microstructure were investigated in experimental nickel-base superalloys with different levels of carbon and boron. The results show that the liquidus temperature decreases gradually but the carbide solvus temperature increases obviously with increasing carbon addition. Minor boron addition to the alloy decreases the liquidus temperature, carbide solvus temperature and solidus temperature slightly. Apart from rhenium, the segregation coefficients of the elements alter insignificantly with the addition of carbon. The segregation behavior of rhenium, tungsten and tantalum become more severe with boron addition. The volume fraction and size of primary carbides increase with increasing carbon addition. The main morphology of the carbides is script-like in the alloys with carbon addition while the carbide sheets tend to be concentrated and coarse in the boron-containing alloys展开更多
A new method has been proposed to prepare Mg-A1-Si master alloys by utilizing scrap AI-Si-Fe alloys with higher Fe levels, which aims to segregate Fe from AI-Si-Fe alloys by Mg melt. The segregation be- haviors, micro...A new method has been proposed to prepare Mg-A1-Si master alloys by utilizing scrap AI-Si-Fe alloys with higher Fe levels, which aims to segregate Fe from AI-Si-Fe alloys by Mg melt. The segregation be- haviors, microstructure morphology and evolution mechanism of iron-rich phases in Mg-A1-Si alloy melts were studied, after AI-14Si-4Fe (wt%) alloys were added and dissolved completely. In the Mg-A1-Si alloys, iron has very little solubility and tends to combine with other elements to form intermetallic phases, which grow into a deposition layer due to the higher density. During the cooling and solidifying process of Mg-A1-Si melts, the needle-like AlsSiFe phase in AI-14Si-4Fe alloy evolved into blocky AI5Fe2 and Al0.7Fe3Si0.3 phases. Besides, the Fe levels of the Mg-AI-Si master alloys were reduced to 0.017 wt% from nominal content of 0.164 wt%. Based on the above results, this work carried out a semi-quantitative phase- compositions analysis for the deposition layer by relative intensity ratio (RIR) method, and evolution mechanism of the iron-rich phases had also been discussed. This study has paved a new way to regen- erate the scrap AI-Si-Fe alloys, which has a great significance of promoting the recycling of aluminum resources.展开更多
The microstructure and mechanical properties of as-cast Al−Cu−Li−Mg−Zn alloys fabricated by conventional gravity casting and centrifugal casting techniques combined with rapid solidification were investigated.Experime...The microstructure and mechanical properties of as-cast Al−Cu−Li−Mg−Zn alloys fabricated by conventional gravity casting and centrifugal casting techniques combined with rapid solidification were investigated.Experimental results demonstrated that compared with the gravity casting technique,the water-cooling centrifugal casting technique significantly reduces porosity,refinesα(Al)grains and secondary phases,modifies the morphology of secondary phases,and mitigates both macro-and micro-segregation.These improvements arise from the synergistic effects of the vigorous backflow,centrifugal field,vibration and rapid solidification.Porosity and coarse plate-like Al13Fe4/Al7Cu2Fe phase result in the fracture before the gravity-cast alloy reaches the yield point.The centrifugal-cast alloy,however,exhibits an ultra-high yield strength of 292.0 MPa and a moderate elongation of 6.1%.This high yield strength is attributed to solid solution strengthening(SSS)of 225.3 MPa,and grain boundary strengthening(GBS)of 35.7 MPa.Li contributes the most to SSS with a scaling factor of 7.9 MPa·wt.%^(-1).The elongation of the centrifugal-cast alloy can be effectively enhanced by reducing the porosity and segregation behavior,refining the microstructure and changing the morphology of secondary phases.展开更多
基金Projects(2011CB610406,2010CB631202)supported by the National Basic Research Program of ChinaProjects(51101120,50931004,51171151)supported by the National Natural Science Foundation of China
文摘The phase transformation temperature, segregation behavior of elements and as-cast microstructure were investigated in experimental nickel-base superalloys with different levels of carbon and boron. The results show that the liquidus temperature decreases gradually but the carbide solvus temperature increases obviously with increasing carbon addition. Minor boron addition to the alloy decreases the liquidus temperature, carbide solvus temperature and solidus temperature slightly. Apart from rhenium, the segregation coefficients of the elements alter insignificantly with the addition of carbon. The segregation behavior of rhenium, tungsten and tantalum become more severe with boron addition. The volume fraction and size of primary carbides increase with increasing carbon addition. The main morphology of the carbides is script-like in the alloys with carbon addition while the carbide sheets tend to be concentrated and coarse in the boron-containing alloys
基金supported by the National Natural Science Foundation of China(No.512711101)the National Basic Research Program of China (No.2012CB825702)
文摘A new method has been proposed to prepare Mg-A1-Si master alloys by utilizing scrap AI-Si-Fe alloys with higher Fe levels, which aims to segregate Fe from AI-Si-Fe alloys by Mg melt. The segregation be- haviors, microstructure morphology and evolution mechanism of iron-rich phases in Mg-A1-Si alloy melts were studied, after AI-14Si-4Fe (wt%) alloys were added and dissolved completely. In the Mg-A1-Si alloys, iron has very little solubility and tends to combine with other elements to form intermetallic phases, which grow into a deposition layer due to the higher density. During the cooling and solidifying process of Mg-A1-Si melts, the needle-like AlsSiFe phase in AI-14Si-4Fe alloy evolved into blocky AI5Fe2 and Al0.7Fe3Si0.3 phases. Besides, the Fe levels of the Mg-AI-Si master alloys were reduced to 0.017 wt% from nominal content of 0.164 wt%. Based on the above results, this work carried out a semi-quantitative phase- compositions analysis for the deposition layer by relative intensity ratio (RIR) method, and evolution mechanism of the iron-rich phases had also been discussed. This study has paved a new way to regen- erate the scrap AI-Si-Fe alloys, which has a great significance of promoting the recycling of aluminum resources.
基金financially supported by the Natural Science Foundation of Ningbo,China (No.2023J053)。
文摘The microstructure and mechanical properties of as-cast Al−Cu−Li−Mg−Zn alloys fabricated by conventional gravity casting and centrifugal casting techniques combined with rapid solidification were investigated.Experimental results demonstrated that compared with the gravity casting technique,the water-cooling centrifugal casting technique significantly reduces porosity,refinesα(Al)grains and secondary phases,modifies the morphology of secondary phases,and mitigates both macro-and micro-segregation.These improvements arise from the synergistic effects of the vigorous backflow,centrifugal field,vibration and rapid solidification.Porosity and coarse plate-like Al13Fe4/Al7Cu2Fe phase result in the fracture before the gravity-cast alloy reaches the yield point.The centrifugal-cast alloy,however,exhibits an ultra-high yield strength of 292.0 MPa and a moderate elongation of 6.1%.This high yield strength is attributed to solid solution strengthening(SSS)of 225.3 MPa,and grain boundary strengthening(GBS)of 35.7 MPa.Li contributes the most to SSS with a scaling factor of 7.9 MPa·wt.%^(-1).The elongation of the centrifugal-cast alloy can be effectively enhanced by reducing the porosity and segregation behavior,refining the microstructure and changing the morphology of secondary phases.