期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Seasonal Evolution of Eocene Saline Lakes in Eastern China:A Case Study of‘Bamboo-like’Rock Salt in the Shizhai Depression,Northern Jiangsu Province
1
作者 XU Yang LIU Chenglin +3 位作者 YANG Sibo CAO Yangtong WEN Longtao LI Ruiqin 《Acta Geologica Sinica(English Edition)》 2025年第3期879-895,共17页
The phenomenon of'bamboo-like'thin interlayers developed in rock salt is one of the most prominent features of Paleogene salt-bearing strata in eastern China,where centimeter-thick rock salts appear separately... The phenomenon of'bamboo-like'thin interlayers developed in rock salt is one of the most prominent features of Paleogene salt-bearing strata in eastern China,where centimeter-thick rock salts appear separately,forming rhythmic units.At present,detailed analyses of these rhythms of rock salt are still limited,which directly affects the achievement of comprehensive and in-depth understanding of the developmental laws pertaining to this kind of saline lake.Therefore,we selected the typical rhythmic'bamboo-like'rock salts of the Shizhai Depression in Jiangsu Province as the research subject.Through careful observation of rock salts in hand samples and detailed petrographic and mineralogical analyses,we analyzed the hydrogen and oxygen isotopic compositions,homogenization temperatures and chemical compositions of individual fluid inclusions in halite crystals.Early-stage rhythmic deposition was a product of continental saline lake evolution in winter or spring,late-stage rhythmic deposition being the product of evolution in the summer.The seasonal evolution of the halite sequences was determined and two brine enrichment events were identified.In addition,the quiet saline lake environment with concentrated brine represented by rock salt was more likely to precipitate potassium.This study provides a new reference for the evolution of both Paleogene climate and saline lakes in eastern China. 展开更多
关键词 halite fluid inclusions LA-ICP-MS quantitative analyses seasonal evolution eastern China
在线阅读 下载PDF
Seasonal evolution of the Northern Yellow Sea cold water mass 被引量:2
2
作者 李希彬 孙晓燕 +2 位作者 张秋丰 牛福新 姚志刚 《Marine Science Bulletin》 CAS 2013年第2期15-25,共11页
With the in-situ temperature and salinity observations taken seasonally in the Northern Yellow Sea area during the National 908 Water Investigation and Research Project from 2006 to 2007, the characteristics of the No... With the in-situ temperature and salinity observations taken seasonally in the Northern Yellow Sea area during the National 908 Water Investigation and Research Project from 2006 to 2007, the characteristics of the Northern Yellow Sea cold water mass (NYSCWM) were studied, including both its spatial pattern over the whole bottom and historically typical section from Dalian to Chengshantou. Seasonal evolution as well as its spatial distribution was analyzed to further understand the NYSCWM, as a result, some new features about the NYSCWM had been found. Compared to the previous studies, the center of colder water mass in summer moved eastward, but sharing the similar peak values for both temperature and salinity with historical data. In spring, the axis of 32.8 psu saltier moves westward approximately 75 km and the high salinity areas beyond 123.5° E were largely impaired comparing to that in winter. In winter, the NYSCWM almost disappeared due to the reinforced wind-induced mixing and the Yellow Sea Warm Currents (YSWC) moved northward and controlled most of the Northern Yellow Sea region. In autumn, two cold centers with the peak value of 9℃ were found inside the attenuated NYSCWM. 展开更多
关键词 the Northern Yellow Sea cold water mass seasonal evolution temperatureand salinity distribution Yellow Sea warm current
在线阅读 下载PDF
Seasonal Evolution of Subtropical Anticyclones in the Climate System Model FGOALS-s2 被引量:4
3
作者 刘屹岷 胡俊 +3 位作者 何编 包庆 段安民 吴国雄 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第3期593-606,共14页
The simulation characteristics of the seasonal evolution of subtropical anticyclones in the Northern Hemisphere are documented for the Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 (FGOALS-s2... The simulation characteristics of the seasonal evolution of subtropical anticyclones in the Northern Hemisphere are documented for the Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 (FGOALS-s2), developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, the Institute of Atmospheric Physics. An understanding of the seasonal evolution of the subtropical anticyclones is also addressed. Compared with the global analysis established by the European Centre for Medium-Range Forecasts, the ERA-40 global reanalysis data, the general features of subtropical anticyclones and their evolution are simulated well in both winter and summer, while in spring a pronounced bias in the generation of the South Asia Anticyclone(SAA) exists. Its main deviation in geopotential height from the reanalysis is consistent with the bias of temperature in the troposphere. It is found that condensation heating (CO) plays a dominant role in the seasonal development of the SAA and the subtropical anticyclone over the western Pacific (SAWP) in the middle troposphere. The CO biases in the model account for the biases in the establishment of the SAA in spring and the weaker strength of the SAA and the SAWP from spring to summer. CO is persistently overestimated in the central-east tropical Pacific from winter to summer, while it is underestimated over the area from the South China Sea to the western Pacific from spring to summer. Such biases generate an illusive anticyclonic gyre in the upper troposphere above the middle Pacific and delay the generation of the SAA over South Asia in April. In mid- summer, the simulated SAA is located farther north than in the ERA-40 data owing to excessively strong surface sensible heating (SE) to the north of the Tibetan Plateau. Whereas, the two surface subtropical anticyclones in the eastern oceans during spring to summer are controlled mainly by the surface SE over the two continents in the Northern Hemisphere, which are simulated reasonably well, albeit with their centers shifted westwards owing to the weaker longwave radiation cooling in the simulation associated with much weaker local stratiform cloud. Further improvements in the related parameterization of physical processes are therefore identified. 展开更多
关键词 subtropical anticyclone simulation seasonal evolution components of diabatic heating climatesystem model FGOALS-s2
在线阅读 下载PDF
Seasonal evolution of the englacial and subglacial drainage systems of a temperate glacier revealed by hydrological analysis 被引量:3
4
作者 Qiao Liu ShiYin Liu 《Research in Cold and Arid Regions》 2010年第1期51-58,共8页
Englacial and subglacial drainage systems of temperate glaciers have a strong influence on glacier dynamics, glacier-induced floods, glacier-weathering processes, and runoff from glacierized drainage basins. Proglacia... Englacial and subglacial drainage systems of temperate glaciers have a strong influence on glacier dynamics, glacier-induced floods, glacier-weathering processes, and runoff from glacierized drainage basins. Proglacial discharge is partly controlled by the geometry of the glacial drainage network and by the process of producing meltwater. The glacial-drainage system of some alpine glaciers has been characterized using a model based on proglacial discharge analysis. In this paper, we apply cross-correlation analysis to hourly hydro-climatic data collected from China's Hailuogou Glacier, a typical temperate glacier in Mt. Gongga, to study the seasonal status changes of the englacial and subglacial drainage systems by discharge-temperature (Q-T) time lag analy-sis. During early ablation season (April-May) of 2003, 2004 and 2005, the change of englacial and subglacial drainage system usually leads several outburst flood events, which are also substantiated by observing the leakage of supraglacial pond and cre-vasses pond water during field works in April, 2008. At the end of ablation season (October-December), the glacial-drainage net-works become less hydro-efficient. Those events are evidenced by hourly hydro-process near the terminus of Hailuogou Glacier, and the analysis of Q-T time lags also can be a good indicator of those changes. However, more detailed observations or experi-ments, e.g. dye-tracing experiment and recording borehole water level variations, are necessary to describe the evolutionary status and processes of englacial and subglacial drainage systems evolution during ablation season. 展开更多
关键词 glacier drainage system temperate glacier seasonal evolution time lag glacier runoff hydrologic process Hailuogou Glacier
在线阅读 下载PDF
Seasonal evolution of circulation and thermal structure in the Yellow Sea
5
作者 庞重光 白学志 +1 位作者 白虹 王凡 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2005年第3期269-274,共6页
In this paper, the authors used the Princeton Ocean Model (POM) to simulate the seasonal evolu- tions of circulation and thermal structure in the Yellow Sea. The simulated circulation showed that the Yellow Sea Warm C... In this paper, the authors used the Princeton Ocean Model (POM) to simulate the seasonal evolu- tions of circulation and thermal structure in the Yellow Sea. The simulated circulation showed that the Yellow Sea Warm Current (YSWC) was a compensation current of monsoon-driven current, and that in winter, the YSWC became stronger with depth, and could flow across the Bohai Strait in the north. Sensitivity and control- ling tests led to the following conclusions. In winter, the direction of the Yellow Sea Coastal Current in the sur- face layer was controlled partly by tide instead of wind. In summer, a cyclonic horizontal gyre existed in the middle and eastern parts of the Yellow Sea below 10 m. The downwelling in upper layer and upwelling in lower layer were somehow similar to Hu et al. (1991) conceptual model. The calculated thermal structure showed an obvious northward extending YSWC tongue in winter, its position and coverage of the Yellow Sea Cold Water Mass in summer. 展开更多
关键词 seasonal evolution numerical simulation CIRCULATION thermal structure the Yellow Sea
原文传递
Seasonal evolution of the effects of the El Nino–Southern Oscillation on lower stratospheric water vapor:Delayed effects in late winter and early spring
6
作者 YuJing Liao QuanLiang Chen Xin Zhou 《Earth and Planetary Physics》 CSCD 2019年第6期489-500,共12页
Water vapor in the stratosphere makes a significant contribution to global climate change by altering the radiative energy budget of the Earth’s climate system.Although many previous studies have shown that the El N... Water vapor in the stratosphere makes a significant contribution to global climate change by altering the radiative energy budget of the Earth’s climate system.Although many previous studies have shown that the El Ni?o–Southern Oscillation(ENSO)has significant effects on the water vapor content of the stratosphere in terms of the annual or seasonal mean,a comprehensive analysis of the seasonal evolution of these effects is still required.Using reanalysis data and satellite observations,we carried out a composite analysis of the seasonal evolution of stratospheric water vapor during El Ni?o/La Ni?a peaks in winter and decays in spring.The ENSO has a distinct hysteresis effect on water vapor in the tropical lower stratosphere.The El Ni?o/La Ni?a events moisten/dry out the tropical lower stratosphere in both winter and spring,whereas this wetting/dehydration effect is more significant in spring.This pattern is due to a warmer temperature in the upper troposphere and lower stratosphere during the El Ni?o spring phase,which causes more water vapor to enter the stratosphere,and vice versa for La Ni?a.This delayed warming/cooling in the lower stratosphere during the El Ni?o/La Ni?a decay in spring leads to the seasonal evolution of ENSO effects on water vapor in the lower stratosphere. 展开更多
关键词 El Nino-Southern Oscillation stratospheric water vapor seasonal evolution
在线阅读 下载PDF
Numerical Study of Impacts of Soil Moisture on the Diurnal and Seasonal Cycles of Sensible/Latent Heat Fluxes over Semi-arid Region 被引量:10
7
作者 宋耀明 郭维栋 张耀存 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第2期319-326,共8页
The semi-arid regions, as climatic and ecosystem transitional zones, are the most vulnerable to global environmental change. Earlier researches indicate that the semi-arid regions are characterized by strong landatmos... The semi-arid regions, as climatic and ecosystem transitional zones, are the most vulnerable to global environmental change. Earlier researches indicate that the semi-arid regions are characterized by strong landatmosphere coupling in which soil moisture is the crucial variable in land surface processes. In this paper, we investigate the sensitivity of the sensible/latent heat fluxes to soil moisture during the growing season based on the enhanced observations at Tongyu in the Jilin province of China, a reference site of international Coordinated Energy and Water Cycle Observations Project (CEOP) in the semi-arid regions, by using a sophisticated land surface model (NCAR_CLM3.0). Comparisons between the observed and simulated sensible/latent heat fluxes indicate that the soil moisture has obvious effects on the sensible/latent heat fluxes in terms of diurnal cycle and seasonal evolution. Better representation of the soil moisture could improve the model performance to a large degree. Therefore, for the purpose of simulating the land-atmosphere interaction and predicting the climate and water resource changes in semi-arid regions, it is necessary to enhance the description of the soil moisture distribution both in the way of observation and its treatment in land surface models. 展开更多
关键词 semi-arid region soil moisture latent/sensible heat flux diurnal cycle seasonal evolution
在线阅读 下载PDF
Indices of the Summertime Western North Pacific Subtropical High 被引量:17
8
作者 陆日宇 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2002年第6期1004-1028,共25页
By averaging June-July-August (JJA) mean geopotential height anomalies at 850 hPa over the specified areas, the author proposes two innovative and succinct parameters to objectively define the zonal and meridional dis... By averaging June-July-August (JJA) mean geopotential height anomalies at 850 hPa over the specified areas, the author proposes two innovative and succinct parameters to objectively define the zonal and meridional displacements of the western North Pacific subtropical high (WNPSH) in summer, respectively. Thus, these two indices and the present results may provide a basis for validating atmospheric general circulation models simulating the WNPSH. For the zonal index, the specified area is the west edge (110°–150°E, 10°–30°N) of the WNPSH. For the meridional index, the specified area is the northwest edge (120°–150°E, 30°–40°N) of the WNPSH. The interannual variations of these two indices are found to be independent. The results from a composite analysis based on the meridional index are in good agreement with previous studies based on case analyses. The two indices are compared with the existing indices announced by the National Climate Center (NCC) in China, on the interannual timescale. Despite slight differences, the interannual variations of the presented indices are basically similar to those of the NCC indices, and thus the circulation and precipitation associated with the present indices exhibit similar features to those associated with the NCC indices. Furthermore, an analysis of the differences between the associations of the present indices and the NCC indices shows that the presented indices are better than the NCC indices. An important result is that the zonal index is related to a more outstanding anomaly of precipitation, especially in East Asia and the Philippine Sea, both based on the presented indices and the NCC indices. The two indices can also be used to describe the seasonal march of the WNPSH during summer, namely, the poleward and eastward shifts. It is found that climatologically, the WNPSH shifts poleward and eastward rapidly in middle July, but the amplitudes of the poleward and eastward shifts are more remarkable in the summers when the WNPSH is located poleward and eastward in average. 展开更多
关键词 WNPSH indices interannual variability seasonal evolution
在线阅读 下载PDF
Relation of ice conditions to climate change in the Bohai Sea of China 被引量:7
9
作者 Bai Shan, Liu Qinzheng, Wu Huiding I. National Center fOr Marine Environmnt FOrecats, ffeijing l(XX)8I. China. 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2001年第3期331-342,共12页
The ice conditions in the Bohai Sea and the northern Huanghai Sea greatly change from year to year with winter climate. Ice only covers below 15% of the the waters during the wannest win-ter, while it covers more than... The ice conditions in the Bohai Sea and the northern Huanghai Sea greatly change from year to year with winter climate. Ice only covers below 15% of the the waters during the wannest win-ter, while it covers more than 80% during the coldest winter. Ice observation and data acquisition are outlined in the paper. The ice-covered area, the position of ice edge and the ice grades give indication of the ice conditions. The local climate of the waters can be expressed by using the air temperature of the stations of Dalian and Yingkou. The variation of the ice condition indexes with the monthly mean air temperature at Dalian from 1952 to 2000 is shown, as well. The local climate and ice conditions in the waters are affected by many factors,such as, evolution of the general atmospheric circulation and the solar activity. The delayed correlation between the ice conditions and lots of the affecting factors is analysed in the paper. The ice conditions are continuously mild since the 1990s, that is relative to the tendency of the global warming. The ice condition variation of the Bohai Sea is related to the El Nino event and the sunspot period. The seasonal evolution of the ice conditions is also described in the paper. 展开更多
关键词 Sea ice annual variation seasonal evolution climatic factor the Bohai Sea
在线阅读 下载PDF
Simulation of the East Asian Subtropical Westerly Jet Stream with GFDL AGCM (AM2.1) 被引量:6
10
作者 HUANG Gang LIU Yong 《Atmospheric and Oceanic Science Letters》 2011年第1期24-29,共6页
The present study validated the capability of the AM2.1,a model developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL),in reproducing the fundamental features of the East Asian Subtropical Westerly Jet S... The present study validated the capability of the AM2.1,a model developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL),in reproducing the fundamental features of the East Asian Subtropical Westerly Jet Stream (EASWJ).The main behaviors of the EASWJ are also investigated through the reanalysis of observational NCEP/NCAR data.The mean state of the EASWJ,including its intensity,location,structure,and seasonal evolution is generally well-portrayed in the model.Compared with the observation,the model tends to reproduce a weaker jet center.And,during summer,the simulated jet center is northward-situated.Results also demonstrate the model captures the variability of EASWJ during summer well.The results of the empirical orthogonal function (EOF) applied on the zonal wind at 200 hPa (U200) over East Asia for both the observation and simulation indicate an inter-decadal shift around the late 1970s.The correlation coefficient between the corresponding principle components is as great as 0.42 with significance at the 99% confidence level. 展开更多
关键词 East Asian Subtropical Westerly Jet Stream seasonal evolution GCM
在线阅读 下载PDF
Changes in the East Asian Cold Season since 2000 被引量:4
11
作者 魏科 陈文 周文 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第1期69-79,共11页
Using NCEP-NCAR reanalysis data and observational data from meteorological stations in China, the evolution of the East Asian cold season (EACS) and its long-term changes after 2000 were studied. A monsoon tendency ... Using NCEP-NCAR reanalysis data and observational data from meteorological stations in China, the evolution of the East Asian cold season (EACS) and its long-term changes after 2000 were studied. A monsoon tendency index (MTI), defined as the temporal di?erence of the East Asian monsoon index, indi- cates that the winter monsoon setup has been postponed in autumn, while the setup has quickened in early winter. In mid winter, the EACS breakdown process has accelerated, while it has lingered in late winter. The authors suggest that the postponement of monsoon setup in autumn may be caused by strong global warming at the lower levels, which further limits the setup time period and leads to the quickening of the setup process in early winter. Meanwhile, a north-south seesaw of temperature tendency change in China can be observed in December and February, which may be related to large-scale circulation changes in the stratosphere, characterized by a polar warming in mid winter and polar cooling in early spring. This linkage is possibly caused by the dynamical coupling between stratosphere and troposphere, via the variation of planetary wave activities. In spring, the speed of the EACS breakdown has decreased, which favors the revival of the EACS in East Asia. 展开更多
关键词 seasonal evolution East Asian winter monsoon stratosphere-troposphere interaction
在线阅读 下载PDF
Coastal hypoxia response to the coupling of catastrophic flood,extreme marine heatwave and typhoon:a case study off the Changjiang River Estuary in summer 2020
12
作者 Xiao Ma Qicheng Meng +8 位作者 Dewang Li Yuanli Zhu Xiaobo Ni Dingyong Zeng Di Tian Ting Huang Zhihao Jiang Haiyan Jin Feng Zhou 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第6期107-118,共12页
Massive bodies of low-oxygen bottom waters are found in coastal areas worldwide,which are detrimental to coastal ecosystems.In summer 2020,the response of coastal hypoxia to extreme weather events,including a catastro... Massive bodies of low-oxygen bottom waters are found in coastal areas worldwide,which are detrimental to coastal ecosystems.In summer 2020,the response of coastal hypoxia to extreme weather events,including a catastrophic flooding,an extreme marine heatwave,and Typhoon Bavi,is investigated based on multiple satellite,four cruises,and mooring observations.The extensive fan-shaped hypoxia zone presents significant northward extension during July-September 2020,and is estimated as large as 13 000 km^(2) with rather low oxygen minimum(0.42 mg/L) during its peak in 28-30 August.This severe hypoxia is attributed to the persistent strong stratification,which is indicated by flood-induced larger amount of riverine freshwater input and subsequent marine heatwave off the Changjiang River Estuary.Moreover,the Typhoon Bavi has limited effect on the marine heatwave and coastal hypoxia in summer 2020. 展开更多
关键词 coastal hypoxia Changjiang River Estuary extreme weather events seasonal evolution
在线阅读 下载PDF
Agro-Climatic Risks Analysis in Climate Variability Context in Ségou Region
13
作者 Diop Amadou Barro Diakarya 《Open Journal of Statistics》 2023年第1期170-193,共24页
In the Sahel region, the population depends largely on rain-fed agriculture. In West Africa in particular, climate models turn out to be unable to capture some basic features of present-day climate variability. This s... In the Sahel region, the population depends largely on rain-fed agriculture. In West Africa in particular, climate models turn out to be unable to capture some basic features of present-day climate variability. This study proposes a contribution to the analysis of the evolution of agro-climatic risks in the context of climate variability. Some statistical tests are used on the main variables of the rainy season to determine the trends and the variabilities described by the data series. Thus, the paper provides a statistical modeling of the different agro-climatic risks while the seasonal variability of agro-climatic parameters was analyzed as well as their inter annual variability. The study identifies the probability distributions of agroclimatic risks and the characterization of the rainy season was clarified. 展开更多
关键词 Climate Variability Agro-Climatic Risks seasonal evolution Variability Parameters Tests
在线阅读 下载PDF
Seasonal Variation of the Meridional Wind in the Temperate Jet Stream and Its Relationship to the Asian Monsoon 被引量:1
14
作者 张耀存 王东阡 任雪娟 《Acta meteorologica Sinica》 SCIE 2008年第4期446-454,共9页
The features of the temperate jet stream including its location, intensity, structure, seasonal evolution and the relationship with the Asian monsoon are examined by using NCEP/NCAR reanalysis data. It is indicated th... The features of the temperate jet stream including its location, intensity, structure, seasonal evolution and the relationship with the Asian monsoon are examined by using NCEP/NCAR reanalysis data. It is indicated that the temperate jet stream is prominent and active at 300 hPa in winter over the region from 45°-60°N and west of 120°E. The temperate jet stream is represented by a ridge area of high wind speed and dense stream lines in the monthly or seasonal mean wind field, but it .corresponds to an area frequented by a large number of jet cores in the daily wind field and exhibits a distinct boundary that separates itself with the subtropical jet. A comparison of the meridional wind component of the temperate jet stream with that of the subtropical jet shows that the northerly wind in the temperate jet stream is stronger than the southerly component of the subtropical jet, which plays an important role in the temperate jet stream formation and seasonal evolution, and thus the intensity change of the meridional wind component can be used to represent the temperate jet stream's seasonal variation. Analysis of the temperature gradient in the upper troposphere indicates that the temperate jet stream is accompanied by a maximum zonal temperature gradient and a large meridional temperature gradient, leading to a unique jet stream structure and particular seasonal evolution features, which are different from the subtropical jet. The zonal temperature gradient related to the land-sea thermal contrast along the East China coastal lines is responsible for the seasonal evolution of the temperate jet. In addition, there exists a coordinated synchronous change between the movement of the temperate jet and that of the subtropical jet. The seasonal evolution of the meridional wind intensity is closely related to the seasonal shift of the atmospheric circulation in East Asia, the onset of the Asian summer monsoon and the start of Meiyu in the Yangtze and Huaihe River Valleys, and it correlates well with summer and winter rainfall variations in East China. The temperate jet intensity change is earlier than that of the Asian summer monsoon onset and Meiyu, and thus it may be used as a precursor for the prediction of the Asian summer monsoon onset and the beginning of Meiyu. 展开更多
关键词 temperate jet stream subtropical jet Asian summer monsoon seasonal evolution
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部