Denote by M the 'second main term' attached to the Siegel zeros of Dirichlet L-functions in odd Goldbach problem. Let N≥exp(exp(9.873)) be a real number, r=logN, the statement M≤0.032 N^2r^(-3) is proved in ...Denote by M the 'second main term' attached to the Siegel zeros of Dirichlet L-functions in odd Goldbach problem. Let N≥exp(exp(9.873)) be a real number, r=logN, the statement M≤0.032 N^2r^(-3) is proved in this paper.展开更多
In this paper,the higher order asymptotic behaviors of boundary blow-up solutions to the equation■in bounded smooth domain■are systematically investigated for p and q.The second and third order boundary behaviours o...In this paper,the higher order asymptotic behaviors of boundary blow-up solutions to the equation■in bounded smooth domain■are systematically investigated for p and q.The second and third order boundary behaviours of the equation are derived.The results show the role of the mean curvature of the boundary■and its gradient in the high order asymptotic expansions of the solutions.展开更多
Abstract The main objective of this paper is to present a new rectangular nonconforming finite element scheme with the second order convergence behavior for approximation of Maxwell's equations. Then the correspondin...Abstract The main objective of this paper is to present a new rectangular nonconforming finite element scheme with the second order convergence behavior for approximation of Maxwell's equations. Then the corresponding optimal error estimates are derived. The difficulty in construction of this finite element scheme is how to choose a compatible pair of degrees of freedom and shape function space so as to make the consistency error due to the nonconformity of the element being of order O(h^3), properly one order higher than that of its interpolation error O(h^2) in the broken energy norm, where h is the subdivision parameter tending to zero.展开更多
Combining difference method and boundary integral equation method,we propose a new numerical method for solving initial-boundary value problem of second order hyperbolic partial differential equations defined on a bou...Combining difference method and boundary integral equation method,we propose a new numerical method for solving initial-boundary value problem of second order hyperbolic partial differential equations defined on a bounded or unbounded domain in R~3 and obtain the error estimates of the approximate solution in energy norm and local maximum norm.展开更多
The mathematical system is formulated by four partial differential equations combined with initial- boundary value conditions to describe transient behavior of three-dimensional semiconductor device with heat conducti...The mathematical system is formulated by four partial differential equations combined with initial- boundary value conditions to describe transient behavior of three-dimensional semiconductor device with heat conduction. The first equation of an elliptic type is defined with respect to the electric potential, the successive two equations of convection dominated diffusion type are given to define the electron concentration and the hole concentration, and the fourth equation of heat conductor is for the temperature. The electric potential appears in the equations of electron concentration, hole concentration and the temperature in the formation of the intensity. A mass conservative numerical approximation of the electric potential is presented by using the mixed finite volume element, and the accuracy of computation of the electric intensity is improved one order. The method of characteristic fractional step difference is applied to discretize the other three equations, where the hyperbolic terms are approximated by a difference quotient in the characteristics and the diffusion terms are discretized by the method of fractional step difference. The computation of three-dimensional problem works efficiently by dividing it into three one-dimensional subproblems and every subproblem is solved by the method of speedup in parallel. Using a pair of different grids (coarse partition and refined partition), piecewise threefold quadratic interpolation, variation theory, multiplicative commutation rule of differential operators, mathematical induction and priori estimates theory and special technique of differential equations, we derive an optimal second order estimate in L2-norm. This numerical method is valuable in the simulation of semiconductor device theoretically and actually, and gives a powerful tool to solve the international problem presented by J. Douglas, Jr.展开更多
文摘Denote by M the 'second main term' attached to the Siegel zeros of Dirichlet L-functions in odd Goldbach problem. Let N≥exp(exp(9.873)) be a real number, r=logN, the statement M≤0.032 N^2r^(-3) is proved in this paper.
基金Supported by the Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LY20A010010,LY20A010011)the National Natural Science Foundation of China(Grant No.11971251)K.C.Wong Magna Fund in Ningbo University。
文摘In this paper,the higher order asymptotic behaviors of boundary blow-up solutions to the equation■in bounded smooth domain■are systematically investigated for p and q.The second and third order boundary behaviours of the equation are derived.The results show the role of the mean curvature of the boundary■and its gradient in the high order asymptotic expansions of the solutions.
基金Supported by the National Natural Science Foundation of China (No. 10971203)the Doctor Foundationof Henan Institute of Engineering (No. D09008)
文摘Abstract The main objective of this paper is to present a new rectangular nonconforming finite element scheme with the second order convergence behavior for approximation of Maxwell's equations. Then the corresponding optimal error estimates are derived. The difficulty in construction of this finite element scheme is how to choose a compatible pair of degrees of freedom and shape function space so as to make the consistency error due to the nonconformity of the element being of order O(h^3), properly one order higher than that of its interpolation error O(h^2) in the broken energy norm, where h is the subdivision parameter tending to zero.
基金China State Major Key Project for Basic Researches
文摘Combining difference method and boundary integral equation method,we propose a new numerical method for solving initial-boundary value problem of second order hyperbolic partial differential equations defined on a bounded or unbounded domain in R~3 and obtain the error estimates of the approximate solution in energy norm and local maximum norm.
基金supported by the National Natural Science Foundation of China(Grant Nos.11101124 and 11271231)the National Tackling Key Problems Program for Science and Technology(Grant No.20050200069)the Doctorate Foundation of the Ministry of Education of China(Grant No.20030422047)
文摘The mathematical system is formulated by four partial differential equations combined with initial- boundary value conditions to describe transient behavior of three-dimensional semiconductor device with heat conduction. The first equation of an elliptic type is defined with respect to the electric potential, the successive two equations of convection dominated diffusion type are given to define the electron concentration and the hole concentration, and the fourth equation of heat conductor is for the temperature. The electric potential appears in the equations of electron concentration, hole concentration and the temperature in the formation of the intensity. A mass conservative numerical approximation of the electric potential is presented by using the mixed finite volume element, and the accuracy of computation of the electric intensity is improved one order. The method of characteristic fractional step difference is applied to discretize the other three equations, where the hyperbolic terms are approximated by a difference quotient in the characteristics and the diffusion terms are discretized by the method of fractional step difference. The computation of three-dimensional problem works efficiently by dividing it into three one-dimensional subproblems and every subproblem is solved by the method of speedup in parallel. Using a pair of different grids (coarse partition and refined partition), piecewise threefold quadratic interpolation, variation theory, multiplicative commutation rule of differential operators, mathematical induction and priori estimates theory and special technique of differential equations, we derive an optimal second order estimate in L2-norm. This numerical method is valuable in the simulation of semiconductor device theoretically and actually, and gives a powerful tool to solve the international problem presented by J. Douglas, Jr.