To investigate the influence of coarse aggregate parent rock properties on the elastic modulus of concrete,the mineralogical properties and stress-strain curves of granite and dolomite parent rocks,as well as the stre...To investigate the influence of coarse aggregate parent rock properties on the elastic modulus of concrete,the mineralogical properties and stress-strain curves of granite and dolomite parent rocks,as well as the strength and elastic modulus of mortar and concrete prepared with mechanism aggregates of the corresponding lithology,and the stress-strain curves of concrete were investigated.In this paper,a coarse aggregate and mortar matrix bonding assumption is proposed,and a prediction model for the elastic modulus of mortar is established by considering the lithology of the mechanism sand and the slurry components.An equivalent coarse aggregate elastic modulus model was established by considering factors such as coarse aggregate particle size,volume fraction,and mortar thickness between coarse aggregates.Based on the elastic modulus of the equivalent coarse aggregate and the remaining mortar,a prediction model for the elastic modulus of the two and three components of concrete in series and then in parallel was established,and the predicted values differed from the measured values within 10%.It is proposed that the coarse aggregate elastic modulus in highstrength concrete is the most critical factor affecting the elastic modulus of concrete,and as the coarse aggregate elastic modulus increases by 27.7%,the concrete elastic modulus increases by 19.5%.展开更多
Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive cont...Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive control(MPC),which utilizes an extensive mathe-matical model of the voltage regulation system to optimize the control actions over a defined prediction horizon.This predictive feature enables MPC to minimize voltage deviations while accounting for operational constraints,thereby improving stability and performance under dynamic conditions.Thefindings were compared with those derived from an optimal proportional integral derivative(PID)con-troller designed using the artificial bee colony(ABC)algorithm.Although the ABC-PID method adjusts the PID parameters based on historical data,it may be difficult to adapt to real-time changes in system dynamics under constraints.Comprehensive simulations assessed both frameworks,emphasizing performance metrics such as disturbance rejection,response to load changes,and resilience to uncertainties.The results show that both MPC and ABC-PID methods effectively achieved accurate voltage regulation;however,MPC excelled in controlling overshoot and settling time—recording 0.0%and 0.25 s,respectively.This demonstrates greater robustness compared to conventional control methods that optimize PID parameters based on performance criteria derived from actual system behavior,which exhibited settling times and overshoots exceeding 0.41 s and 5.0%,respectively.The controllers were implemented using MATLAB/Simulink software,indicating a significant advancement for power plant engineers pursuing state-of-the-art automatic voltage regulations.展开更多
This work illustrates the innovative results obtained by applying the recently developed the 2<sup>nd</sup>-order predictive modeling methodology called “2<sup>nd</sup>- BERRU-PM”, where the ...This work illustrates the innovative results obtained by applying the recently developed the 2<sup>nd</sup>-order predictive modeling methodology called “2<sup>nd</sup>- BERRU-PM”, where the acronym BERRU denotes “best-estimate results with reduced uncertainties” and “PM” denotes “predictive modeling.” The physical system selected for this illustrative application is a polyethylene-reflected plutonium (acronym: PERP) OECD/NEA reactor physics benchmark. This benchmark is modeled using the neutron transport Boltzmann equation (involving 21,976 uncertain parameters), the solution of which is representative of “large-scale computations.” The results obtained in this work confirm the fact that the 2<sup>nd</sup>-BERRU-PM methodology predicts best-estimate results that fall in between the corresponding computed and measured values, while reducing the predicted standard deviations of the predicted results to values smaller than either the experimentally measured or the computed values of the respective standard deviations. The obtained results also indicate that 2<sup>nd</sup>-order response sensitivities must always be included to quantify the need for including (or not) the 3<sup>rd</sup>- and/or 4<sup>th</sup>-order sensitivities. When the parameters are known with high precision, the contributions of the higher-order sensitivities diminish with increasing order, so that the inclusion of the 1<sup>st</sup>- and 2<sup>nd</sup>-order sensitivities may suffice for obtaining accurate predicted best- estimate response values and best-estimate standard deviations. On the other hand, when the parameters’ standard deviations are sufficiently large to approach (or be outside of) the radius of convergence of the multivariate Taylor-series which represents the response in the phase-space of model parameters, the contributions stemming from the 3<sup>rd</sup>- and even 4<sup>th</sup>-order sensitivities are necessary to ensure consistency between the computed and measured response. In such cases, the use of only the 1<sup>st</sup>-order sensitivities erroneously indicates that the computed results are inconsistent with the respective measured response. Ongoing research aims at extending the 2<sup>nd</sup>-BERRU-PM methodology to fourth-order, thus enabling the computation of third-order response correlations (skewness) and fourth-order response correlations (kurtosis).展开更多
This work presents a comprehensive second-order predictive modeling (PM) methodology based on the maximum entropy (MaxEnt) principle for obtaining best-estimate mean values and correlations for model responses and par...This work presents a comprehensive second-order predictive modeling (PM) methodology based on the maximum entropy (MaxEnt) principle for obtaining best-estimate mean values and correlations for model responses and parameters. This methodology is designated by the acronym 2<sup>nd</sup>-BERRU-PMP, where the attribute “2<sup>nd</sup>” indicates that this methodology incorporates second- order uncertainties (means and covariances) and second (and higher) order sensitivities of computed model responses to model parameters. The acronym BERRU stands for “Best-Estimate Results with Reduced Uncertainties” and the last letter (“P”) in the acronym indicates “probabilistic,” referring to the MaxEnt probabilistic inclusion of the computational model responses. This is in contradistinction to the 2<sup>nd</sup>-BERRU-PMD methodology, which deterministically combines the computed model responses with the experimental information, as presented in the accompanying work (Part I). Although both the 2<sup>nd</sup>-BERRU-PMP and the 2<sup>nd</sup>-BERRU-PMD methodologies yield expressions that include second (and higher) order sensitivities of responses to model parameters, the respective expressions for the predicted responses, for the calibrated predicted parameters and for their predicted uncertainties (covariances), are not identical to each other. Nevertheless, the results predicted by both the 2<sup>nd</sup>-BERRU-PMP and the 2<sup>nd</sup>-BERRU-PMD methodologies encompass, as particular cases, the results produced by the extant data assimilation and data adjustment procedures, which rely on the minimization, in a least-square sense, of a user-defined functional meant to represent the discrepancies between measured and computed model responses.展开更多
This work presents a comprehensive second-order predictive modeling (PM) methodology designated by the acronym 2<sup>nd</sup>-BERRU-PMD. The attribute “2<sup>nd</sup>” indicates that this met...This work presents a comprehensive second-order predictive modeling (PM) methodology designated by the acronym 2<sup>nd</sup>-BERRU-PMD. The attribute “2<sup>nd</sup>” indicates that this methodology incorporates second-order uncertainties (means and covariances) and second-order sensitivities of computed model responses to model parameters. The acronym BERRU stands for “Best- Estimate Results with Reduced Uncertainties” and the last letter (“D”) in the acronym indicates “deterministic,” referring to the deterministic inclusion of the computational model responses. The 2<sup>nd</sup>-BERRU-PMD methodology is fundamentally based on the maximum entropy (MaxEnt) principle. This principle is in contradistinction to the fundamental principle that underlies the extant data assimilation and/or adjustment procedures which minimize in a least-square sense a subjective user-defined functional which is meant to represent the discrepancies between measured and computed model responses. It is shown that the 2<sup>nd</sup>-BERRU-PMD methodology generalizes and extends current data assimilation and/or data adjustment procedures while overcoming the fundamental limitations of these procedures. In the accompanying work (Part II), the alternative framework for developing the “second- order MaxEnt predictive modelling methodology” is presented by incorporating probabilistically (as opposed to “deterministically”) the computed model responses.展开更多
Objective:To analyze the risk factors of anxiety in young hypertensive patients and build a prediction model to provide a scientific basis for clinical diagnosis and treatment.Methods:According to the research content...Objective:To analyze the risk factors of anxiety in young hypertensive patients and build a prediction model to provide a scientific basis for clinical diagnosis and treatment.Methods:According to the research content,young hypertensive patients admitted to the hospital from January 2022 to December 2024 were selected as the research object and at least 950 patients were included according to the sample size calculation.According to the existence of anxiety,950 patients were divided into control group(n=650)and observation group(n=300),and the clinical data of all patients were collected for univariate analysis and multivariate Logistic regression analysis to get the risk factors of hypertension patients complicated with anxiety in.All patients were randomly divided into a training set(n=665)and a test set(n=285)according to the ratio of 7:3,and the evaluation efficiency of different prediction models was obtained by using machine learning algorithm.To evaluate the clinical application effect of the prediction model.Results:(1)Univariate analysis showed that age,BMI,education background,marital status,smoking,drinking,sleep disorder,family history of hypertension,history of diabetes,history of hyperlipidemia,history of cerebral infarction,and TC were important risk factors for young hypertensive patients complicated with anxiety.(2)Multivariate Logistic regression analysis showed that hypertension history,drinking history,coronary heart disease history,diabetes history,BMI,TC,and TG are important independent risk factors for young hypertensive patients complicated with anxiety.(3)Extra Trees has the highest predictive power for young people with hypertension complicated with anxiety,while Decision-Tree has the lowest predictive power.Conclusion:Hypertension history,drinking history,coronary heart disease history,diabetes history,BMI,TC,and TG are important independent risk factors that affect the anxiety of young hypertensive patients.Extra Trees model has the best prediction efficiency among different groups of models.展开更多
Ferroptosis,an iron-dependent form of programmed cell death,has garnered significant attention in tumor research in recent years.Its core characteristics include aberrant accumulation of lipid peroxides and impairment...Ferroptosis,an iron-dependent form of programmed cell death,has garnered significant attention in tumor research in recent years.Its core characteristics include aberrant accumulation of lipid peroxides and impairment of antioxidant defense mechanisms,such as dysfunction of glutathione peroxidase 4.These fea-tures are closely intertwined with the initiation,progression,and therapeutic resistance of hepatocellular carcinoma(HCC).This review presents a systematic overview of the fundamental molecular mechanisms underlying ferroptosis,en-compassing iron metabolism,lipid metabolism,and the antioxidant system.Fur-thermore,it summarizes the potential applications of targeting ferroptosis in liver cancer treatment,including the mechanisms of action of anticancer agents(e.g.,sorafenib)and relevant ferroptosis-related enzymes.Against the backdrop of the growing potential of artificial intelligence(AI)in liver cancer research,various AI-based predictive models for liver cancer are being increasingly developed.On the one hand,this review examines the mechanisms of ferroptosis in HCC to explore novel early detection markers for liver cancer,to provide new insights for the development of AI-based early diagnostic models.On the other hand,it syn-thesizes the current research progress of existing liver cancer predictive models while summarizing key challenges that AI predictive models may encounter in the diagnosis and treatment of HCC.展开更多
BACKGROUND Research has shown that several factors can influence postoperative abnormal liver function;however,most studies on this issue have focused specifically on hepatic and cardiac surgeries,leaving limited rese...BACKGROUND Research has shown that several factors can influence postoperative abnormal liver function;however,most studies on this issue have focused specifically on hepatic and cardiac surgeries,leaving limited research on contributing factors in other types of surgeries.AIM To identify the risk factors for early postoperative abnormal liver function in multiple surgery types and construct a risk prediction model.METHODS This retrospective cohort study involved 3720 surgical patients from 5 surgical departments at Guangdong Provincial Hospital of Traditional Chinese Medicine.Patients were divided into abnormal(n=108)and normal(n=3612)groups based on liver function post-surgery.Univariate analysis and LASSO regression screened variables,followed by logistic regression to identify risk factors.A prediction model was constructed based on the variables selected via logistic re-gression.The goodness-of-fit of the model was evaluated using the Hosm-er–Lemeshow test,while discriminatory ability was measured by the area under the receiver operating characteristic curve.Calibration curves were plotted to visualize the consistency between predicted probabilities and observed outcomes.RESULTS The key factors contributing to abnormal liver function after surgery include elevated aspartate aminotransferase and alanine aminotransferase levels and reduced platelet counts pre-surgery,as well as the sevoflurane use during the procedure,among others.CONCLUSION The above factors collectively represent notable risk factors for postoperative liver function injury,and the prediction model developed based on these factors demonstrates strong predictive efficacy.展开更多
Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the s...Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the strong reliance on mathematical models seriously restrains its practical application.Therefore,improving the robustness of MPC has attained significant attentions in the last two decades,followed by which,model-free predictive control(MFPC)comes into existence.This article aims to reveal the current state of MFPC strategies for motor drives and give the categorization from the perspective of implementation.Based on this review,the principles of the reported MFPC strategies are introduced in detail,as well as the challenges encountered in technology realization.In addition,some of typical and important concepts are experimentally validated via case studies to evaluate the performance and highlight their features.Finally,the future trends of MFPC are discussed based on the current state and reported developments.展开更多
Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiote...Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiotemporal distribution of Arctic SIC is more challenging than predicting its total extent.In this study,spatiotemporal prediction models for monthly Arctic SIC at 1-to 3-month leads are developed based on U-Net-an effective convolutional deep-learning approach.Based on explicit Arctic sea-ice-atmosphere interactions,11 variables associated with Arctic sea-ice variations are selected as predictors,including observed Arctic SIC,atmospheric,oceanic,and heat flux variables at 1-to 3-month leads.The prediction skills for the monthly Arctic SIC of the test set(from January 2018 to December 2022)are evaluated by examining the mean absolute error(MAE)and binary accuracy(BA).Results showed that the U-Net model had lower MAE and higher BA for Arctic SIC compared to two dynamic climate prediction systems(CFSv2 and NorCPM).By analyzing the relative importance of each predictor,the prediction accuracy relies more on the SIC at the 1-month lead,but on the surface net solar radiation flux at 2-to 3-month leads.However,dynamic models show limited prediction skills for surface net solar radiation flux and other physical processes,especially in autumn.Therefore,the U-Net model can be used to capture the connections among these key physical processes associated with Arctic sea ice and thus offers a significant advantage in predicting Arctic SIC.展开更多
BACKGROUND Colorectal polyps are precancerous diseases of colorectal cancer.Early detection and resection of colorectal polyps can effectively reduce the mortality of colorectal cancer.Endoscopic mucosal resection(EMR...BACKGROUND Colorectal polyps are precancerous diseases of colorectal cancer.Early detection and resection of colorectal polyps can effectively reduce the mortality of colorectal cancer.Endoscopic mucosal resection(EMR)is a common polypectomy proce-dure in clinical practice,but it has a high postoperative recurrence rate.Currently,there is no predictive model for the recurrence of colorectal polyps after EMR.AIM To construct and validate a machine learning(ML)model for predicting the risk of colorectal polyp recurrence one year after EMR.METHODS This study retrospectively collected data from 1694 patients at three medical centers in Xuzhou.Additionally,a total of 166 patients were collected to form a prospective validation set.Feature variable screening was conducted using uni-variate and multivariate logistic regression analyses,and five ML algorithms were used to construct the predictive models.The optimal models were evaluated based on different performance metrics.Decision curve analysis(DCA)and SHapley Additive exPlanation(SHAP)analysis were performed to assess clinical applicability and predictor importance.RESULTS Multivariate logistic regression analysis identified 8 independent risk factors for colorectal polyp recurrence one year after EMR(P<0.05).Among the models,eXtreme Gradient Boosting(XGBoost)demonstrated the highest area under the curve(AUC)in the training set,internal validation set,and prospective validation set,with AUCs of 0.909(95%CI:0.89-0.92),0.921(95%CI:0.90-0.94),and 0.963(95%CI:0.94-0.99),respectively.DCA indicated favorable clinical utility for the XGBoost model.SHAP analysis identified smoking history,family history,and age as the top three most important predictors in the model.CONCLUSION The XGBoost model has the best predictive performance and can assist clinicians in providing individualized colonoscopy follow-up recommendations.展开更多
BACKGROUND The discrepancy between endoscopic biopsy pathology and the overall pathology of gastric low-grade intraepithelial neoplasia(LGIN)presents challenges in developing diagnostic and treatment protocols.AIM To ...BACKGROUND The discrepancy between endoscopic biopsy pathology and the overall pathology of gastric low-grade intraepithelial neoplasia(LGIN)presents challenges in developing diagnostic and treatment protocols.AIM To develop a risk prediction model for the pathological upgrading of gastric LGIN to aid clinical diagnosis and treatment.METHODS We retrospectively analyzed data from patients newly diagnosed with gastric LGIN who underwent complete endoscopic resection within 6 months at the First Medical Center of Chinese People’s Liberation Army General Hospital between January 2008 and December 2023.A risk prediction model for the pathological progression of gastric LGIN was constructed and evaluated for accuracy and clinical applicability.RESULTS A total of 171 patients were included in this study:93 patients with high-grade intraepithelial neoplasia or early gastric cancer and 78 with LGIN.The logistic stepwise regression model demonstrated a sensitivity and specificity of 0.868 and 0.800,respectively,while the least absolute shrinkage and selection operator(LASSO)regression model showed sensitivity and specificity values of 0.842 and 0.840,respectively.The area under the curve(AUC)for the logistic model was 0.896,slightly lower than the AUC of 0.904 for the LASSO model.Internal validation with 30%of the data yielded AUC scores of 0.908 for the logistic model and 0.905 for the LASSO model.The LASSO model provided greater utility in clinical decision-making.CONCLUSION A risk prediction model for the pathological upgrading of gastric LGIN based on white-light and magnifying endoscopic features can accurately and effectively guide clinical diagnosis and treatment.展开更多
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype...This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.展开更多
Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluct...Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluctuation caused by new energy units,this paper proposes a new energy power system frequency regulation strategy with multiple units including the doubly-fed pumped storage unit(DFPSU).Firstly,based on the model predictive control(MPC)theory,the state space equations are established by considering the operating characteristics of the units and the dynamic behavior of the system;secondly,the proportional-differential control link is introduced to minimize the frequency deviation to further optimize the frequency modulation(FM)output of the DFPSU and inhibit the rapid fluctuation of the frequency;lastly,it is verified on theMatlab/Simulink simulation platform,and the results show that the model predictive control with proportional-differential control link can further release the FM potential of the DFPSU,increase the depth of its FM,effectively reduce the frequency deviation of the system and its rate of change,realize the optimization of the active output of the DFPSU and that of other units,and improve the frequency response capability of the system.展开更多
The predictive model and design of heavy-duty metal rubber shock absorber for the powertrains of heavy-load mining vehicles were investigated.The microstructural characteristics of the wire mesh were elucidated using ...The predictive model and design of heavy-duty metal rubber shock absorber for the powertrains of heavy-load mining vehicles were investigated.The microstructural characteristics of the wire mesh were elucidated using fractal graphs.A numerical model based on virtual fabrication technique was established to propose a design scheme for the wire mesh component.Four sets of wire mesh shock absorbers with various relative densities were prepared and a predictive model based on these relative densities was established through mechanical testing.To further enhance the predictive accuracy,a variable transposition fitting method was proposed to refine the model.Residual analysis was employed to quantitatively validate the results against those obtained from an experimental control group.The results show that the improved model exhibits higher predictive accuracy than the original model,with the determination coefficient(R^(2))of 0.9624.This study provides theoretical support for designing wire mesh shock absorbers with reduced testing requirements and enhanced design efficiency.展开更多
Malaria remains a major public health challenge necessitating accurate predictive models to inform effective intervention strategies in Sierra Leone. This study compares the performance of Holt-Winters’ Exponential S...Malaria remains a major public health challenge necessitating accurate predictive models to inform effective intervention strategies in Sierra Leone. This study compares the performance of Holt-Winters’ Exponential Smoothing, Harmonic, and Artificial Neural Network (ANN) models using data from January 2018 to December 2023, incorporating both historical case records from Sierra Leone’s Health Management Information System (HMIS) and meteorological variables including humidity, precipitation, and temperature. The ANN model demonstrated superior performance, achieving a Mean Absolute Percentage Error (MAPE) of 4.74% before including climatic variables. This was further reduced to 3.9% with the inclusion of climatic variables, outperforming traditional models like Holt-Winters and Harmonic, which yielded MAPEs of 22.53% and 17.90% respectively. The ANN’s success is attributed to its ability to capture complex, non-linear relationships in the data, particularly when enhanced with relevant climatic variables. Using the optimized ANN model, we forecasted malaria cases for the next 24 months, predicting a steady increase from January 2024 to December 2025, with seasonal peaks. This study underscores the potential of machine learning approaches, particularly ANNs, in epidemiological modelling and highlights the importance of integrating environmental factors into malaria prediction models, recommending the ANN model for informing more targeted and efficient malaria control strategies to improve public health outcomes in Sierra Leone and similar settings.展开更多
This article proposes an algebraic model predictive control(MPC)method for automatic landing.While defining the constraint functions in the optimization problem,the tangent hyperbolic function is preferred.Therefore,t...This article proposes an algebraic model predictive control(MPC)method for automatic landing.While defining the constraint functions in the optimization problem,the tangent hyperbolic function is preferred.Therefore,the optimization problem turns into an unconstrained,continuous,and differentiable form.An analytical two-step method is also proposed to solve the rest of the problem.In the first step,it is assumed that only input constraints are active and states are unconstrained.The optimal solution for this case is calculated directly with the optimality condition.The calculated control signal is revised in the second step according to system dynamics and state constraints.Simulation results of the auto-landing system show that the MPC computation speed is significantly increased by the new algebraic MPC(AMPC)without compromising the control performance,which makes the method realistic for using MPC in systems with high-speed changing dynamics.展开更多
BACKGROUND Sepsis is a severe complication in hospitalized patients with diabetic foot(DF),often associated with high morbidity and mortality.Despite its clinical significance,limited tools exist for early risk predic...BACKGROUND Sepsis is a severe complication in hospitalized patients with diabetic foot(DF),often associated with high morbidity and mortality.Despite its clinical significance,limited tools exist for early risk prediction.AIM To identify key risk factors and evaluate the predictive value of a nomogram model for sepsis in this population.METHODS This retrospective study included 216 patients with DF admitted from January 2022 to June 2024.Patients were classified into sepsis(n=31)and non-sepsis(n=185)groups.Baseline characteristics,clinical parameters,and laboratory data were analyzed.Independent risk factors were identified through multivariable logistic regression,and a nomogram model was developed and validated.The model's performance was assessed by its discrimination(AUC),calibration(Hosmer-Lemeshow test,calibration plots),and clinical utility[decision curve analysis(DCA)].RESULTS The multivariable analysis identified six independent predictors of sepsis:Diabetes duration,DF Texas grade,white blood cell count,glycated hemoglobin,Creactive protein,and albumin.A nomogram integrating these factors achieved excellent diagnostic performance,with an AUC of 0.908(95%CI:0.865-0.956)and robust internal validation(AUC:0.906).Calibration results showed strong agreement between predicted and observed probabilities(Hosmer-Lemeshow P=0.926).DCA demonstrated superior net benefit compared to extreme intervention scenarios,highlighting its clinical utility.CONCLUSION The nomogram prediction model,based on six key risk factors,demonstrates strong predictive value,calibration,and clinical utility for sepsis in patients with DF.This tool offers a practical approach for early risk stratification,enabling timely interventions and improved clinical management in this high-risk population.展开更多
BACKGROUND Anxiety and depression are highly prevalent among patients with cervical cancer(CC).However,few studies have systematically analyzed the psychological effects of tumor stage,treatment methods,and related fa...BACKGROUND Anxiety and depression are highly prevalent among patients with cervical cancer(CC).However,few studies have systematically analyzed the psychological effects of tumor stage,treatment methods,and related factors on these patients,or developed predictive models for these outcomes.AIM To identify factors influencing anxiety and depression in patients with CC and construct predictive models.METHODS We retrospectively analyzed data from 119 patients with CC treated at the Gynecology Department of Suzhou Ninth People’s Hospital between January 2017 and May 2025.Clinical data,psychological hope levels at diagnosis,and Self-Rating Anxiety Scale and Self-Rating Depression Scale scores during treatment were collected.Influencing factors were identified,and predictive models were developed.The model performance was evaluated using receiver operating characteristic(ROC)curves and the Hosmer-Lemeshow goodness-of-fit test.RESULTS During treatment,64.71%of the patients experienced anxiety and 52.10%experienced depression.Significant differences in family income,tumor stage,treatment modality,and hope level were observed between patients with and without anxiety/depression(P<0.05).Multivariate analysis showed that a family monthly income<5000 yuan,stage III-IV tumor,comprehensive treatment,and low hope level were independent risk factors(P<0.05).The predictive formula for anxiety was as follows:Logit(P)=0.795×monthly income+0.594×tumor stage+1.095×treatment method+1.184×hope level−9.176;for depression:Logit(P)=0.432×monthly income+0.518×tumor stage+0.727×treatment method+1.095×hope level−8.541.The area under the ROC curves were 0.865 for anxiety and 0.837 for depression.Goodness-of-fit test confirmed no overfitting(P>0.05).CONCLUSION Family income,tumor stage,treatment method,and hope level are key determinants of anxiety and depression in patients with CC.Predictive models incorporating these factors can effectively assess risk of anxiety and depression during treatment.展开更多
BACKGROUND Low rectal cancer poses a significant surgical challenge because of its close proximity to the anal sphincter,often requiring radical resection with permanent colostomy to achieve oncological safety.Revisit...BACKGROUND Low rectal cancer poses a significant surgical challenge because of its close proximity to the anal sphincter,often requiring radical resection with permanent colostomy to achieve oncological safety.Revisited rectal anatomy,advances in surgical techniques and neoadjuvant therapies have enabled the possibility of sphincter-preserving procedures,however,it is uniformly not applicable.Selecting appropriate candidates for sphincter preservation is crucial,as an illadvised approach may compromise oncological outcome or lead to poor functional outcomes.Currently there is no consensus-which clinical,anatomical,or molecular factors most accurately predict the feasibility of sphincter-preserving surgery(SPS)in this subset of patients.By identifying these predictors,the study seeks to support improved patient selection,enhance surgical planning,and ultimately contribute to better functional and oncological outcomes in patients with low rectal cancer.AIM To identify predictive factors that determine the feasibility of SPS in patients with low rectal cancer.METHODS A comprehensive literature search was conducted using PubMed/MEDLINE databases.The search focused on various factors influencing the feasibility of SPS in low rectal cancer.These included patient-related factors,anatomical considerations,findings from different imaging modalities,advancements in diagnostic tools and techniques,and the role of neoadjuvant chemoradiotherapy.The relevance of each factor in predicting the potential for sphincter preservation was critically analyzed and presented based on the current evidence RESULTS Multiple studies have identified a range of predictive factors influencing the feasibility of SPS in low rectal cancer.Patient-related factors include age,sex,preoperative continence status,comorbidities,and body mass index.Anatomical considerations,such as tumor distance from the anal verge,involvement of the external anal sphincter,and levator ani muscles,also play a critical role.Additionally,a favourable response to neoadjuvant chemoradiotherapy has been associated with improved suitability for sphincter preservation.Several biomarkers,such as inflammatory markers like interleukins and C-reactive protein,as well as tumor markers like carcinoembryonic antigen,are important.Molecular markers,including BRAF and KRAS mutations and microsatellite instability status,have been linked to prognosis and may further guide decision-making regarding sphincter-preserving approaches.Artificial intelligence(AI)can further add in to select an ideal patient for sphincter preservation.CONCLUSION SPS is feasible in low rectal cancer and depends on patient factors,tumor anatomy and biology,preoperative treatment response,and biomarkers.In addition,tools and technology including AI can further help in selecting an ideal patient for long term optimal outcome.展开更多
基金Funded by State Railway Administration Research Project(No.2023JS007)National Natural Science Foundation of China(No.52438002)+1 种基金Research and Development Programs for Science and Technology of China Railways Corporation(No.J2023G003)New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘To investigate the influence of coarse aggregate parent rock properties on the elastic modulus of concrete,the mineralogical properties and stress-strain curves of granite and dolomite parent rocks,as well as the strength and elastic modulus of mortar and concrete prepared with mechanism aggregates of the corresponding lithology,and the stress-strain curves of concrete were investigated.In this paper,a coarse aggregate and mortar matrix bonding assumption is proposed,and a prediction model for the elastic modulus of mortar is established by considering the lithology of the mechanism sand and the slurry components.An equivalent coarse aggregate elastic modulus model was established by considering factors such as coarse aggregate particle size,volume fraction,and mortar thickness between coarse aggregates.Based on the elastic modulus of the equivalent coarse aggregate and the remaining mortar,a prediction model for the elastic modulus of the two and three components of concrete in series and then in parallel was established,and the predicted values differed from the measured values within 10%.It is proposed that the coarse aggregate elastic modulus in highstrength concrete is the most critical factor affecting the elastic modulus of concrete,and as the coarse aggregate elastic modulus increases by 27.7%,the concrete elastic modulus increases by 19.5%.
文摘Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive control(MPC),which utilizes an extensive mathe-matical model of the voltage regulation system to optimize the control actions over a defined prediction horizon.This predictive feature enables MPC to minimize voltage deviations while accounting for operational constraints,thereby improving stability and performance under dynamic conditions.Thefindings were compared with those derived from an optimal proportional integral derivative(PID)con-troller designed using the artificial bee colony(ABC)algorithm.Although the ABC-PID method adjusts the PID parameters based on historical data,it may be difficult to adapt to real-time changes in system dynamics under constraints.Comprehensive simulations assessed both frameworks,emphasizing performance metrics such as disturbance rejection,response to load changes,and resilience to uncertainties.The results show that both MPC and ABC-PID methods effectively achieved accurate voltage regulation;however,MPC excelled in controlling overshoot and settling time—recording 0.0%and 0.25 s,respectively.This demonstrates greater robustness compared to conventional control methods that optimize PID parameters based on performance criteria derived from actual system behavior,which exhibited settling times and overshoots exceeding 0.41 s and 5.0%,respectively.The controllers were implemented using MATLAB/Simulink software,indicating a significant advancement for power plant engineers pursuing state-of-the-art automatic voltage regulations.
文摘This work illustrates the innovative results obtained by applying the recently developed the 2<sup>nd</sup>-order predictive modeling methodology called “2<sup>nd</sup>- BERRU-PM”, where the acronym BERRU denotes “best-estimate results with reduced uncertainties” and “PM” denotes “predictive modeling.” The physical system selected for this illustrative application is a polyethylene-reflected plutonium (acronym: PERP) OECD/NEA reactor physics benchmark. This benchmark is modeled using the neutron transport Boltzmann equation (involving 21,976 uncertain parameters), the solution of which is representative of “large-scale computations.” The results obtained in this work confirm the fact that the 2<sup>nd</sup>-BERRU-PM methodology predicts best-estimate results that fall in between the corresponding computed and measured values, while reducing the predicted standard deviations of the predicted results to values smaller than either the experimentally measured or the computed values of the respective standard deviations. The obtained results also indicate that 2<sup>nd</sup>-order response sensitivities must always be included to quantify the need for including (or not) the 3<sup>rd</sup>- and/or 4<sup>th</sup>-order sensitivities. When the parameters are known with high precision, the contributions of the higher-order sensitivities diminish with increasing order, so that the inclusion of the 1<sup>st</sup>- and 2<sup>nd</sup>-order sensitivities may suffice for obtaining accurate predicted best- estimate response values and best-estimate standard deviations. On the other hand, when the parameters’ standard deviations are sufficiently large to approach (or be outside of) the radius of convergence of the multivariate Taylor-series which represents the response in the phase-space of model parameters, the contributions stemming from the 3<sup>rd</sup>- and even 4<sup>th</sup>-order sensitivities are necessary to ensure consistency between the computed and measured response. In such cases, the use of only the 1<sup>st</sup>-order sensitivities erroneously indicates that the computed results are inconsistent with the respective measured response. Ongoing research aims at extending the 2<sup>nd</sup>-BERRU-PM methodology to fourth-order, thus enabling the computation of third-order response correlations (skewness) and fourth-order response correlations (kurtosis).
文摘This work presents a comprehensive second-order predictive modeling (PM) methodology based on the maximum entropy (MaxEnt) principle for obtaining best-estimate mean values and correlations for model responses and parameters. This methodology is designated by the acronym 2<sup>nd</sup>-BERRU-PMP, where the attribute “2<sup>nd</sup>” indicates that this methodology incorporates second- order uncertainties (means and covariances) and second (and higher) order sensitivities of computed model responses to model parameters. The acronym BERRU stands for “Best-Estimate Results with Reduced Uncertainties” and the last letter (“P”) in the acronym indicates “probabilistic,” referring to the MaxEnt probabilistic inclusion of the computational model responses. This is in contradistinction to the 2<sup>nd</sup>-BERRU-PMD methodology, which deterministically combines the computed model responses with the experimental information, as presented in the accompanying work (Part I). Although both the 2<sup>nd</sup>-BERRU-PMP and the 2<sup>nd</sup>-BERRU-PMD methodologies yield expressions that include second (and higher) order sensitivities of responses to model parameters, the respective expressions for the predicted responses, for the calibrated predicted parameters and for their predicted uncertainties (covariances), are not identical to each other. Nevertheless, the results predicted by both the 2<sup>nd</sup>-BERRU-PMP and the 2<sup>nd</sup>-BERRU-PMD methodologies encompass, as particular cases, the results produced by the extant data assimilation and data adjustment procedures, which rely on the minimization, in a least-square sense, of a user-defined functional meant to represent the discrepancies between measured and computed model responses.
文摘This work presents a comprehensive second-order predictive modeling (PM) methodology designated by the acronym 2<sup>nd</sup>-BERRU-PMD. The attribute “2<sup>nd</sup>” indicates that this methodology incorporates second-order uncertainties (means and covariances) and second-order sensitivities of computed model responses to model parameters. The acronym BERRU stands for “Best- Estimate Results with Reduced Uncertainties” and the last letter (“D”) in the acronym indicates “deterministic,” referring to the deterministic inclusion of the computational model responses. The 2<sup>nd</sup>-BERRU-PMD methodology is fundamentally based on the maximum entropy (MaxEnt) principle. This principle is in contradistinction to the fundamental principle that underlies the extant data assimilation and/or adjustment procedures which minimize in a least-square sense a subjective user-defined functional which is meant to represent the discrepancies between measured and computed model responses. It is shown that the 2<sup>nd</sup>-BERRU-PMD methodology generalizes and extends current data assimilation and/or data adjustment procedures while overcoming the fundamental limitations of these procedures. In the accompanying work (Part II), the alternative framework for developing the “second- order MaxEnt predictive modelling methodology” is presented by incorporating probabilistically (as opposed to “deterministically”) the computed model responses.
文摘Objective:To analyze the risk factors of anxiety in young hypertensive patients and build a prediction model to provide a scientific basis for clinical diagnosis and treatment.Methods:According to the research content,young hypertensive patients admitted to the hospital from January 2022 to December 2024 were selected as the research object and at least 950 patients were included according to the sample size calculation.According to the existence of anxiety,950 patients were divided into control group(n=650)and observation group(n=300),and the clinical data of all patients were collected for univariate analysis and multivariate Logistic regression analysis to get the risk factors of hypertension patients complicated with anxiety in.All patients were randomly divided into a training set(n=665)and a test set(n=285)according to the ratio of 7:3,and the evaluation efficiency of different prediction models was obtained by using machine learning algorithm.To evaluate the clinical application effect of the prediction model.Results:(1)Univariate analysis showed that age,BMI,education background,marital status,smoking,drinking,sleep disorder,family history of hypertension,history of diabetes,history of hyperlipidemia,history of cerebral infarction,and TC were important risk factors for young hypertensive patients complicated with anxiety.(2)Multivariate Logistic regression analysis showed that hypertension history,drinking history,coronary heart disease history,diabetes history,BMI,TC,and TG are important independent risk factors for young hypertensive patients complicated with anxiety.(3)Extra Trees has the highest predictive power for young people with hypertension complicated with anxiety,while Decision-Tree has the lowest predictive power.Conclusion:Hypertension history,drinking history,coronary heart disease history,diabetes history,BMI,TC,and TG are important independent risk factors that affect the anxiety of young hypertensive patients.Extra Trees model has the best prediction efficiency among different groups of models.
基金Supported by Henan Provincial Science and Technology Research Project,No.252102311168 and No.242102310066the Medical Education Research Project in Henan Province,No.WJLX2024153.
文摘Ferroptosis,an iron-dependent form of programmed cell death,has garnered significant attention in tumor research in recent years.Its core characteristics include aberrant accumulation of lipid peroxides and impairment of antioxidant defense mechanisms,such as dysfunction of glutathione peroxidase 4.These fea-tures are closely intertwined with the initiation,progression,and therapeutic resistance of hepatocellular carcinoma(HCC).This review presents a systematic overview of the fundamental molecular mechanisms underlying ferroptosis,en-compassing iron metabolism,lipid metabolism,and the antioxidant system.Fur-thermore,it summarizes the potential applications of targeting ferroptosis in liver cancer treatment,including the mechanisms of action of anticancer agents(e.g.,sorafenib)and relevant ferroptosis-related enzymes.Against the backdrop of the growing potential of artificial intelligence(AI)in liver cancer research,various AI-based predictive models for liver cancer are being increasingly developed.On the one hand,this review examines the mechanisms of ferroptosis in HCC to explore novel early detection markers for liver cancer,to provide new insights for the development of AI-based early diagnostic models.On the other hand,it syn-thesizes the current research progress of existing liver cancer predictive models while summarizing key challenges that AI predictive models may encounter in the diagnosis and treatment of HCC.
基金Supported by Guangdong Provincial Hospital of Chinese Medicine Science and Technology Research Special Project,No.YN2023WSSQ01State Key Laboratory of Traditional Chinese Medicine Syndrome.
文摘BACKGROUND Research has shown that several factors can influence postoperative abnormal liver function;however,most studies on this issue have focused specifically on hepatic and cardiac surgeries,leaving limited research on contributing factors in other types of surgeries.AIM To identify the risk factors for early postoperative abnormal liver function in multiple surgery types and construct a risk prediction model.METHODS This retrospective cohort study involved 3720 surgical patients from 5 surgical departments at Guangdong Provincial Hospital of Traditional Chinese Medicine.Patients were divided into abnormal(n=108)and normal(n=3612)groups based on liver function post-surgery.Univariate analysis and LASSO regression screened variables,followed by logistic regression to identify risk factors.A prediction model was constructed based on the variables selected via logistic re-gression.The goodness-of-fit of the model was evaluated using the Hosm-er–Lemeshow test,while discriminatory ability was measured by the area under the receiver operating characteristic curve.Calibration curves were plotted to visualize the consistency between predicted probabilities and observed outcomes.RESULTS The key factors contributing to abnormal liver function after surgery include elevated aspartate aminotransferase and alanine aminotransferase levels and reduced platelet counts pre-surgery,as well as the sevoflurane use during the procedure,among others.CONCLUSION The above factors collectively represent notable risk factors for postoperative liver function injury,and the prediction model developed based on these factors demonstrates strong predictive efficacy.
基金supported in part by the National Natural Science Foundation of China under Grant 52077002。
文摘Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the strong reliance on mathematical models seriously restrains its practical application.Therefore,improving the robustness of MPC has attained significant attentions in the last two decades,followed by which,model-free predictive control(MFPC)comes into existence.This article aims to reveal the current state of MFPC strategies for motor drives and give the categorization from the perspective of implementation.Based on this review,the principles of the reported MFPC strategies are introduced in detail,as well as the challenges encountered in technology realization.In addition,some of typical and important concepts are experimentally validated via case studies to evaluate the performance and highlight their features.Finally,the future trends of MFPC are discussed based on the current state and reported developments.
基金supported by the National Key Research and Development Program of China[grant number 2022YFE0106800]an Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)[grant number 311024001]+3 种基金a project supported by the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)[grant number SML2023SP209]a Research Council of Norway funded project(MAPARC)[grant number 328943]a Nansen Center´s basic institutional funding[grant number 342624]the high-performance computing support from the School of Atmospheric Science at Sun Yat-sen University。
文摘Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiotemporal distribution of Arctic SIC is more challenging than predicting its total extent.In this study,spatiotemporal prediction models for monthly Arctic SIC at 1-to 3-month leads are developed based on U-Net-an effective convolutional deep-learning approach.Based on explicit Arctic sea-ice-atmosphere interactions,11 variables associated with Arctic sea-ice variations are selected as predictors,including observed Arctic SIC,atmospheric,oceanic,and heat flux variables at 1-to 3-month leads.The prediction skills for the monthly Arctic SIC of the test set(from January 2018 to December 2022)are evaluated by examining the mean absolute error(MAE)and binary accuracy(BA).Results showed that the U-Net model had lower MAE and higher BA for Arctic SIC compared to two dynamic climate prediction systems(CFSv2 and NorCPM).By analyzing the relative importance of each predictor,the prediction accuracy relies more on the SIC at the 1-month lead,but on the surface net solar radiation flux at 2-to 3-month leads.However,dynamic models show limited prediction skills for surface net solar radiation flux and other physical processes,especially in autumn.Therefore,the U-Net model can be used to capture the connections among these key physical processes associated with Arctic sea ice and thus offers a significant advantage in predicting Arctic SIC.
文摘BACKGROUND Colorectal polyps are precancerous diseases of colorectal cancer.Early detection and resection of colorectal polyps can effectively reduce the mortality of colorectal cancer.Endoscopic mucosal resection(EMR)is a common polypectomy proce-dure in clinical practice,but it has a high postoperative recurrence rate.Currently,there is no predictive model for the recurrence of colorectal polyps after EMR.AIM To construct and validate a machine learning(ML)model for predicting the risk of colorectal polyp recurrence one year after EMR.METHODS This study retrospectively collected data from 1694 patients at three medical centers in Xuzhou.Additionally,a total of 166 patients were collected to form a prospective validation set.Feature variable screening was conducted using uni-variate and multivariate logistic regression analyses,and five ML algorithms were used to construct the predictive models.The optimal models were evaluated based on different performance metrics.Decision curve analysis(DCA)and SHapley Additive exPlanation(SHAP)analysis were performed to assess clinical applicability and predictor importance.RESULTS Multivariate logistic regression analysis identified 8 independent risk factors for colorectal polyp recurrence one year after EMR(P<0.05).Among the models,eXtreme Gradient Boosting(XGBoost)demonstrated the highest area under the curve(AUC)in the training set,internal validation set,and prospective validation set,with AUCs of 0.909(95%CI:0.89-0.92),0.921(95%CI:0.90-0.94),and 0.963(95%CI:0.94-0.99),respectively.DCA indicated favorable clinical utility for the XGBoost model.SHAP analysis identified smoking history,family history,and age as the top three most important predictors in the model.CONCLUSION The XGBoost model has the best predictive performance and can assist clinicians in providing individualized colonoscopy follow-up recommendations.
基金Supported by the National Key Research and Development Program of China,No.2022YFC2503600。
文摘BACKGROUND The discrepancy between endoscopic biopsy pathology and the overall pathology of gastric low-grade intraepithelial neoplasia(LGIN)presents challenges in developing diagnostic and treatment protocols.AIM To develop a risk prediction model for the pathological upgrading of gastric LGIN to aid clinical diagnosis and treatment.METHODS We retrospectively analyzed data from patients newly diagnosed with gastric LGIN who underwent complete endoscopic resection within 6 months at the First Medical Center of Chinese People’s Liberation Army General Hospital between January 2008 and December 2023.A risk prediction model for the pathological progression of gastric LGIN was constructed and evaluated for accuracy and clinical applicability.RESULTS A total of 171 patients were included in this study:93 patients with high-grade intraepithelial neoplasia or early gastric cancer and 78 with LGIN.The logistic stepwise regression model demonstrated a sensitivity and specificity of 0.868 and 0.800,respectively,while the least absolute shrinkage and selection operator(LASSO)regression model showed sensitivity and specificity values of 0.842 and 0.840,respectively.The area under the curve(AUC)for the logistic model was 0.896,slightly lower than the AUC of 0.904 for the LASSO model.Internal validation with 30%of the data yielded AUC scores of 0.908 for the logistic model and 0.905 for the LASSO model.The LASSO model provided greater utility in clinical decision-making.CONCLUSION A risk prediction model for the pathological upgrading of gastric LGIN based on white-light and magnifying endoscopic features can accurately and effectively guide clinical diagnosis and treatment.
基金supported by the National Natural Science Foundation of China(12072090).
文摘This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.
基金supported by the National Natural Science Foundation of China(Project No.52377082)the Scientific Research Program of Jilin Provincial Department of Education(Project No.JJKH20230123KJ).
文摘Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluctuation caused by new energy units,this paper proposes a new energy power system frequency regulation strategy with multiple units including the doubly-fed pumped storage unit(DFPSU).Firstly,based on the model predictive control(MPC)theory,the state space equations are established by considering the operating characteristics of the units and the dynamic behavior of the system;secondly,the proportional-differential control link is introduced to minimize the frequency deviation to further optimize the frequency modulation(FM)output of the DFPSU and inhibit the rapid fluctuation of the frequency;lastly,it is verified on theMatlab/Simulink simulation platform,and the results show that the model predictive control with proportional-differential control link can further release the FM potential of the DFPSU,increase the depth of its FM,effectively reduce the frequency deviation of the system and its rate of change,realize the optimization of the active output of the DFPSU and that of other units,and improve the frequency response capability of the system.
基金National Natural Science Foundation of China(12262028)Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT22085)Inner Mongolia Autonomous Region Science and Technology Plan Project(2021GG0437)。
文摘The predictive model and design of heavy-duty metal rubber shock absorber for the powertrains of heavy-load mining vehicles were investigated.The microstructural characteristics of the wire mesh were elucidated using fractal graphs.A numerical model based on virtual fabrication technique was established to propose a design scheme for the wire mesh component.Four sets of wire mesh shock absorbers with various relative densities were prepared and a predictive model based on these relative densities was established through mechanical testing.To further enhance the predictive accuracy,a variable transposition fitting method was proposed to refine the model.Residual analysis was employed to quantitatively validate the results against those obtained from an experimental control group.The results show that the improved model exhibits higher predictive accuracy than the original model,with the determination coefficient(R^(2))of 0.9624.This study provides theoretical support for designing wire mesh shock absorbers with reduced testing requirements and enhanced design efficiency.
文摘Malaria remains a major public health challenge necessitating accurate predictive models to inform effective intervention strategies in Sierra Leone. This study compares the performance of Holt-Winters’ Exponential Smoothing, Harmonic, and Artificial Neural Network (ANN) models using data from January 2018 to December 2023, incorporating both historical case records from Sierra Leone’s Health Management Information System (HMIS) and meteorological variables including humidity, precipitation, and temperature. The ANN model demonstrated superior performance, achieving a Mean Absolute Percentage Error (MAPE) of 4.74% before including climatic variables. This was further reduced to 3.9% with the inclusion of climatic variables, outperforming traditional models like Holt-Winters and Harmonic, which yielded MAPEs of 22.53% and 17.90% respectively. The ANN’s success is attributed to its ability to capture complex, non-linear relationships in the data, particularly when enhanced with relevant climatic variables. Using the optimized ANN model, we forecasted malaria cases for the next 24 months, predicting a steady increase from January 2024 to December 2025, with seasonal peaks. This study underscores the potential of machine learning approaches, particularly ANNs, in epidemiological modelling and highlights the importance of integrating environmental factors into malaria prediction models, recommending the ANN model for informing more targeted and efficient malaria control strategies to improve public health outcomes in Sierra Leone and similar settings.
文摘This article proposes an algebraic model predictive control(MPC)method for automatic landing.While defining the constraint functions in the optimization problem,the tangent hyperbolic function is preferred.Therefore,the optimization problem turns into an unconstrained,continuous,and differentiable form.An analytical two-step method is also proposed to solve the rest of the problem.In the first step,it is assumed that only input constraints are active and states are unconstrained.The optimal solution for this case is calculated directly with the optimality condition.The calculated control signal is revised in the second step according to system dynamics and state constraints.Simulation results of the auto-landing system show that the MPC computation speed is significantly increased by the new algebraic MPC(AMPC)without compromising the control performance,which makes the method realistic for using MPC in systems with high-speed changing dynamics.
文摘BACKGROUND Sepsis is a severe complication in hospitalized patients with diabetic foot(DF),often associated with high morbidity and mortality.Despite its clinical significance,limited tools exist for early risk prediction.AIM To identify key risk factors and evaluate the predictive value of a nomogram model for sepsis in this population.METHODS This retrospective study included 216 patients with DF admitted from January 2022 to June 2024.Patients were classified into sepsis(n=31)and non-sepsis(n=185)groups.Baseline characteristics,clinical parameters,and laboratory data were analyzed.Independent risk factors were identified through multivariable logistic regression,and a nomogram model was developed and validated.The model's performance was assessed by its discrimination(AUC),calibration(Hosmer-Lemeshow test,calibration plots),and clinical utility[decision curve analysis(DCA)].RESULTS The multivariable analysis identified six independent predictors of sepsis:Diabetes duration,DF Texas grade,white blood cell count,glycated hemoglobin,Creactive protein,and albumin.A nomogram integrating these factors achieved excellent diagnostic performance,with an AUC of 0.908(95%CI:0.865-0.956)and robust internal validation(AUC:0.906).Calibration results showed strong agreement between predicted and observed probabilities(Hosmer-Lemeshow P=0.926).DCA demonstrated superior net benefit compared to extreme intervention scenarios,highlighting its clinical utility.CONCLUSION The nomogram prediction model,based on six key risk factors,demonstrates strong predictive value,calibration,and clinical utility for sepsis in patients with DF.This tool offers a practical approach for early risk stratification,enabling timely interventions and improved clinical management in this high-risk population.
基金Supported by 2024 Hospital-Level Research Start-up Fund,No.YK202426Suzhou Wujiang District"Science and Education for Health"Project,No.WWK202201Development Fund Project of the Affiliated Hospital of Xuzhou Medical University,No.XYFY202423.
文摘BACKGROUND Anxiety and depression are highly prevalent among patients with cervical cancer(CC).However,few studies have systematically analyzed the psychological effects of tumor stage,treatment methods,and related factors on these patients,or developed predictive models for these outcomes.AIM To identify factors influencing anxiety and depression in patients with CC and construct predictive models.METHODS We retrospectively analyzed data from 119 patients with CC treated at the Gynecology Department of Suzhou Ninth People’s Hospital between January 2017 and May 2025.Clinical data,psychological hope levels at diagnosis,and Self-Rating Anxiety Scale and Self-Rating Depression Scale scores during treatment were collected.Influencing factors were identified,and predictive models were developed.The model performance was evaluated using receiver operating characteristic(ROC)curves and the Hosmer-Lemeshow goodness-of-fit test.RESULTS During treatment,64.71%of the patients experienced anxiety and 52.10%experienced depression.Significant differences in family income,tumor stage,treatment modality,and hope level were observed between patients with and without anxiety/depression(P<0.05).Multivariate analysis showed that a family monthly income<5000 yuan,stage III-IV tumor,comprehensive treatment,and low hope level were independent risk factors(P<0.05).The predictive formula for anxiety was as follows:Logit(P)=0.795×monthly income+0.594×tumor stage+1.095×treatment method+1.184×hope level−9.176;for depression:Logit(P)=0.432×monthly income+0.518×tumor stage+0.727×treatment method+1.095×hope level−8.541.The area under the ROC curves were 0.865 for anxiety and 0.837 for depression.Goodness-of-fit test confirmed no overfitting(P>0.05).CONCLUSION Family income,tumor stage,treatment method,and hope level are key determinants of anxiety and depression in patients with CC.Predictive models incorporating these factors can effectively assess risk of anxiety and depression during treatment.
文摘BACKGROUND Low rectal cancer poses a significant surgical challenge because of its close proximity to the anal sphincter,often requiring radical resection with permanent colostomy to achieve oncological safety.Revisited rectal anatomy,advances in surgical techniques and neoadjuvant therapies have enabled the possibility of sphincter-preserving procedures,however,it is uniformly not applicable.Selecting appropriate candidates for sphincter preservation is crucial,as an illadvised approach may compromise oncological outcome or lead to poor functional outcomes.Currently there is no consensus-which clinical,anatomical,or molecular factors most accurately predict the feasibility of sphincter-preserving surgery(SPS)in this subset of patients.By identifying these predictors,the study seeks to support improved patient selection,enhance surgical planning,and ultimately contribute to better functional and oncological outcomes in patients with low rectal cancer.AIM To identify predictive factors that determine the feasibility of SPS in patients with low rectal cancer.METHODS A comprehensive literature search was conducted using PubMed/MEDLINE databases.The search focused on various factors influencing the feasibility of SPS in low rectal cancer.These included patient-related factors,anatomical considerations,findings from different imaging modalities,advancements in diagnostic tools and techniques,and the role of neoadjuvant chemoradiotherapy.The relevance of each factor in predicting the potential for sphincter preservation was critically analyzed and presented based on the current evidence RESULTS Multiple studies have identified a range of predictive factors influencing the feasibility of SPS in low rectal cancer.Patient-related factors include age,sex,preoperative continence status,comorbidities,and body mass index.Anatomical considerations,such as tumor distance from the anal verge,involvement of the external anal sphincter,and levator ani muscles,also play a critical role.Additionally,a favourable response to neoadjuvant chemoradiotherapy has been associated with improved suitability for sphincter preservation.Several biomarkers,such as inflammatory markers like interleukins and C-reactive protein,as well as tumor markers like carcinoembryonic antigen,are important.Molecular markers,including BRAF and KRAS mutations and microsatellite instability status,have been linked to prognosis and may further guide decision-making regarding sphincter-preserving approaches.Artificial intelligence(AI)can further add in to select an ideal patient for sphincter preservation.CONCLUSION SPS is feasible in low rectal cancer and depends on patient factors,tumor anatomy and biology,preoperative treatment response,and biomarkers.In addition,tools and technology including AI can further help in selecting an ideal patient for long term optimal outcome.