In this paper,a fully discrete finite element scheme with second-order temporal accuracy is proposed for a fluid-fluid interaction model,which consists of two Navier-Stokes equations coupled by a linear interface cond...In this paper,a fully discrete finite element scheme with second-order temporal accuracy is proposed for a fluid-fluid interaction model,which consists of two Navier-Stokes equations coupled by a linear interface condition.The proposed fully discrete scheme is a combination of a mixed finite element approximation for spatial discretization,the secondorder backward differentiation formula for temporal discretization,the second-order Gear’s extrapolation approach for the interface terms and extrapolated treatments in linearization for the nonlinear terms.Moreover,the unconditional stability is established by rigorous analysis and error estimate for the fully discrete scheme is also derived.Finally,some numerical experiments are carried out to verify the theoretical results and illustrate the accuracy and efficiency of the proposed scheme.展开更多
In this paper we propose and analyze a second order accurate numericalscheme for the Cahn-Hilliard equation with logarithmic Flory Huggins energy potential. A modified Crank-Nicolson approximation is applied to the lo...In this paper we propose and analyze a second order accurate numericalscheme for the Cahn-Hilliard equation with logarithmic Flory Huggins energy potential. A modified Crank-Nicolson approximation is applied to the logarithmic nonlinear term, while the expansive term is updated by an explicit second order AdamsBashforth extrapolation, and an alternate temporal stencil is used for the surface diffusion term. A nonlinear artificial regularization term is added in the numerical scheme,which ensures the positivity-preserving property, i.e., the numerical value of the phasevariable is always between -1 and 1 at a point-wise level. Furthermore, an unconditional energy stability of the numerical scheme is derived, leveraging the special formof the logarithmic approximation term. In addition, an optimal rate convergence estimate is provided for the proposed numerical scheme, with the help of linearizedstability analysis. A few numerical results, including both the constant-mobility andsolution-dependent mobility flows, are presented to validate the robustness of the proposed numerical scheme.展开更多
We study the asymptotic-preserving fully discrete schemes for nonequilibrium radiation diffusion problem in spherical and cylindrical symmetric geometry.The research is based on two-temperature models with Larsen’s f...We study the asymptotic-preserving fully discrete schemes for nonequilibrium radiation diffusion problem in spherical and cylindrical symmetric geometry.The research is based on two-temperature models with Larsen’s flux-limited diffusion operators.Finite volume spatially discrete schemes are developed to circumvent the singularity at the origin and the polar axis and assure local conservation.Asymmetric second order accurate spatial approximation is utilized instead of the traditional first order one for boundary flux-limiters to consummate the schemes with higher order global consistency errors.The harmonic average approach in spherical geometry is analyzed,and its second order accuracy is demonstrated.By formal analysis,we prove these schemes and their corresponding fully discrete schemes with implicitly balanced and linearly implicit time evolutions have first order asymptoticpreserving properties.By designing associated manufactured solutions and reference solutions,we verify the desired performance of the fully discrete schemes with numerical tests,which illustrates quantitatively they are first order asymptotic-preserving and basically second order accurate,hence competent for simulations of both equilibrium and non-equilibrium radiation diffusion problems.展开更多
基金supported by the Natural Science Foundation of China(grant numbers 11861067 and 11771348)Natural Science Foundation of Xinjiang Province(grant number 2021D01E11).
文摘In this paper,a fully discrete finite element scheme with second-order temporal accuracy is proposed for a fluid-fluid interaction model,which consists of two Navier-Stokes equations coupled by a linear interface condition.The proposed fully discrete scheme is a combination of a mixed finite element approximation for spatial discretization,the secondorder backward differentiation formula for temporal discretization,the second-order Gear’s extrapolation approach for the interface terms and extrapolated treatments in linearization for the nonlinear terms.Moreover,the unconditional stability is established by rigorous analysis and error estimate for the fully discrete scheme is also derived.Finally,some numerical experiments are carried out to verify the theoretical results and illustrate the accuracy and efficiency of the proposed scheme.
基金This work is supported in part by the grants NSFC 12071090(W.Chen)NSF DMS-2012669(C.Wang)+2 种基金NSFC 11871159Guangdong Provincial Key Laboratory for Computational Science and Material Design 2019B030301001(X.Wang)NSF DMS-1719854,DMS-2012634(S.Wise).C.Wang also thanks the Key Laboratory of Mathematics for Nonlinear Sciences,Fudan University,for the support.
文摘In this paper we propose and analyze a second order accurate numericalscheme for the Cahn-Hilliard equation with logarithmic Flory Huggins energy potential. A modified Crank-Nicolson approximation is applied to the logarithmic nonlinear term, while the expansive term is updated by an explicit second order AdamsBashforth extrapolation, and an alternate temporal stencil is used for the surface diffusion term. A nonlinear artificial regularization term is added in the numerical scheme,which ensures the positivity-preserving property, i.e., the numerical value of the phasevariable is always between -1 and 1 at a point-wise level. Furthermore, an unconditional energy stability of the numerical scheme is derived, leveraging the special formof the logarithmic approximation term. In addition, an optimal rate convergence estimate is provided for the proposed numerical scheme, with the help of linearizedstability analysis. A few numerical results, including both the constant-mobility andsolution-dependent mobility flows, are presented to validate the robustness of the proposed numerical scheme.
基金The authors are very grateful to the editors and the anonymous referees for helpful suggestions to enhance the paper.This work is supported by the National Natural Science Foundation of China(11271054,11471048,11571048,U1630249)the Science Foundation of CAEP(2014A0202010)the Science Challenge Project(No.JCKY2016212A502)and the Foundation of LCP.
文摘We study the asymptotic-preserving fully discrete schemes for nonequilibrium radiation diffusion problem in spherical and cylindrical symmetric geometry.The research is based on two-temperature models with Larsen’s flux-limited diffusion operators.Finite volume spatially discrete schemes are developed to circumvent the singularity at the origin and the polar axis and assure local conservation.Asymmetric second order accurate spatial approximation is utilized instead of the traditional first order one for boundary flux-limiters to consummate the schemes with higher order global consistency errors.The harmonic average approach in spherical geometry is analyzed,and its second order accuracy is demonstrated.By formal analysis,we prove these schemes and their corresponding fully discrete schemes with implicitly balanced and linearly implicit time evolutions have first order asymptoticpreserving properties.By designing associated manufactured solutions and reference solutions,we verify the desired performance of the fully discrete schemes with numerical tests,which illustrates quantitatively they are first order asymptotic-preserving and basically second order accurate,hence competent for simulations of both equilibrium and non-equilibrium radiation diffusion problems.