In today’s rapidly evolving digital landscape,web application security has become paramount as organizations face increasingly sophisticated cyber threats.This work presents a comprehensive methodology for implementi...In today’s rapidly evolving digital landscape,web application security has become paramount as organizations face increasingly sophisticated cyber threats.This work presents a comprehensive methodology for implementing robust security measures in modern web applications and the proof of the Methodology applied to Vue.js,Spring Boot,and MySQL architecture.The proposed approach addresses critical security challenges through a multi-layered framework that encompasses essential security dimensions including multi-factor authentication,fine-grained authorization controls,sophisticated session management,data confidentiality and integrity protection,secure logging mechanisms,comprehensive error handling,high availability strategies,advanced input validation,and security headers implementation.Significant contributions are made to the field of web application security.First,a detailed catalogue of security requirements specifically tailored to protect web applications against contemporary threats,backed by rigorous analysis and industry best practices.Second,the methodology is validated through a carefully designed proof-of-concept implementation in a controlled environment,demonstrating the practical effectiveness of the security measures.The validation process employs cutting-edge static and dynamic analysis tools for comprehensive dependency validation and vulnerability detection,ensuring robust security coverage.The validation results confirm the prevention and avoidance of security vulnerabilities of the methodology.A key innovation of this work is the seamless integration of DevSecOps practices throughout the secure Software Development Life Cycle(SSDLC),creating a security-first mindset from initial design to deployment.By combining proactive secure coding practices with defensive security approaches,a framework is established that not only strengthens application security but also fosters a culture of security awareness within development teams.This hybrid approach ensures that security considerations are woven into every aspect of the development process,rather than being treated as an afterthought.展开更多
Industrial intelligence and secure interconnection serve as the foundational platform and critical information infrastructure for new industrialization,carrying significant strategic importance.They not only function ...Industrial intelligence and secure interconnection serve as the foundational platform and critical information infrastructure for new industrialization,carrying significant strategic importance.They not only function as the core engine driving the transformation and upgrading of the manufacturing sector and ensuring stable socioeconomic operation but are also vital to enhancing national technological competitiveness and safeguarding industrial security.展开更多
The secured access is studied in this paper for the network of the image remote sensing.Each sensor in this network encounters the information security when uploading information of the images wirelessly from the sens...The secured access is studied in this paper for the network of the image remote sensing.Each sensor in this network encounters the information security when uploading information of the images wirelessly from the sensor to the central collection point.In order to enhance the sensing quality for the remote uploading,the passive reflection surface technique is employed.If one eavesdropper that exists nearby this sensor is keeping on accessing the same networks,he may receive the same image from this sensor.Our goal in this paper is to improve the SNR of legitimate collection unit while cut down the SNR of the eavesdropper as much as possible by adaptively adjust the uploading power from this sensor to enhance the security of the remote sensing images.In order to achieve this goal,the secured energy efficiency performance is theoretically analyzed with respect to the number of the passive reflection elements by calculating the instantaneous performance over the channel fading coefficients.Based on this theoretical result,the secured access is formulated as a mathematical optimization problem by adjusting the sensor uploading power as the unknown variables with the objective of the energy efficiency maximization while satisfying any required maximum data rate of the eavesdropper sensor.Finally,the analytical expression is theoretically derived for the optimum uploading power.Numerical simulations verify the design approach.展开更多
Unmanned Aerial Vehicle(UAV)-aided communication holds great potential to enhance the transmission performance.However,the information security remains a fundamental requirement due to the high possibilities of line-o...Unmanned Aerial Vehicle(UAV)-aided communication holds great potential to enhance the transmission performance.However,the information security remains a fundamental requirement due to the high possibilities of line-of-sight links and the broadcast nature.展开更多
Applying non-orthogonal multiple access(NOMA)to the mobile edge computing(MEC)network supported by unmanned aerial vehicles(UAVs)can improve spectral efficiency and achieve massive user access on the basis of solving ...Applying non-orthogonal multiple access(NOMA)to the mobile edge computing(MEC)network supported by unmanned aerial vehicles(UAVs)can improve spectral efficiency and achieve massive user access on the basis of solving computing resource constraints and coverage problems.However,the UAV-enabled network has a serious risk of information leakage on account of the openness of wireless channel.This paper considers a UAV-MEC secure network based on NOMA technology,which aims to minimize the UAV energy consumption.To achieve the purpose while meeting the security and users’latency requirements,we formulate an optimization problem that jointly optimizes the UAV trajectory and the allocation of network resources.Given that the original problem is non-convex and multivariate coupled,we proposed an effective algorithm to decouple the nonconvex problem into independent user relation coefficients and subproblems based on successive convex approximation(SCA)and block coordinate descent(BCD).The simulation results showcase the performance of our optimization scheme across various parameter settings and confirm its superiority over other benchmarks with respect to energy consumption.展开更多
As industrialization and informatization in China deeply integrate and the Internet of Things rapidly develops,industrial control systems are facing increasingly severe information security challenges.The industrial c...As industrialization and informatization in China deeply integrate and the Internet of Things rapidly develops,industrial control systems are facing increasingly severe information security challenges.The industrial control system of the gas extraction plant is characterized by numerous points and centralized operations,with a strong reliance on the system and stringent real-time requirements.展开更多
In wireless Energy Harvesting(EH)cooperative networks,we investigate the problem of secure energy-saving resource allocation for downlink physical layer security transmission.Initially,we establish a model for a multi...In wireless Energy Harvesting(EH)cooperative networks,we investigate the problem of secure energy-saving resource allocation for downlink physical layer security transmission.Initially,we establish a model for a multi-relay cooperative network incorporating wireless energy harvesting,spectrum sharing,and system power constraints,focusing on physical layersecurity transmission in the presence of eavesdropping nodes.In this model,the source node transmits signals while injecting Artificial Noise(AN)to mitigate eavesdropping risks,and an idle relay can act as a jamming node to assist in this process.Based on this model,we formulate an optimization problem for maximizing system secure harvesting energy efficiency,this problem integrates constraints on total power,bandwidth,and AN allocation.We proceed by conducting a mathematical analysis of the optimization problem,deriving optimal solutions for secure energy-saving resource allocation,this includes strategies for power allocation at the source and relay nodes,bandwidth allocation among relays,and power splitting for the energy harvesting node.Thus,we propose a secure resource allocation algorithm designed to maximize secure harvesting energy efficiency.Finally,we validate the correctness of the theoretical derivation through Monte Carlo simulations,discussing the impact of parameters such as legitimate channel gain,power splitting factor,and the number of relays on secure harvesting energy efficiency of the system.The simulation results show that the proposed secure energy-saving resource allocation algorithm effectively enhances the security performance of the system.展开更多
Unmanned aerial vehicle(UAV)swarm network consisting of a collection of micro UAVs can be used for many applications.It is well established that packet routing is a fundamental problem to achieve UAV collaboration.How...Unmanned aerial vehicle(UAV)swarm network consisting of a collection of micro UAVs can be used for many applications.It is well established that packet routing is a fundamental problem to achieve UAV collaboration.However,the highly dynamic nature of UAVs,frequently changing network topologies and security issues,poses significant challenges to packet forwarding in UAV networks.The existing topology-based routing protocols are not well suited in UAV network due to their high controlling overhead or excessive end-to-end delay.Geographic routing is regarded as a promising solution,as it only requires local information.In order to enhance the accuracy and security of geographic routing in highly dynamic UAV network,in this paper,we propose a new predictive geographic(PGeo)routing strategy with location verification.First,a detection mechanism is adopted to recognize malicious UAVs falsifying their location.Then,an accurate average service time of a packet in the medium access control(MAC)layer is derived to assist location prediction.The proposed delay model can provide a theoretical basis for future work,and our simulation results reveal that PGeo outstrips the existing geographic routing protocols in terms of packet delivery ratio in the presence of location spoofing behavior.展开更多
In this paper,the application of Non-Orthogonal Multiple Access(NOMA)is investigated in a multiple-input single-output network consisting of multiple legitimate users and a potential eavesdropper.To support secure tra...In this paper,the application of Non-Orthogonal Multiple Access(NOMA)is investigated in a multiple-input single-output network consisting of multiple legitimate users and a potential eavesdropper.To support secure transmissions from legitimate users,two NOMA Secrecy Sum Rate Transmit Beam Forming(NOMA-SSR-TBF)schemes are proposed to maximise the SSR of a Base Station(BS)with sufficient and insufficient transmit power.For BS with sufficient transmit power,an artificial jamming beamforming design scheme is proposed to disrupt the potential eavesdropping without impacting the legitimate transmissions.In addition,for BS with insufficient transmit power,a modified successive interference cancellation decoding sequence is used to reduce the impact of artificial jamming on legitimate transmissions.More specifically,iterative algorithm for the successive convex approximation are provided to jointly optimise the vectors of transmit beamforming and artificial jamming.Experimental results demonstrate that the proposed NOMA-SSR-TBF schemes outperforms the existing works,such as the maximized artificial jamming power scheme,the maximized artificial jamming power scheme with artificial jamming beamforming design and maximized secrecy sum rate scheme without artificial jamming beamforming design.展开更多
The increasing adoption of smart devices and cloud services,coupled with limitations in local computing and storage resources,prompts numerous users to transmit private data to cloud servers for processing.However,the...The increasing adoption of smart devices and cloud services,coupled with limitations in local computing and storage resources,prompts numerous users to transmit private data to cloud servers for processing.However,the transmission of sensitive data in plaintext form raises concerns regarding users'privacy and security.To address these concerns,this study proposes an efficient privacy-preserving secure neural network inference scheme based on homomorphic encryption and secure multi-party computation,which ensures the privacy of both the user and the cloud server while enabling fast and accurate ciphertext inference.First,we divide the inference process into three stages,including the merging stage for adjusting the network structure,the preprocessing stage for performing homomorphic computations,and the online stage for floating-point operations on the secret sharing of private data.Second,we propose an approach of merging network parameters,thereby reducing the cost of multiplication levels and decreasing both ciphertext-plaintext multiplication and addition operations.Finally,we propose a fast convolution algorithm to enhance computational eficiency.Compared with other state-of-the-art methods,our scheme reduces the linear operation time in the online stage by at least 11%,significantly reducing inference time and communication overhead.展开更多
Non-Orthogonal Multiple Access(NOMA)in Unmanned Aerial Vehicle(UAV)-assisted communications is a promising technique in future wireless networks.However,for UAV-assisted communication systems,secure and covert communi...Non-Orthogonal Multiple Access(NOMA)in Unmanned Aerial Vehicle(UAV)-assisted communications is a promising technique in future wireless networks.However,for UAV-assisted communication systems,secure and covert communication is crucial for maintaining confidentiality in battlefield environments.This study focuses on a novel two-way relaying system assisted by the UAV,leveraging Power Domain NOMA(PD-NOMA),trajectory design,and power allocation strategies to enhance secure communication rates.A PD-NOMA scheme is proposed for the half-duplex two-way UAV relay,utilizing the advantage of Air-to-Ground(A2G)channel.The covert communication scheme is proposed based on the proposed NOMA scheme.A method using permutation matrices is proposed to dynamically adjust the NOMA decoding order based on the UAV trajectory and communication power levels,to reduce complexity while ensuring information causality constraints.A low-interference jamming strategy is proposed for the system for covertness communication.Because of the non-convexity of the problem,the power allocation and trajectory design problem are solved with Difference of Convex(DC)programming and Successive Convex Approximation(SCA).The schemes of jointly designing the NOMA order,allocating the communication power,and designing the trajectory are proposed to maximize the minimum secure communication data rate.Simulation results show that the proposed NOMA-UAV secure communication schemes outperform the benchmarks of the conventional Orthogonal Multiple Access(OMA)method.展开更多
Traditional steganography conceals information by modifying cover data,but steganalysis tools easily detect such alterations.While deep learning-based steganography often involves high training costs and complex deplo...Traditional steganography conceals information by modifying cover data,but steganalysis tools easily detect such alterations.While deep learning-based steganography often involves high training costs and complex deployment.Diffusion model-based methods face security vulnerabilities,particularly due to potential information leakage during generation.We propose a fixed neural network image steganography framework based on secure diffu-sion models to address these challenges.Unlike conventional approaches,our method minimizes cover modifications through neural network optimization,achieving superior steganographic performance in human visual perception and computer vision analyses.The cover images are generated in an anime style using state-of-the-art diffusion models,ensuring the transmitted images appear more natural.This study introduces fixed neural network technology that allows senders to transmit only minimal critical information alongside stego-images.Recipients can accurately reconstruct secret images using this compact data,significantly reducing transmission overhead compared to conventional deep steganography.Furthermore,our framework innovatively integrates ElGamal,a cryptographic algorithm,to protect critical information during transmission,enhancing overall system security and ensuring end-to-end information protection.This dual optimization of payload reduction and cryptographic reinforcement establishes a new paradigm for secure and efficient image steganography.展开更多
The performance of traditional regular Intelligent Reflecting Surface(IRS)improves as the number of IRS elements increases,but more reflecting elements lead to higher IRS power consumption and greater overhead of chan...The performance of traditional regular Intelligent Reflecting Surface(IRS)improves as the number of IRS elements increases,but more reflecting elements lead to higher IRS power consumption and greater overhead of channel estimation.The Irregular Intelligent Reflecting Surface(IIRS)can enhance the performance of the IRS as well as boost the system performance when the number of reflecting elements is limited.However,due to the lack of radio frequency chain in IRS,it is challenging for the Base Station(BS)to gather perfect Channel State Information(CSI),especially in the presence of Eavesdroppers(Eves).Therefore,in this paper we investigate the minimum transmit power problem of IIRS-aided Simultaneous Wireless Information and Power Transfer(SWIPT)secure communication system with imperfect CSI of BS-IIRS-Eves links,which is subject to the rate outage probability constraints of the Eves,the minimum rate constraints of the Information Receivers(IRs),the energy harvesting constraints of the Energy Receivers(ERs),and the topology matrix constraints.Afterward,the formulated nonconvex problem can be efficiently tackled by employing joint optimization algorithm combined with successive refinement method and adaptive topology design method.Simulation results demonstrate the effectiveness of the proposed scheme and the superiority of IIRS.展开更多
Medical institutions frequently utilize cloud servers for storing digital medical imaging data, aiming to lower both storage expenses and computational expenses. Nevertheless, the reliability of cloud servers as third...Medical institutions frequently utilize cloud servers for storing digital medical imaging data, aiming to lower both storage expenses and computational expenses. Nevertheless, the reliability of cloud servers as third-party providers is not always guaranteed. To safeguard against the exposure and misuse of personal privacy information, and achieve secure and efficient retrieval, a secure medical image retrieval based on a multi-attention mechanism and triplet deep hashing is proposed in this paper (abbreviated as MATDH). Specifically, this method first utilizes the contrast-limited adaptive histogram equalization method applicable to color images to enhance chest X-ray images. Next, a designed multi-attention mechanism focuses on important local features during the feature extraction stage. Moreover, a triplet loss function is utilized to learn discriminative hash codes to construct a compact and efficient triplet deep hashing. Finally, upsampling is used to restore the original resolution of the images during retrieval, thereby enabling more accurate matching. To ensure the security of medical image data, a lightweight image encryption method based on frequency domain encryption is designed to encrypt the chest X-ray images. The findings of the experiment indicate that, in comparison to various advanced image retrieval techniques, the suggested approach improves the precision of feature extraction and retrieval using the COVIDx dataset. Additionally, it offers enhanced protection for the confidentiality of medical images stored in cloud settings and demonstrates strong practicality.展开更多
Continuous-variable quantum secure direct communication(CVQSDC)with Gaussian modulation(GM)demands a considerable quantity of random numbers during the preparation process and encodes them separately on the quadrature...Continuous-variable quantum secure direct communication(CVQSDC)with Gaussian modulation(GM)demands a considerable quantity of random numbers during the preparation process and encodes them separately on the quadrature components of the quantum states.Hence,high-speed random number generators are required to satisfy this demand,which is difficult to implement in practical applications.CVQSDC with discrete modulation(DM),correspondingly,employs a finite number of quantum states to achieve encoding,which can circumvent the shortcomings of the GM scheme.Based on the advantages of DM,the issue of attaining the most optimal secrecy capacity and communication distance remains to be resolved.Here,we propose a CVQSDC protocol based on N-symbol amplitude phase shift keying(N-APSK),which exploits the Boltzmann-Maxwell distribution assisted probability shaping technique.In comparison with the uniform distribution,according to 32-APSK CVQSDC,the proposed scheme extends the communication distance by about 38%,while obtaining a higher secrecy capacity at the same communication distance.Furthermore,increasing the value of N will concurrently increase the quantity of rings in the constellation,thereby facilitating enhancements of communication distance.This work incorporates the modulation approaches prevalently employed in classical communication into the realm of quantum communication,attaining gratifying advancements in communication distance and secrecy capacity,and concurrently facilitating the integrated development of quantum communication and classical communication.展开更多
Non-Orthogonal Multiple Access(NOMA)assisted Unmanned Aerial Vehicle(UAV)communication is becoming a promising technique for future B5G/6G networks.However,the security of the NOMA-UAV networks remains critical challe...Non-Orthogonal Multiple Access(NOMA)assisted Unmanned Aerial Vehicle(UAV)communication is becoming a promising technique for future B5G/6G networks.However,the security of the NOMA-UAV networks remains critical challenges due to the shared wireless spectrum and Line-of-Sight(LoS)channel.This paper formulates a joint UAV trajectory design and power allocation problem with the aid of the ground jammer to maximize the sum secrecy rate.First,the joint optimization problem is modeled as a Markov Decision Process(MDP).Then,the Deep Reinforcement Learning(DRL)method is utilized to search the optimal policy from the continuous action space.In order to accelerate the sample accumulation,the Asynchronous Advantage Actor-Critic(A3C)scheme with multiple workers is proposed,which reformulates the action and reward to acquire complete update duration.Simulation results demonstrate that the A3C-based scheme outperforms the baseline schemes in term of the secrecy rate and stability.展开更多
Integrating Artificial Intelligence of Things(AIoT)in healthcare offers transformative potential for real-time diagnostics and collaborative learning but presents critical challenges,including privacy preservation,com...Integrating Artificial Intelligence of Things(AIoT)in healthcare offers transformative potential for real-time diagnostics and collaborative learning but presents critical challenges,including privacy preservation,computational efficiency,and regulatory compliance.Traditional approaches,such as differential privacy,homomorphic encryption,and secure multi-party computation,often fail to balance performance and privacy,rendering them unsuitable for resource-constrained healthcare AIoT environments.This paper introduces LMSA(Lightweight Multi-Key Secure Aggregation),a novel framework designed to address these challenges and enable efficient,secure federated learning across distributed healthcare institutions.LMSA incorporates three key innovations:(1)a lightweight multikey management system leveraging Diffie-Hellman key exchange and SHA3-256 hashing,achieving O(n)complexity with AES(Advanced Encryption Standard)-256-level security;(2)a privacy-preserving aggregation protocol employing hardware-accelerated AES-CTR(CounTeR)encryption andmodular arithmetic for securemodel weight combination;and(3)a resource-optimized implementation utilizing AES-NI(New Instructions)instructions and efficient memory management for real-time operations on constrained devices.Experimental evaluations using the National Institutes of Health(NIH)Chest X-ray dataset demonstrate LMSA’s ability to train multi-label thoracic disease prediction models with Vision Transformer(ViT),ResNet-50,and MobileNet architectures across distributed healthcare institutions.Memory usage analysis confirmed minimal overhead,with ViT(327.30 MB),ResNet-50(89.87 MB),and MobileNet(8.63 MB)maintaining stable encryption times across communication rounds.LMSA ensures robust security through hardware acceleration,enabling real-time diagnostics without compromising patient confidentiality or regulatory compliance.Future research aims to optimize LMSA for ultra-low-power devices and validate its scalability in heterogeneous,real-world environments.LMSA represents a foundational advancement for privacy-conscious healthcare AI applications,bridging the gap between privacy and performance.展开更多
Accurate time synchronization is fundamental to the correct and efficient operation of Wireless Sensor Networks(WSNs),especially in security-critical,time-sensitive applications.However,most existing protocols degrade...Accurate time synchronization is fundamental to the correct and efficient operation of Wireless Sensor Networks(WSNs),especially in security-critical,time-sensitive applications.However,most existing protocols degrade substantially under malicious interference.We introduce iSTSP,an Intelligent and Secure Time Synchronization Protocol that implements a four-stage defense pipeline to ensure robust,precise synchronization even in hostile environments:(1)trust preprocessing that filters node participation using behavioral trust scoring;(2)anomaly isolation employing a lightweight autoencoder to detect and excise malicious nodes in real time;(3)reliability-weighted consensus that prioritizes high-trust nodes during time aggregation;and(4)convergence-optimized synchronization that dynamically adjusts parameters using theoretical stability bounds.We provide rigorous convergence analysis including a closed-form expression for convergence time,and validate the protocol through both simulations and realworld experiments on a controlled 16-node testbed.Under Sybil attacks with five malicious nodes within this testbed,iSTSP maintains synchronization error increases under 12%and achieves a rapid convergence.Compared to state-ofthe-art protocols like TPSN,SE-FTSP,and MMAR-CTS,iSTSP offers 60%faster detection,broader threat coverage,and more than 7 times lower synchronization error,with a modest 9.3%energy overhead over 8 h.We argue this is an acceptable trade-off for mission-critical deployments requiring guaranteed security.These findings demonstrate iSTSP’s potential as a reliable solution for secure WSN synchronization and motivate future work on large-scale IoT deployments and integration with energy-efficient communication protocols.展开更多
文摘In today’s rapidly evolving digital landscape,web application security has become paramount as organizations face increasingly sophisticated cyber threats.This work presents a comprehensive methodology for implementing robust security measures in modern web applications and the proof of the Methodology applied to Vue.js,Spring Boot,and MySQL architecture.The proposed approach addresses critical security challenges through a multi-layered framework that encompasses essential security dimensions including multi-factor authentication,fine-grained authorization controls,sophisticated session management,data confidentiality and integrity protection,secure logging mechanisms,comprehensive error handling,high availability strategies,advanced input validation,and security headers implementation.Significant contributions are made to the field of web application security.First,a detailed catalogue of security requirements specifically tailored to protect web applications against contemporary threats,backed by rigorous analysis and industry best practices.Second,the methodology is validated through a carefully designed proof-of-concept implementation in a controlled environment,demonstrating the practical effectiveness of the security measures.The validation process employs cutting-edge static and dynamic analysis tools for comprehensive dependency validation and vulnerability detection,ensuring robust security coverage.The validation results confirm the prevention and avoidance of security vulnerabilities of the methodology.A key innovation of this work is the seamless integration of DevSecOps practices throughout the secure Software Development Life Cycle(SSDLC),creating a security-first mindset from initial design to deployment.By combining proactive secure coding practices with defensive security approaches,a framework is established that not only strengthens application security but also fosters a culture of security awareness within development teams.This hybrid approach ensures that security considerations are woven into every aspect of the development process,rather than being treated as an afterthought.
文摘Industrial intelligence and secure interconnection serve as the foundational platform and critical information infrastructure for new industrialization,carrying significant strategic importance.They not only function as the core engine driving the transformation and upgrading of the manufacturing sector and ensuring stable socioeconomic operation but are also vital to enhancing national technological competitiveness and safeguarding industrial security.
基金supported in part by Jiangsu Province High Level“333”Program (0401206044)National Natural Science Foundation of China (61801243,62072255)+4 种基金Program for Scientific Research Foundation for Talented Scholars of Jinling Institute of Technology (JIT-B-202031)University Incubator Foundation of Jinling Institute of Technology (JIT-FHXM-202110)Open Project of Fujian Provincial Key Lab.of Network Security and Cryptology (NSCL-KF2021-02)Open Foundation of National Railway Intelligence Transportation System Engineering Tech.Research Center (RITS2021KF02)China Postdoctoral Science Foundation (2019M651914)。
文摘The secured access is studied in this paper for the network of the image remote sensing.Each sensor in this network encounters the information security when uploading information of the images wirelessly from the sensor to the central collection point.In order to enhance the sensing quality for the remote uploading,the passive reflection surface technique is employed.If one eavesdropper that exists nearby this sensor is keeping on accessing the same networks,he may receive the same image from this sensor.Our goal in this paper is to improve the SNR of legitimate collection unit while cut down the SNR of the eavesdropper as much as possible by adaptively adjust the uploading power from this sensor to enhance the security of the remote sensing images.In order to achieve this goal,the secured energy efficiency performance is theoretically analyzed with respect to the number of the passive reflection elements by calculating the instantaneous performance over the channel fading coefficients.Based on this theoretical result,the secured access is formulated as a mathematical optimization problem by adjusting the sensor uploading power as the unknown variables with the objective of the energy efficiency maximization while satisfying any required maximum data rate of the eavesdropper sensor.Finally,the analytical expression is theoretically derived for the optimum uploading power.Numerical simulations verify the design approach.
文摘Unmanned Aerial Vehicle(UAV)-aided communication holds great potential to enhance the transmission performance.However,the information security remains a fundamental requirement due to the high possibilities of line-of-sight links and the broadcast nature.
基金supported in part by the National Natural Science Foundation of China under Grant 61971474in part by the National Natural Science Foundation of China under Grant 62301594+2 种基金in part by the Special Funds of the National Natural Science Foundation of China under Grant 62341112in part by the Beijing Nova Program under Grant Z201100006820121in part by the Beijing Municipal Science and Technology Project under Grant Z181100003218015.
文摘Applying non-orthogonal multiple access(NOMA)to the mobile edge computing(MEC)network supported by unmanned aerial vehicles(UAVs)can improve spectral efficiency and achieve massive user access on the basis of solving computing resource constraints and coverage problems.However,the UAV-enabled network has a serious risk of information leakage on account of the openness of wireless channel.This paper considers a UAV-MEC secure network based on NOMA technology,which aims to minimize the UAV energy consumption.To achieve the purpose while meeting the security and users’latency requirements,we formulate an optimization problem that jointly optimizes the UAV trajectory and the allocation of network resources.Given that the original problem is non-convex and multivariate coupled,we proposed an effective algorithm to decouple the nonconvex problem into independent user relation coefficients and subproblems based on successive convex approximation(SCA)and block coordinate descent(BCD).The simulation results showcase the performance of our optimization scheme across various parameter settings and confirm its superiority over other benchmarks with respect to energy consumption.
文摘As industrialization and informatization in China deeply integrate and the Internet of Things rapidly develops,industrial control systems are facing increasingly severe information security challenges.The industrial control system of the gas extraction plant is characterized by numerous points and centralized operations,with a strong reliance on the system and stringent real-time requirements.
基金supported by the National Natural Science Foundation of China(NSFC)[grant numbers 62171188]the Guangdong Provincial Key Laboratory of Human Digital Twin[Grant 2022B1212010004].
文摘In wireless Energy Harvesting(EH)cooperative networks,we investigate the problem of secure energy-saving resource allocation for downlink physical layer security transmission.Initially,we establish a model for a multi-relay cooperative network incorporating wireless energy harvesting,spectrum sharing,and system power constraints,focusing on physical layersecurity transmission in the presence of eavesdropping nodes.In this model,the source node transmits signals while injecting Artificial Noise(AN)to mitigate eavesdropping risks,and an idle relay can act as a jamming node to assist in this process.Based on this model,we formulate an optimization problem for maximizing system secure harvesting energy efficiency,this problem integrates constraints on total power,bandwidth,and AN allocation.We proceed by conducting a mathematical analysis of the optimization problem,deriving optimal solutions for secure energy-saving resource allocation,this includes strategies for power allocation at the source and relay nodes,bandwidth allocation among relays,and power splitting for the energy harvesting node.Thus,we propose a secure resource allocation algorithm designed to maximize secure harvesting energy efficiency.Finally,we validate the correctness of the theoretical derivation through Monte Carlo simulations,discussing the impact of parameters such as legitimate channel gain,power splitting factor,and the number of relays on secure harvesting energy efficiency of the system.The simulation results show that the proposed secure energy-saving resource allocation algorithm effectively enhances the security performance of the system.
基金co-supported by the National Key Research and Development Program of China(No.2024YFE0107900)the National Natural Science Foundation of China(No.62222105)+1 种基金the Natural Science Foundation of Guangdong Province,China(No.2024A1515010235)the 2024 China Unicom Guangdong low-altitude communication and sensing key technology research and digital twin platform research and development project(No.20241890).
文摘Unmanned aerial vehicle(UAV)swarm network consisting of a collection of micro UAVs can be used for many applications.It is well established that packet routing is a fundamental problem to achieve UAV collaboration.However,the highly dynamic nature of UAVs,frequently changing network topologies and security issues,poses significant challenges to packet forwarding in UAV networks.The existing topology-based routing protocols are not well suited in UAV network due to their high controlling overhead or excessive end-to-end delay.Geographic routing is regarded as a promising solution,as it only requires local information.In order to enhance the accuracy and security of geographic routing in highly dynamic UAV network,in this paper,we propose a new predictive geographic(PGeo)routing strategy with location verification.First,a detection mechanism is adopted to recognize malicious UAVs falsifying their location.Then,an accurate average service time of a packet in the medium access control(MAC)layer is derived to assist location prediction.The proposed delay model can provide a theoretical basis for future work,and our simulation results reveal that PGeo outstrips the existing geographic routing protocols in terms of packet delivery ratio in the presence of location spoofing behavior.
基金supported in part by the Natural Science Foundation of Fujian Province under Grant 2022J01169the Local Science and Technology Development of Fujian Province under Grant 2021L3010+3 种基金the Key Project of Science and Technology Innovation of Fujian Province under Grant 2021G02006the National Natural Science Foundation of China under Grants 61971360 and 62271420the National Natural Science Foundation of China under Grant 62071247the Urban Carbon Neutral Science and Technology Innovation Fund Project of Beijing University of Technology ($040000514122607$)。
文摘In this paper,the application of Non-Orthogonal Multiple Access(NOMA)is investigated in a multiple-input single-output network consisting of multiple legitimate users and a potential eavesdropper.To support secure transmissions from legitimate users,two NOMA Secrecy Sum Rate Transmit Beam Forming(NOMA-SSR-TBF)schemes are proposed to maximise the SSR of a Base Station(BS)with sufficient and insufficient transmit power.For BS with sufficient transmit power,an artificial jamming beamforming design scheme is proposed to disrupt the potential eavesdropping without impacting the legitimate transmissions.In addition,for BS with insufficient transmit power,a modified successive interference cancellation decoding sequence is used to reduce the impact of artificial jamming on legitimate transmissions.More specifically,iterative algorithm for the successive convex approximation are provided to jointly optimise the vectors of transmit beamforming and artificial jamming.Experimental results demonstrate that the proposed NOMA-SSR-TBF schemes outperforms the existing works,such as the maximized artificial jamming power scheme,the maximized artificial jamming power scheme with artificial jamming beamforming design and maximized secrecy sum rate scheme without artificial jamming beamforming design.
基金Project supported by the National Natural Science Foundation of China(No.U22B2026 and 62572121)the ZTE Industry University Research Cooperation Project。
文摘The increasing adoption of smart devices and cloud services,coupled with limitations in local computing and storage resources,prompts numerous users to transmit private data to cloud servers for processing.However,the transmission of sensitive data in plaintext form raises concerns regarding users'privacy and security.To address these concerns,this study proposes an efficient privacy-preserving secure neural network inference scheme based on homomorphic encryption and secure multi-party computation,which ensures the privacy of both the user and the cloud server while enabling fast and accurate ciphertext inference.First,we divide the inference process into three stages,including the merging stage for adjusting the network structure,the preprocessing stage for performing homomorphic computations,and the online stage for floating-point operations on the secret sharing of private data.Second,we propose an approach of merging network parameters,thereby reducing the cost of multiplication levels and decreasing both ciphertext-plaintext multiplication and addition operations.Finally,we propose a fast convolution algorithm to enhance computational eficiency.Compared with other state-of-the-art methods,our scheme reduces the linear operation time in the online stage by at least 11%,significantly reducing inference time and communication overhead.
基金supported in part by the National Natural Science Foundation of China(No.62171154)in part by the Fundamental Research Funds for the Central Universities,China(No.HIT.OCEF.2023030).
文摘Non-Orthogonal Multiple Access(NOMA)in Unmanned Aerial Vehicle(UAV)-assisted communications is a promising technique in future wireless networks.However,for UAV-assisted communication systems,secure and covert communication is crucial for maintaining confidentiality in battlefield environments.This study focuses on a novel two-way relaying system assisted by the UAV,leveraging Power Domain NOMA(PD-NOMA),trajectory design,and power allocation strategies to enhance secure communication rates.A PD-NOMA scheme is proposed for the half-duplex two-way UAV relay,utilizing the advantage of Air-to-Ground(A2G)channel.The covert communication scheme is proposed based on the proposed NOMA scheme.A method using permutation matrices is proposed to dynamically adjust the NOMA decoding order based on the UAV trajectory and communication power levels,to reduce complexity while ensuring information causality constraints.A low-interference jamming strategy is proposed for the system for covertness communication.Because of the non-convexity of the problem,the power allocation and trajectory design problem are solved with Difference of Convex(DC)programming and Successive Convex Approximation(SCA).The schemes of jointly designing the NOMA order,allocating the communication power,and designing the trajectory are proposed to maximize the minimum secure communication data rate.Simulation results show that the proposed NOMA-UAV secure communication schemes outperform the benchmarks of the conventional Orthogonal Multiple Access(OMA)method.
基金supported in part by the National Natural Science Foundation of China under Grants 62102450,62272478 and the Independent Research Project of a Certain Unit under Grant ZZKY20243127。
文摘Traditional steganography conceals information by modifying cover data,but steganalysis tools easily detect such alterations.While deep learning-based steganography often involves high training costs and complex deployment.Diffusion model-based methods face security vulnerabilities,particularly due to potential information leakage during generation.We propose a fixed neural network image steganography framework based on secure diffu-sion models to address these challenges.Unlike conventional approaches,our method minimizes cover modifications through neural network optimization,achieving superior steganographic performance in human visual perception and computer vision analyses.The cover images are generated in an anime style using state-of-the-art diffusion models,ensuring the transmitted images appear more natural.This study introduces fixed neural network technology that allows senders to transmit only minimal critical information alongside stego-images.Recipients can accurately reconstruct secret images using this compact data,significantly reducing transmission overhead compared to conventional deep steganography.Furthermore,our framework innovatively integrates ElGamal,a cryptographic algorithm,to protect critical information during transmission,enhancing overall system security and ensuring end-to-end information protection.This dual optimization of payload reduction and cryptographic reinforcement establishes a new paradigm for secure and efficient image steganography.
基金supported in part by the Shenzhen Basic Research Program under Grant JCYJ20220531103008018,and Grants 20231120142345001 and 20231127144045001the Natural Science Foundation of China under Grant U20A20156.
文摘The performance of traditional regular Intelligent Reflecting Surface(IRS)improves as the number of IRS elements increases,but more reflecting elements lead to higher IRS power consumption and greater overhead of channel estimation.The Irregular Intelligent Reflecting Surface(IIRS)can enhance the performance of the IRS as well as boost the system performance when the number of reflecting elements is limited.However,due to the lack of radio frequency chain in IRS,it is challenging for the Base Station(BS)to gather perfect Channel State Information(CSI),especially in the presence of Eavesdroppers(Eves).Therefore,in this paper we investigate the minimum transmit power problem of IIRS-aided Simultaneous Wireless Information and Power Transfer(SWIPT)secure communication system with imperfect CSI of BS-IIRS-Eves links,which is subject to the rate outage probability constraints of the Eves,the minimum rate constraints of the Information Receivers(IRs),the energy harvesting constraints of the Energy Receivers(ERs),and the topology matrix constraints.Afterward,the formulated nonconvex problem can be efficiently tackled by employing joint optimization algorithm combined with successive refinement method and adaptive topology design method.Simulation results demonstrate the effectiveness of the proposed scheme and the superiority of IIRS.
基金supported by the NationalNatural Science Foundation of China(No.61862041).
文摘Medical institutions frequently utilize cloud servers for storing digital medical imaging data, aiming to lower both storage expenses and computational expenses. Nevertheless, the reliability of cloud servers as third-party providers is not always guaranteed. To safeguard against the exposure and misuse of personal privacy information, and achieve secure and efficient retrieval, a secure medical image retrieval based on a multi-attention mechanism and triplet deep hashing is proposed in this paper (abbreviated as MATDH). Specifically, this method first utilizes the contrast-limited adaptive histogram equalization method applicable to color images to enhance chest X-ray images. Next, a designed multi-attention mechanism focuses on important local features during the feature extraction stage. Moreover, a triplet loss function is utilized to learn discriminative hash codes to construct a compact and efficient triplet deep hashing. Finally, upsampling is used to restore the original resolution of the images during retrieval, thereby enabling more accurate matching. To ensure the security of medical image data, a lightweight image encryption method based on frequency domain encryption is designed to encrypt the chest X-ray images. The findings of the experiment indicate that, in comparison to various advanced image retrieval techniques, the suggested approach improves the precision of feature extraction and retrieval using the COVIDx dataset. Additionally, it offers enhanced protection for the confidentiality of medical images stored in cloud settings and demonstrates strong practicality.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62071381 and 62301430)Shaanxi Fundamental Science Research Project for Mathematics and Physics(Grant No.23JSY014)+1 种基金Scientific Research Plan Project of Shaanxi Education Department Natural Science Special Project(Grant No.23JK0680)Young Talent Fund of Xi’an Association for Science and Technology(Grant No.959202313011)。
文摘Continuous-variable quantum secure direct communication(CVQSDC)with Gaussian modulation(GM)demands a considerable quantity of random numbers during the preparation process and encodes them separately on the quadrature components of the quantum states.Hence,high-speed random number generators are required to satisfy this demand,which is difficult to implement in practical applications.CVQSDC with discrete modulation(DM),correspondingly,employs a finite number of quantum states to achieve encoding,which can circumvent the shortcomings of the GM scheme.Based on the advantages of DM,the issue of attaining the most optimal secrecy capacity and communication distance remains to be resolved.Here,we propose a CVQSDC protocol based on N-symbol amplitude phase shift keying(N-APSK),which exploits the Boltzmann-Maxwell distribution assisted probability shaping technique.In comparison with the uniform distribution,according to 32-APSK CVQSDC,the proposed scheme extends the communication distance by about 38%,while obtaining a higher secrecy capacity at the same communication distance.Furthermore,increasing the value of N will concurrently increase the quantity of rings in the constellation,thereby facilitating enhancements of communication distance.This work incorporates the modulation approaches prevalently employed in classical communication into the realm of quantum communication,attaining gratifying advancements in communication distance and secrecy capacity,and concurrently facilitating the integrated development of quantum communication and classical communication.
基金supported by the Fundamental Research Funds for the Central Universities,China(No.2024MS115).
文摘Non-Orthogonal Multiple Access(NOMA)assisted Unmanned Aerial Vehicle(UAV)communication is becoming a promising technique for future B5G/6G networks.However,the security of the NOMA-UAV networks remains critical challenges due to the shared wireless spectrum and Line-of-Sight(LoS)channel.This paper formulates a joint UAV trajectory design and power allocation problem with the aid of the ground jammer to maximize the sum secrecy rate.First,the joint optimization problem is modeled as a Markov Decision Process(MDP).Then,the Deep Reinforcement Learning(DRL)method is utilized to search the optimal policy from the continuous action space.In order to accelerate the sample accumulation,the Asynchronous Advantage Actor-Critic(A3C)scheme with multiple workers is proposed,which reformulates the action and reward to acquire complete update duration.Simulation results demonstrate that the A3C-based scheme outperforms the baseline schemes in term of the secrecy rate and stability.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.NRF-2022R1C1C2012463).
文摘Integrating Artificial Intelligence of Things(AIoT)in healthcare offers transformative potential for real-time diagnostics and collaborative learning but presents critical challenges,including privacy preservation,computational efficiency,and regulatory compliance.Traditional approaches,such as differential privacy,homomorphic encryption,and secure multi-party computation,often fail to balance performance and privacy,rendering them unsuitable for resource-constrained healthcare AIoT environments.This paper introduces LMSA(Lightweight Multi-Key Secure Aggregation),a novel framework designed to address these challenges and enable efficient,secure federated learning across distributed healthcare institutions.LMSA incorporates three key innovations:(1)a lightweight multikey management system leveraging Diffie-Hellman key exchange and SHA3-256 hashing,achieving O(n)complexity with AES(Advanced Encryption Standard)-256-level security;(2)a privacy-preserving aggregation protocol employing hardware-accelerated AES-CTR(CounTeR)encryption andmodular arithmetic for securemodel weight combination;and(3)a resource-optimized implementation utilizing AES-NI(New Instructions)instructions and efficient memory management for real-time operations on constrained devices.Experimental evaluations using the National Institutes of Health(NIH)Chest X-ray dataset demonstrate LMSA’s ability to train multi-label thoracic disease prediction models with Vision Transformer(ViT),ResNet-50,and MobileNet architectures across distributed healthcare institutions.Memory usage analysis confirmed minimal overhead,with ViT(327.30 MB),ResNet-50(89.87 MB),and MobileNet(8.63 MB)maintaining stable encryption times across communication rounds.LMSA ensures robust security through hardware acceleration,enabling real-time diagnostics without compromising patient confidentiality or regulatory compliance.Future research aims to optimize LMSA for ultra-low-power devices and validate its scalability in heterogeneous,real-world environments.LMSA represents a foundational advancement for privacy-conscious healthcare AI applications,bridging the gap between privacy and performance.
基金this project under Geran Putra Inisiatif(GPI)with reference of GP-GPI/2023/976210。
文摘Accurate time synchronization is fundamental to the correct and efficient operation of Wireless Sensor Networks(WSNs),especially in security-critical,time-sensitive applications.However,most existing protocols degrade substantially under malicious interference.We introduce iSTSP,an Intelligent and Secure Time Synchronization Protocol that implements a four-stage defense pipeline to ensure robust,precise synchronization even in hostile environments:(1)trust preprocessing that filters node participation using behavioral trust scoring;(2)anomaly isolation employing a lightweight autoencoder to detect and excise malicious nodes in real time;(3)reliability-weighted consensus that prioritizes high-trust nodes during time aggregation;and(4)convergence-optimized synchronization that dynamically adjusts parameters using theoretical stability bounds.We provide rigorous convergence analysis including a closed-form expression for convergence time,and validate the protocol through both simulations and realworld experiments on a controlled 16-node testbed.Under Sybil attacks with five malicious nodes within this testbed,iSTSP maintains synchronization error increases under 12%and achieves a rapid convergence.Compared to state-ofthe-art protocols like TPSN,SE-FTSP,and MMAR-CTS,iSTSP offers 60%faster detection,broader threat coverage,and more than 7 times lower synchronization error,with a modest 9.3%energy overhead over 8 h.We argue this is an acceptable trade-off for mission-critical deployments requiring guaranteed security.These findings demonstrate iSTSP’s potential as a reliable solution for secure WSN synchronization and motivate future work on large-scale IoT deployments and integration with energy-efficient communication protocols.