Cebu Province,a key hub in the Philippine archipelago,is known for its strategic location,abundant natural resources,and rich cultural heritage.Far across the sea in southern China,Guangxi Zhuang Autonomous Region shi...Cebu Province,a key hub in the Philippine archipelago,is known for its strategic location,abundant natural resources,and rich cultural heritage.Far across the sea in southern China,Guangxi Zhuang Autonomous Region shines with picturesque landscapes,vibrant ethnic cultures,and dynamic growth.Separated by vast waters yet linked through the China-ASEAN Expo(CAEXPO)in Nanning,the two regions have forged a strong bond of friendship.展开更多
The distribution of igneous rocks is closely related to hydrocarbon resources.This study utilized high-precision gravity,magnetic,and rock physical property data,employing gravity-magnetic field fusion technology and ...The distribution of igneous rocks is closely related to hydrocarbon resources.This study utilized high-precision gravity,magnetic,and rock physical property data,employing gravity-magnetic field fusion technology and Euler deconvolution technology.The objective was to identify the distribution of igneous rocks in the China Seas and neighboring regions and investigate their relationships with petroliferous basins.Our results reveal that igneous rocks are widely scattered throughout the China Seas and neighboring regions,with the highest concentration in the northwest(NW)and the second highest concentration in the east-northeast(ENE).The largest-scale igneous rocks are those with a north-south(N-S)orientation,followed by those with northeast(NE),NW,and ENE orientations.The depths of igneous rocks within petroliferous basins typically range from 3 km to 9 km and are associated with hydrocarbon resource distributions characterized by deep oil and shallow gas.The proportions of igneous rocks in different types of basins exhibit varying correlations with the total hydrocarbon resources.In particular,the proportion of igneous rocks in rift-type basins in the China Seas exhibits a strong linear correlation with the total hydrocarbon resources.These research findings provide valuable guidance for studying the relationship between igneous rock distribution and petroliferous basins,offering insights that can inform future hydrocarbon exploration endeavors.展开更多
Frequent typhoons can significantly change the temperature,nutrient availability,and phytoplankton biomass in marginal seas.The oceanic response to typhoons is usually influenced by the features of the typhoon,among w...Frequent typhoons can significantly change the temperature,nutrient availability,and phytoplankton biomass in marginal seas.The oceanic response to typhoons is usually influenced by the features of the typhoon,among which the translational speed is critically important.By using a high resolution coupled physical-biological model,we investigated the response of the Yellow and East China seas(YECS)to two typhoons at different translational speeds,Muifa in August 2011 and Bolaven in August 2012.The model well reproduced the spatial and temporal variations of temperature,chlorophyll-a concentration over the YECS.Results show that typhoons with slower translational speeds uplift more deep water,leading to a more significant oceanic response.Divergence and convergence caused nutrient fluxes in opposite directions in the surface and bottom layers.Moreover,the nutrient flux in the bottom layer was greater than that in the surface layer.These phenomena are closely related to the spatial distribution of nutrients.Further studies show that the degree of ocean response to typhoons is highly correlated with the initial conditions of physical and biological elements of the upper ocean before the typhoon,as well as with ocean structure.Pretyphoon initial conditions of oceanic physical and ecological elements,mixed layer depth,and potential energy anomalies can all alter the degree of typhoon-induced oceanic response.This study emphasizes the important roles of the translational speed of typhoons and the initial oceanic conditions in the oceanic response to typhoons.展开更多
Seasonal variation in phytoplankton composition influences the pathways and efficiency of energy flow,reshaping the structure of the trophic pyramid in the Ross Sea.However,field investigation of grazing processes pre...Seasonal variation in phytoplankton composition influences the pathways and efficiency of energy flow,reshaping the structure of the trophic pyramid in the Ross Sea.However,field investigation of grazing processes presents challenges that hinder our understanding of energy pathways.This study aims to provide insights into energy flow using a three-dimensional ecosystem model applied to the Ross Sea.By analyzing the simulation results,the role of the seasonal phytoplankton succession,specifically the shift from dominance by Phaeocystis antarctica to diatoms,in energy allocation is explored.The short-lived spring bloom of P.antarctica mainly fuels microzooplankton,creating a brief food chain where energy transfers primarily among smaller plankton.In contrast,the subsequent summer bloom of diatoms,which persists longer,provides nearly half of the total phytoplankton energy loss(via ingestion and mortality)to larger mesozooplankton.Our findings indicate that phytoplankton succession in the Ross Sea extends the bloom duration,particularly for diatoms,thereby facilitating energy transfer to higher trophic levels and improving overall energy utilization.This suggests that phytoplankton succession,an ecological strategy adapted to iron-deficient environments in the Ross Sea,explains why the colder region in front of the Ross Ice Shelf is significantly more productive than the northern areas,ultimately favored by top predators.展开更多
Marine heatwaves(MHWs)in the East China Sea(ECS),especially those occurring on the ocean bottom(referred to as bottom marine heatwaves,BMHWs),can significantly affect regional ecosystems.However,our understanding of t...Marine heatwaves(MHWs)in the East China Sea(ECS),especially those occurring on the ocean bottom(referred to as bottom marine heatwaves,BMHWs),can significantly affect regional ecosystems.However,our understanding of the seasonal variations in the MHWs in the ECS remains limited.This study investigates the characteristics of MHWs in the ECS in summer and winter using high-resolution oceanic reanalysis.Our analyses reveal distinct spatial patterns of BMHWs in these seasons.During summer,the Taiwan Warm Current plays a crucial role in transporting warm water northward,potentially leading to intense BMHWs on the central ECS shelf.These BMHW events usually occur independently of surface warming due to strong stratification in summer.Conversely,winter BMHWs are more prevalent in coastal regions under the influence of coastal currents and typically feature consistent warming from surface to bottom with a deepened mixed layer.These findings inform the coherent vertical structure and driving mechanisms of MHWs in the ECS,which are essential for predicting and managing these extreme events in the future.展开更多
This study conducts a comparative investigation between short-lived(3-8 days)and long-lived(9-24 days)break events of the South China Sea summer monsoon during 1979-2020,focusing on their statistical characteristics a...This study conducts a comparative investigation between short-lived(3-8 days)and long-lived(9-24 days)break events of the South China Sea summer monsoon during 1979-2020,focusing on their statistical characteristics and potential mechanisms for their different persistence.Results suggest that both types of events are characterized by anomalously suppressed convection accompanied by an anomalous anticyclone during the break period.However,these convection and circulation anomalies exhibit more localized patterns for short-lived events,but possess larger spatial scales and stronger intensities for long-lived events.The influence of tropical intraseasonal oscillations(ISOs)on short-and long-lived events is explored to interpret their different durations.It is found that for short-lived events,the 10-25-day oscillation is dominant in initiating and terminating the break,while the impact of the 30-60-day oscillation is secondary,thus resulting in a brief break period.In contrast,for long-lived events,the 10-25-day oscillation contributes to break development rather than its initiation,and concurrently,the 30-60-day oscillation shows a remarkable enhancement and plays a decisive role in prolonging the break duration.Furthermore,we find that long-lived events are preceded by significant ISO activities approximately two weeks before their occurrence,which can be regarded as efficient predictors.Associated with these precursory ISOs,the occurrence probability of break days for long-lived events can rise up to triple their original probability(35.43%vs.11.21%).展开更多
Using the satellite altimeter data from 1993 to 2021,this study investigates the seasonal and interannual variations of Kuroshio surface water intrusion into the East China Sea(ECS)with an emphasis on transports acros...Using the satellite altimeter data from 1993 to 2021,this study investigates the seasonal and interannual variations of Kuroshio surface water intrusion into the East China Sea(ECS)with an emphasis on transports across different isobaths.The results reveal that the intrusion variability differs among the isobaths used to identify the intrusion.On the seasonal scale,the transport volume and proportion of intrusion into the outer shelf(across 200 m isobath)are greatest in spring compared to other seasons possibly because of the relief of northerly monsoon and the increase of Kuroshio transport.However,in the inner shelf regions(across 100 m isobath),the strongest intrusion occurs in summer,with a much longer residence period and broader spatial range,though the Kuroshio moves farthest away from the coast.This implies that the Kuroshio may have the highest exchange efficiency with the ECS shelf water during summer.On the interannual scale,increased upstream transport from the Kuroshio and shoreward movement of the current almost equally contribute to the enhancement of surface water intrusion into the outer shelf regions.In contrast to the seasonal characteristics,the interannual intrusion into the shallower shelf regions(across the 120 m and 100 m isobaths)is primarily correlated to the position of the Kuroshio axis,i.e.,the closer to the coast the Kuroshio is,the more water can enter the inner continental shelf.This result highlights that the importance of factors that control the intrusion variabilities may also change between seasonal and interannual time scales when different isobaths are used.展开更多
With the intensification of global warming,marine heatwaves(MHWs)have emerged as a significant extreme hazard,garnering widespread attention and creating a pressing need for accurate prediction.The development of arti...With the intensification of global warming,marine heatwaves(MHWs)have emerged as a significant extreme hazard,garnering widespread attention and creating a pressing need for accurate prediction.The development of artificial intelligence,particularly the application of deep learning to sea surface temperature(SST),has significantly improved the feasibility of predictions.This study utilizes SST and Outgoing Longwave Radiation(OLR)data to train a 3D U-Net model for predicting MHWs in the South China Sea(SCS)with lead times ranging from 1 to 7 days,based on the characteristics of intraseasonal weather processes.Analysis of MHWs occurrences from 1982 to 2023 reveals distinct seasonal patterns,with summer MHWs primarily concentrated in the northern and central SCS,and the highest temperature centers located in the Gulf of Tonkin and west of the Philippines.The 2023 MHW forecast results demonstrate that the 3D U-Net model achieves low error rates and high correlation coefficients with observational data.Incorporating OLR data enhances forecast accuracy compared to SST-only inputs,and training the model exclusively with summer data further improves prediction accuracy.These findings indicate that the proposed method can significantly enhance the accuracy of MHW forecasts.展开更多
The heat content(HC)of water masses on the Ross Sea continental shelf plays an important role in regulating the circulations and the basal melting of the Ross Ice Shelf(RIS).Yet,the evolution of the HC on the Ross Sea...The heat content(HC)of water masses on the Ross Sea continental shelf plays an important role in regulating the circulations and the basal melting of the Ross Ice Shelf(RIS).Yet,the evolution of the HC on the Ross Sea continental shelf is still not clear due to the sparsity of observations.By employing a coupled regional ocean-sea ice-ice shelf model for the Ross Sea,this study analyzes the heat budget of water masses over the continental shelf and in the RIS cavity.According to the topographic features and the HC density,the continental shelf region is divided into 17 subdomains.The heat budget of the middle layer for every subdomain is analyzed.In addition,the heat budget for the RIS cavity is assessed for the first time.Owing to Modified Circumpolar Deep Water intrusion,water masses over the eastern shelf are warmer than over the western shelf,with the coldest water identified in the southwestern inner shelf.The horizontal heat flux mainly provides heat to the continental shelf,while the atmospheric forcing tends to warm up the ocean during the ice-melting period and cool down the ocean during the ice-freezing period.The vertical heat flux is generally upward and transports heat from the deep layer to the upper layer.In the RIS cavity,the seasonal cycle of the HC is dominated by the horizontal flux across the RIS front rather than the basal thermal forcing of the RIS.展开更多
The annual frequency of red tides from 1977 to 2012 and the monthly frequency of red tides from 2001 to 2012 in China seas were used to establish the time series of red tide annual frequency and monthly frequency, res...The annual frequency of red tides from 1977 to 2012 and the monthly frequency of red tides from 2001 to 2012 in China seas were used to establish the time series of red tide annual frequency and monthly frequency, respectively. The annual frequency fit well with time segments revealed by piecewise linear regression analysis. The seasonal maximum of monthly frequency was in May (-18.22), and the stochastic volatility tended to increase gradually with time series, with peak values occurring from May to July. Holt exponential smoothing and Holt-winter exponential smoothing were used to predict red tide annual and monthly frequencies, which revealed that the annual frequency of red tides would rise slowly by one time from 2013 to 2020, and that red tides would mainly occur from May to July in 2013-2016 with a peak value of about 25 times in May.展开更多
Distribution of dimethylsulfide (DMS) and/or particulate dimethylsulfoniopropionate (DMSPp) concentrations in the Jiaozhou Bay, Zhifu Bay and East China Sea were investigated during the period of 1994 - 1998. Both DMS...Distribution of dimethylsulfide (DMS) and/or particulate dimethylsulfoniopropionate (DMSPp) concentrations in the Jiaozhou Bay, Zhifu Bay and East China Sea were investigated during the period of 1994 - 1998. Both DMS and DMSPp levels showed remarkable temporal and spatial variations. High values occurred in the coastal or shelf waters and low values in the offshore waters. The highest levels were observed in spring or summer and lowest in autumn. DMS or DMSPp distribution patterns were associated with water mass on a large geographical scale, while biological and chemical factors were more likely influential on smaller-scale variations. Diatoms could play an important role in total DMS or DMSPp abundance in coastal waters. Nitrate was found to have a two-phase relationship with DMSPp concentrations: positive when nitrate concentration was lower than 1 mumol/L, and negative when it was above. Anthropogenic factors such as sewage input and aquaculture also showed influences on DMS or DMSPp concentration.展开更多
With the in-situ temperature and salinity observations taken seasonally in the Northern Yellow Sea area during the National 908 Water Investigation and Research Project from 2006 to 2007, the characteristics of the No...With the in-situ temperature and salinity observations taken seasonally in the Northern Yellow Sea area during the National 908 Water Investigation and Research Project from 2006 to 2007, the characteristics of the Northern Yellow Sea cold water mass (NYSCWM) were studied, including both its spatial pattern over the whole bottom and historically typical section from Dalian to Chengshantou. Seasonal evolution as well as its spatial distribution was analyzed to further understand the NYSCWM, as a result, some new features about the NYSCWM had been found. Compared to the previous studies, the center of colder water mass in summer moved eastward, but sharing the similar peak values for both temperature and salinity with historical data. In spring, the axis of 32.8 psu saltier moves westward approximately 75 km and the high salinity areas beyond 123.5° E were largely impaired comparing to that in winter. In winter, the NYSCWM almost disappeared due to the reinforced wind-induced mixing and the Yellow Sea Warm Currents (YSWC) moved northward and controlled most of the Northern Yellow Sea region. In autumn, two cold centers with the peak value of 9℃ were found inside the attenuated NYSCWM.展开更多
The distributions and seasonal variations of total dissolved inorganic arsenic (TDIAs, [TDIAs] = [As^5+]+[As^3+]) and arsenite (As3.) in the Yellow Sea and East China Sea are presented hero based on the observa...The distributions and seasonal variations of total dissolved inorganic arsenic (TDIAs, [TDIAs] = [As^5+]+[As^3+]) and arsenite (As3.) in the Yellow Sea and East China Sea are presented hero based on the observations of 9 cruises carried out in 2000 - 2003. The study area covers a broad range of hydrographic and chemical properties. The emphasis is put on a southeast transect from Changjiang Estuary to the Ryukyu Islands (i.e. PN section) in the East China Sea to discuss the impact of terrestdal input on the marginal seas of China. Arsenic species (TDlAs and arsenite) are determined by selective hydride generation - atomic fluorescence spectrometry (HG-AFS). TDIAs concentrations were high in the coastal area of Changjiang Estuary and decreased slightly towards the shelf region. High concentratiOns of TDIAs were also existed in the near bottom layer of shelf edge of the East China Sea which indicated another source of arsenic from the incursion of Kuroshio Waters. The seasonal variations of TDIAs in the study area depend on the hydrographic stages of Changjiang and the incursion intensity of Kuroshio Waters. Arsenite showed opposite distributions with TDIAs, with higher concentrations appeared at the surface layer of shelf region, which was positive correlated with the chlorophyll a. Biological conversion of arsenate into arsenite was hypothesized for the observed distribution pattern and its seasonal variations. The stoichoimetric ratios of As to P were estimated to be about 2×10^3 at PN Section in summer. The concentrations of dissolved arsenic in the Yellow Sea and East China Sea were comparable with other areas in the world.展开更多
Southerly moisture surges over the central South China Sea(SCS)are characterized by the strengthening of lowlevel southerlies that transport moisture northward from the Pacific or Indian Oceans to South China.These su...Southerly moisture surges over the central South China Sea(SCS)are characterized by the strengthening of lowlevel southerlies that transport moisture northward from the Pacific or Indian Oceans to South China.These surge events typically occur for days in the early-summer season(from April to June)and can lead to heavy rains in South China.This study categorizes surge events into three types of flow patterns and examines their multiscale variations and impacts on rainfall.The first type occurs mainly in April,with the southeasterlies enhanced by a deepening trough in South China and the western Pacific subtropical high established over the SCS.The second type of surge events mostly appears in June,featuring the prevailing southwesterlies of summer monsoon from the Indian Ocean during the active phases of intraseasonal oscillations.Most surge events exhibit semi-diurnal variations with morning and afternoon peaks of northward moisture fluxes.Specifically,the first type features a dominant afternoon peak,while the second type shows a dominant early-morning peak,which is induced by thermal contrast between the Indochina Peninsula and the SCS.In general,the surge events enhance moisture convergence and increase rainfall downstream in South China,but they show some regional differences.The second type strengthens moisture convergence and rainfall in coastal regions with a morning peak.In contrast,the first type enhances inland rainfall with a morning peak,while moisture divergence dominates coastal regions.The third type of surge events denotes transitional conditions between the first two types,in terms of atmospheric circulations,diurnal cycles,and rainfall patterns.These results highlight a diversity of regional moisture surges and related rainfall ranging from diurnal to sub-seasonal scales.展开更多
The monthly mean suspended sediment concentration in the upper layer of the East China Seas was derived from the retrieval of the monthly binned SeaWiFS Level 3 data during 1998 to 2006. The seasonal variation and spa...The monthly mean suspended sediment concentration in the upper layer of the East China Seas was derived from the retrieval of the monthly binned SeaWiFS Level 3 data during 1998 to 2006. The seasonal variation and spatial distribution of the suspended sediment concentration in the study area were investigated. It was found that the suspended sediment distribution presents apparent spatial characteristics and seasonal variations, which are mainly affected by the resuspension and transportation of the suspended sediment in the study area. The concentration of suspended sediment is high inshore and low offshore, and river mouths are generally high concentration areas. The suspended sediment covers a much wider area in winter than in summer, and for the same site the concentration is generally higher in winter. In the Yellow and East China Seas the suspended sediment spreads farther to the open sea in winter than in summer, and May and October are the transitional periods of the extension. Winds, waves, currents, thermocline, halocline, pycnocline as well as bottom sediment feature and distribution in the study area are important influencing factors for the distribution pattern. If the 10rag L^-1 contour line is taken as an indicator, it appears that the transportation of suspended sediment can hardly reach 124^o00'E in summer or 126^o00'E in winter, which is due to the obstruction of the Taiwan Warm Current and the Kuroshio Current in the southern Yellow Sea and the East China Sea.展开更多
Polynyas and their adjacent seasonal ice zones(SIZs)represent the most productive regions in the Southern Ocean,supporting unique food webs that are highly sensitive to climate change.Understanding the dynamics of phy...Polynyas and their adjacent seasonal ice zones(SIZs)represent the most productive regions in the Southern Ocean,supporting unique food webs that are highly sensitive to climate change.Understanding the dynamics of phytoplankton and the carbon pool in these areas is crucial for assessing the role of the Southern Ocean in global carbon cycling.During the late stage of an algal bloom,seawater samples at 14 stations were collected in the Amundsen Sea Polynya(ASP)and adjacent SIZ.Using nutrients,phytoplankton pigments,organic carbon(OC),remote sensing data,and physicochemical measurements,as well as CHEMTAX model simulations,we investigated the response of the phytoplankton crops,taxonomic composition,and OC pool to environmental factors.Our analyses revealed that hydrodynamic regimes of the polynya,adjacent SIZs and open sea were regulated by the regionally varying intrusion of Circumpolar Deep Water,photosynthetically active radiation and sea ice melt water.The ASP exhibited the highest seasonal nutrient utilization rates[ΔN=(1059±386)mmol/m^(2),ΔP=(50±17)mmol/m^(2) andΔSi=(956±904)mmol/m^(2)],while the open sea had lower rates.The integrated chlorophyll a(Chl a)concentration at depths of 0–200 m ranged from 20.4 mg/m^(2) to 1420.0 mg/m^(2) and peaked in the polynya.In the study area,Haptophytes Phaeocystis antarctica was the dominant functional group(34%±27%),and diatoms acted as a secondary contributor(23%±14%).The major functional group and particulate OC(POC)contributor varied from diatoms(36%±12%)in the open sea to haptophytes(48%±31%)in the polynya waters.Strong light conditions and microelement limitations promoted the dominance of P.antarctica(low Fe forms)dominance in the ASP.The strong correlations between the POC and Chl a depth-integrated concentration suggest that the POC was primarily derived from phytoplankton,while dissolved OC(DOC)was influenced by consumer activity and water mass transport.In addition,the transport of OC in the upper 200 m of the water column within the ASP was quantified,revealing the predominantly westward fluxes for both DOC[9.0 mg/(m^(2)·s)]and POC[7.2 mg/(m^(2)·s)].The latitudinal transport exhibited the northward transport of DOC[8.1 mg/(m^(2)·s)]and southward transport of POC[4.3 mg/(m^(2)·s)]movement.These findings have significant implications for enhancing our understanding of how hydrodynamics influence OC cycling in polynya regions.展开更多
This paper is focused on the seasonality change of Arctic sea ice extent (SIE) from 1979 to 2100 using newly available simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5). A new approach to ...This paper is focused on the seasonality change of Arctic sea ice extent (SIE) from 1979 to 2100 using newly available simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5). A new approach to compare the simulation metric of Arctic SIE between observation and 31 CMIP5 models was established. The approach is based on four factors including the climatological average, linear trend of SIE, span of melting season and annual range of SIE. It is more objective and can be popularized to other comparison of models. Six good models (GFDL-CM3, CESM1-BGC, MPI-ESM-LR, ACCESS-1.0, HadGEM2-CC, and HadGEM2-AO in turn) are found which meet the criterion closely based on above approach. Based on ensemble mean of the six models, we found that the Arctic sea ice will continue declining in each season and firstly drop below 1 million km2 (defined as the ice-free state) in September 2065 under RCP4.5 scenario and in September 2053 under RCP8.5 scenario. We also study the seasonal cycle of the Arctic SIE and find out the duration of Arctic summer (melting season) will increase by about I00 days under RCP4.5 scenario and about 200 days under RCPS.5 scenario relative to current circumstance by the end of the 21st century. Asymmetry of the Arctic SIE seasonal cycle with later freezing in fall and early melting in spring, would be more apparent in the future when the Arctic climate approaches to "tipping point", or when the ice-free Arctic Ocean appears. Annual range of SIE (seasonal melting ice extent) will increase almost linearly in the near future 30-40 years before the Arctic appears ice-free ocean, indicating the more ice melting in summer, the more ice freezing in winter, which may cause more extreme weather events in both winter and summer in the future years.展开更多
Sea level seasonal variations in the east of China seas from 2004 to 2006 are simulated by the advanced ROMS model. The results show similar sea level spatial features with TOPEX/Poseidon observations, with annual ran...Sea level seasonal variations in the east of China seas from 2004 to 2006 are simulated by the advanced ROMS model. The results show similar sea level spatial features with TOPEX/Poseidon observations, with annual ranges decreasing gradually from the sea coast to the Kuroshio region. By getting rid of wind stress in ROMS model, the simulated sea level results still show obvious seasonal variations. However, the phenomenon of sea level anomaly disappears in Min Zhe Current Coastwise (MZCF) and Su Bei current coastwise (SBCF), and the change of it from coastal area to ocean recedes. The seal level difference between Bohai, Yellow Sea (BYS) and East China Sea (ECS) becomes weaker in spring and autumn. The annual differences decrease obviously, and the gradual change of annual ranges from seacoast to the Kuroshio almost disappears. The annual ranges in BYS are nearly identical. The annual range ratio without the wind stress to with the wind stress increases gradually from the sea coast to Kuroshio region.展开更多
The Greenland Sea,Iceland Sea,and Norwegian Sea (GIN seas) form the main channel connecting the Arctic Ocean with other Oceans,where significant water and energy exchange take place,and play an important role in globa...The Greenland Sea,Iceland Sea,and Norwegian Sea (GIN seas) form the main channel connecting the Arctic Ocean with other Oceans,where significant water and energy exchange take place,and play an important role in global climate change.In this study steric sea level,associated with temperature and salinity,in the GIN seas is examined based on analysis of the monthly temperature and salinity fields from Polar science center Hydrographic Climatology (PHC3.0).A method proposed by Tabata et al.is used to calculate steric sea level,in which,steric sea level change due to thermal expansion and haline contraction is termed as the thermosteric component (TC) and the halosteric component (SC),recpectively.Total steric sea level (TSSL) change is the sum of TC and SC.The study shows that SC is making more contributions than TC to the seasonal change of TSSL in the Greenland Sea,whereas TC contributes more in the Norwegian and the Iceland Seas.Annual variation of TSSL is larger than 50 mm over most regions of the GIN Seas,and can be larger than 200 mm at some locations such as 308 mm at 76.5 N,12.5 E and 246 mm at 77.5 N,17.5 W.展开更多
文摘Cebu Province,a key hub in the Philippine archipelago,is known for its strategic location,abundant natural resources,and rich cultural heritage.Far across the sea in southern China,Guangxi Zhuang Autonomous Region shines with picturesque landscapes,vibrant ethnic cultures,and dynamic growth.Separated by vast waters yet linked through the China-ASEAN Expo(CAEXPO)in Nanning,the two regions have forged a strong bond of friendship.
基金The National Key Research and Development Program of China under contract No.2017YFC0602202.
文摘The distribution of igneous rocks is closely related to hydrocarbon resources.This study utilized high-precision gravity,magnetic,and rock physical property data,employing gravity-magnetic field fusion technology and Euler deconvolution technology.The objective was to identify the distribution of igneous rocks in the China Seas and neighboring regions and investigate their relationships with petroliferous basins.Our results reveal that igneous rocks are widely scattered throughout the China Seas and neighboring regions,with the highest concentration in the northwest(NW)and the second highest concentration in the east-northeast(ENE).The largest-scale igneous rocks are those with a north-south(N-S)orientation,followed by those with northeast(NE),NW,and ENE orientations.The depths of igneous rocks within petroliferous basins typically range from 3 km to 9 km and are associated with hydrocarbon resource distributions characterized by deep oil and shallow gas.The proportions of igneous rocks in different types of basins exhibit varying correlations with the total hydrocarbon resources.In particular,the proportion of igneous rocks in rift-type basins in the China Seas exhibits a strong linear correlation with the total hydrocarbon resources.These research findings provide valuable guidance for studying the relationship between igneous rock distribution and petroliferous basins,offering insights that can inform future hydrocarbon exploration endeavors.
基金Supported by the National Natural Science Foundation of China(Nos.42006018,42276009,42376199)the Open Fund Project of the Key Laboratory of Ocean Observation and Information of Hainan Province(No.HKLOOI-OF-2023-03)the Tianjin Natural Science Foundation(Nos.21JCYBJC00500,21JCQNJC00590)。
文摘Frequent typhoons can significantly change the temperature,nutrient availability,and phytoplankton biomass in marginal seas.The oceanic response to typhoons is usually influenced by the features of the typhoon,among which the translational speed is critically important.By using a high resolution coupled physical-biological model,we investigated the response of the Yellow and East China seas(YECS)to two typhoons at different translational speeds,Muifa in August 2011 and Bolaven in August 2012.The model well reproduced the spatial and temporal variations of temperature,chlorophyll-a concentration over the YECS.Results show that typhoons with slower translational speeds uplift more deep water,leading to a more significant oceanic response.Divergence and convergence caused nutrient fluxes in opposite directions in the surface and bottom layers.Moreover,the nutrient flux in the bottom layer was greater than that in the surface layer.These phenomena are closely related to the spatial distribution of nutrients.Further studies show that the degree of ocean response to typhoons is highly correlated with the initial conditions of physical and biological elements of the upper ocean before the typhoon,as well as with ocean structure.Pretyphoon initial conditions of oceanic physical and ecological elements,mixed layer depth,and potential energy anomalies can all alter the degree of typhoon-induced oceanic response.This study emphasizes the important roles of the translational speed of typhoons and the initial oceanic conditions in the oceanic response to typhoons.
基金The National Natural Science Foundation of China under contract No.41941008the National Key Research and Development Program of China under contract No.2023YFC3107702.
文摘Seasonal variation in phytoplankton composition influences the pathways and efficiency of energy flow,reshaping the structure of the trophic pyramid in the Ross Sea.However,field investigation of grazing processes presents challenges that hinder our understanding of energy pathways.This study aims to provide insights into energy flow using a three-dimensional ecosystem model applied to the Ross Sea.By analyzing the simulation results,the role of the seasonal phytoplankton succession,specifically the shift from dominance by Phaeocystis antarctica to diatoms,in energy allocation is explored.The short-lived spring bloom of P.antarctica mainly fuels microzooplankton,creating a brief food chain where energy transfers primarily among smaller plankton.In contrast,the subsequent summer bloom of diatoms,which persists longer,provides nearly half of the total phytoplankton energy loss(via ingestion and mortality)to larger mesozooplankton.Our findings indicate that phytoplankton succession in the Ross Sea extends the bloom duration,particularly for diatoms,thereby facilitating energy transfer to higher trophic levels and improving overall energy utilization.This suggests that phytoplankton succession,an ecological strategy adapted to iron-deficient environments in the Ross Sea,explains why the colder region in front of the Ross Ice Shelf is significantly more productive than the northern areas,ultimately favored by top predators.
基金The National Natural Science Foundation of China under contract No.42030410the Laoshan Laboratory under contract Nos LSKJ202202404 and LSKJ202202403+2 种基金the Startup Foundation for Introducing Talent of Nanjing University of Information Science and TechnologyJiangsu Innovation Research Group under contract No.JSSCTD202346Jiangsu Funding Program for Excellent Postdoctoral Talent under contract No.2023ZB690。
文摘Marine heatwaves(MHWs)in the East China Sea(ECS),especially those occurring on the ocean bottom(referred to as bottom marine heatwaves,BMHWs),can significantly affect regional ecosystems.However,our understanding of the seasonal variations in the MHWs in the ECS remains limited.This study investigates the characteristics of MHWs in the ECS in summer and winter using high-resolution oceanic reanalysis.Our analyses reveal distinct spatial patterns of BMHWs in these seasons.During summer,the Taiwan Warm Current plays a crucial role in transporting warm water northward,potentially leading to intense BMHWs on the central ECS shelf.These BMHW events usually occur independently of surface warming due to strong stratification in summer.Conversely,winter BMHWs are more prevalent in coastal regions under the influence of coastal currents and typically feature consistent warming from surface to bottom with a deepened mixed layer.These findings inform the coherent vertical structure and driving mechanisms of MHWs in the ECS,which are essential for predicting and managing these extreme events in the future.
基金supported by the National Natural Science Foundation of China(Grant No.42275025)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2023084).
文摘This study conducts a comparative investigation between short-lived(3-8 days)and long-lived(9-24 days)break events of the South China Sea summer monsoon during 1979-2020,focusing on their statistical characteristics and potential mechanisms for their different persistence.Results suggest that both types of events are characterized by anomalously suppressed convection accompanied by an anomalous anticyclone during the break period.However,these convection and circulation anomalies exhibit more localized patterns for short-lived events,but possess larger spatial scales and stronger intensities for long-lived events.The influence of tropical intraseasonal oscillations(ISOs)on short-and long-lived events is explored to interpret their different durations.It is found that for short-lived events,the 10-25-day oscillation is dominant in initiating and terminating the break,while the impact of the 30-60-day oscillation is secondary,thus resulting in a brief break period.In contrast,for long-lived events,the 10-25-day oscillation contributes to break development rather than its initiation,and concurrently,the 30-60-day oscillation shows a remarkable enhancement and plays a decisive role in prolonging the break duration.Furthermore,we find that long-lived events are preceded by significant ISO activities approximately two weeks before their occurrence,which can be regarded as efficient predictors.Associated with these precursory ISOs,the occurrence probability of break days for long-lived events can rise up to triple their original probability(35.43%vs.11.21%).
基金The National Natural Science Foundation of China under contract No.42276003the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University under contract No.SL2021MS021.
文摘Using the satellite altimeter data from 1993 to 2021,this study investigates the seasonal and interannual variations of Kuroshio surface water intrusion into the East China Sea(ECS)with an emphasis on transports across different isobaths.The results reveal that the intrusion variability differs among the isobaths used to identify the intrusion.On the seasonal scale,the transport volume and proportion of intrusion into the outer shelf(across 200 m isobath)are greatest in spring compared to other seasons possibly because of the relief of northerly monsoon and the increase of Kuroshio transport.However,in the inner shelf regions(across 100 m isobath),the strongest intrusion occurs in summer,with a much longer residence period and broader spatial range,though the Kuroshio moves farthest away from the coast.This implies that the Kuroshio may have the highest exchange efficiency with the ECS shelf water during summer.On the interannual scale,increased upstream transport from the Kuroshio and shoreward movement of the current almost equally contribute to the enhancement of surface water intrusion into the outer shelf regions.In contrast to the seasonal characteristics,the interannual intrusion into the shallower shelf regions(across the 120 m and 100 m isobaths)is primarily correlated to the position of the Kuroshio axis,i.e.,the closer to the coast the Kuroshio is,the more water can enter the inner continental shelf.This result highlights that the importance of factors that control the intrusion variabilities may also change between seasonal and interannual time scales when different isobaths are used.
基金Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)。
文摘With the intensification of global warming,marine heatwaves(MHWs)have emerged as a significant extreme hazard,garnering widespread attention and creating a pressing need for accurate prediction.The development of artificial intelligence,particularly the application of deep learning to sea surface temperature(SST),has significantly improved the feasibility of predictions.This study utilizes SST and Outgoing Longwave Radiation(OLR)data to train a 3D U-Net model for predicting MHWs in the South China Sea(SCS)with lead times ranging from 1 to 7 days,based on the characteristics of intraseasonal weather processes.Analysis of MHWs occurrences from 1982 to 2023 reveals distinct seasonal patterns,with summer MHWs primarily concentrated in the northern and central SCS,and the highest temperature centers located in the Gulf of Tonkin and west of the Philippines.The 2023 MHW forecast results demonstrate that the 3D U-Net model achieves low error rates and high correlation coefficients with observational data.Incorporating OLR data enhances forecast accuracy compared to SST-only inputs,and training the model exclusively with summer data further improves prediction accuracy.These findings indicate that the proposed method can significantly enhance the accuracy of MHW forecasts.
基金supported by the National Key R&D Program of China (Grant No. 2024YFF0506603)the Independent Research Foundation of the Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (Grant Nos. SML2023SP201 and SML2021SP306)+2 种基金the Natural Science Foundation of Guangdong Province, China (Grant No. 2024A1515012717)the Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (Grant Nos. 313021004, 313022009 and 313022001)the Program of Innovation 2030 on Smart Ocean, Zhejiang University
文摘The heat content(HC)of water masses on the Ross Sea continental shelf plays an important role in regulating the circulations and the basal melting of the Ross Ice Shelf(RIS).Yet,the evolution of the HC on the Ross Sea continental shelf is still not clear due to the sparsity of observations.By employing a coupled regional ocean-sea ice-ice shelf model for the Ross Sea,this study analyzes the heat budget of water masses over the continental shelf and in the RIS cavity.According to the topographic features and the HC density,the continental shelf region is divided into 17 subdomains.The heat budget of the middle layer for every subdomain is analyzed.In addition,the heat budget for the RIS cavity is assessed for the first time.Owing to Modified Circumpolar Deep Water intrusion,water masses over the eastern shelf are warmer than over the western shelf,with the coldest water identified in the southwestern inner shelf.The horizontal heat flux mainly provides heat to the continental shelf,while the atmospheric forcing tends to warm up the ocean during the ice-melting period and cool down the ocean during the ice-freezing period.The vertical heat flux is generally upward and transports heat from the deep layer to the upper layer.In the RIS cavity,the seasonal cycle of the HC is dominated by the horizontal flux across the RIS front rather than the basal thermal forcing of the RIS.
基金financially supported by the Tianjin Marine Science and Technology Project (KJXH2011-05)local colleges and universities in Shanghai liberal arts academic programme (B5201120003)
文摘The annual frequency of red tides from 1977 to 2012 and the monthly frequency of red tides from 2001 to 2012 in China seas were used to establish the time series of red tide annual frequency and monthly frequency, respectively. The annual frequency fit well with time segments revealed by piecewise linear regression analysis. The seasonal maximum of monthly frequency was in May (-18.22), and the stochastic volatility tended to increase gradually with time series, with peak values occurring from May to July. Holt exponential smoothing and Holt-winter exponential smoothing were used to predict red tide annual and monthly frequencies, which revealed that the annual frequency of red tides would rise slowly by one time from 2013 to 2020, and that red tides would mainly occur from May to July in 2013-2016 with a peak value of about 25 times in May.
文摘Distribution of dimethylsulfide (DMS) and/or particulate dimethylsulfoniopropionate (DMSPp) concentrations in the Jiaozhou Bay, Zhifu Bay and East China Sea were investigated during the period of 1994 - 1998. Both DMS and DMSPp levels showed remarkable temporal and spatial variations. High values occurred in the coastal or shelf waters and low values in the offshore waters. The highest levels were observed in spring or summer and lowest in autumn. DMS or DMSPp distribution patterns were associated with water mass on a large geographical scale, while biological and chemical factors were more likely influential on smaller-scale variations. Diatoms could play an important role in total DMS or DMSPp abundance in coastal waters. Nitrate was found to have a two-phase relationship with DMSPp concentrations: positive when nitrate concentration was lower than 1 mumol/L, and negative when it was above. Anthropogenic factors such as sewage input and aquaculture also showed influences on DMS or DMSPp concentration.
文摘With the in-situ temperature and salinity observations taken seasonally in the Northern Yellow Sea area during the National 908 Water Investigation and Research Project from 2006 to 2007, the characteristics of the Northern Yellow Sea cold water mass (NYSCWM) were studied, including both its spatial pattern over the whole bottom and historically typical section from Dalian to Chengshantou. Seasonal evolution as well as its spatial distribution was analyzed to further understand the NYSCWM, as a result, some new features about the NYSCWM had been found. Compared to the previous studies, the center of colder water mass in summer moved eastward, but sharing the similar peak values for both temperature and salinity with historical data. In spring, the axis of 32.8 psu saltier moves westward approximately 75 km and the high salinity areas beyond 123.5° E were largely impaired comparing to that in winter. In winter, the NYSCWM almost disappeared due to the reinforced wind-induced mixing and the Yellow Sea Warm Currents (YSWC) moved northward and controlled most of the Northern Yellow Sea region. In autumn, two cold centers with the peak value of 9℃ were found inside the attenuated NYSCWM.
基金funded by National Science Foundation of China (No. 40606028)National Basic Research Programs of China (No. 2006CB400601and 2001CB409703)
文摘The distributions and seasonal variations of total dissolved inorganic arsenic (TDIAs, [TDIAs] = [As^5+]+[As^3+]) and arsenite (As3.) in the Yellow Sea and East China Sea are presented hero based on the observations of 9 cruises carried out in 2000 - 2003. The study area covers a broad range of hydrographic and chemical properties. The emphasis is put on a southeast transect from Changjiang Estuary to the Ryukyu Islands (i.e. PN section) in the East China Sea to discuss the impact of terrestdal input on the marginal seas of China. Arsenic species (TDlAs and arsenite) are determined by selective hydride generation - atomic fluorescence spectrometry (HG-AFS). TDIAs concentrations were high in the coastal area of Changjiang Estuary and decreased slightly towards the shelf region. High concentratiOns of TDIAs were also existed in the near bottom layer of shelf edge of the East China Sea which indicated another source of arsenic from the incursion of Kuroshio Waters. The seasonal variations of TDIAs in the study area depend on the hydrographic stages of Changjiang and the incursion intensity of Kuroshio Waters. Arsenite showed opposite distributions with TDIAs, with higher concentrations appeared at the surface layer of shelf region, which was positive correlated with the chlorophyll a. Biological conversion of arsenate into arsenite was hypothesized for the observed distribution pattern and its seasonal variations. The stoichoimetric ratios of As to P were estimated to be about 2×10^3 at PN Section in summer. The concentrations of dissolved arsenic in the Yellow Sea and East China Sea were comparable with other areas in the world.
基金Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)National Natural Science Foundation of China(42475003)Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(SML2023SP209)。
文摘Southerly moisture surges over the central South China Sea(SCS)are characterized by the strengthening of lowlevel southerlies that transport moisture northward from the Pacific or Indian Oceans to South China.These surge events typically occur for days in the early-summer season(from April to June)and can lead to heavy rains in South China.This study categorizes surge events into three types of flow patterns and examines their multiscale variations and impacts on rainfall.The first type occurs mainly in April,with the southeasterlies enhanced by a deepening trough in South China and the western Pacific subtropical high established over the SCS.The second type of surge events mostly appears in June,featuring the prevailing southwesterlies of summer monsoon from the Indian Ocean during the active phases of intraseasonal oscillations.Most surge events exhibit semi-diurnal variations with morning and afternoon peaks of northward moisture fluxes.Specifically,the first type features a dominant afternoon peak,while the second type shows a dominant early-morning peak,which is induced by thermal contrast between the Indochina Peninsula and the SCS.In general,the surge events enhance moisture convergence and increase rainfall downstream in South China,but they show some regional differences.The second type strengthens moisture convergence and rainfall in coastal regions with a morning peak.In contrast,the first type enhances inland rainfall with a morning peak,while moisture divergence dominates coastal regions.The third type of surge events denotes transitional conditions between the first two types,in terms of atmospheric circulations,diurnal cycles,and rainfall patterns.These results highlight a diversity of regional moisture surges and related rainfall ranging from diurnal to sub-seasonal scales.
基金the National Key Basic Research Science Foundation (973 Project)‘Marine Physical Variations in Eastern Marginal Seas of China and Their Environmental Impacts’ (2005CB422303)the Program for New Century Excellent Talents in University (NCET-05-0592)
文摘The monthly mean suspended sediment concentration in the upper layer of the East China Seas was derived from the retrieval of the monthly binned SeaWiFS Level 3 data during 1998 to 2006. The seasonal variation and spatial distribution of the suspended sediment concentration in the study area were investigated. It was found that the suspended sediment distribution presents apparent spatial characteristics and seasonal variations, which are mainly affected by the resuspension and transportation of the suspended sediment in the study area. The concentration of suspended sediment is high inshore and low offshore, and river mouths are generally high concentration areas. The suspended sediment covers a much wider area in winter than in summer, and for the same site the concentration is generally higher in winter. In the Yellow and East China Seas the suspended sediment spreads farther to the open sea in winter than in summer, and May and October are the transitional periods of the extension. Winds, waves, currents, thermocline, halocline, pycnocline as well as bottom sediment feature and distribution in the study area are important influencing factors for the distribution pattern. If the 10rag L^-1 contour line is taken as an indicator, it appears that the transportation of suspended sediment can hardly reach 124^o00'E in summer or 126^o00'E in winter, which is due to the obstruction of the Taiwan Warm Current and the Kuroshio Current in the southern Yellow Sea and the East China Sea.
基金The National Polar Special Program under contract Nos IRASCC 01-01-02 and IRASCC 02-02the National Natural Science Foundation of China under contract Nos 41976228,42276255,41976227,42176227,and 42076243+1 种基金the International Cooperation Key Project of the Ministry of Science and Technology under contract No.2022YFE0136500the Scientific Research Fund of the Second Institute of Oceanography,Ministry of Natural Resources,under contract Nos JG2011,JG2211,JG2013,and JG1805.
文摘Polynyas and their adjacent seasonal ice zones(SIZs)represent the most productive regions in the Southern Ocean,supporting unique food webs that are highly sensitive to climate change.Understanding the dynamics of phytoplankton and the carbon pool in these areas is crucial for assessing the role of the Southern Ocean in global carbon cycling.During the late stage of an algal bloom,seawater samples at 14 stations were collected in the Amundsen Sea Polynya(ASP)and adjacent SIZ.Using nutrients,phytoplankton pigments,organic carbon(OC),remote sensing data,and physicochemical measurements,as well as CHEMTAX model simulations,we investigated the response of the phytoplankton crops,taxonomic composition,and OC pool to environmental factors.Our analyses revealed that hydrodynamic regimes of the polynya,adjacent SIZs and open sea were regulated by the regionally varying intrusion of Circumpolar Deep Water,photosynthetically active radiation and sea ice melt water.The ASP exhibited the highest seasonal nutrient utilization rates[ΔN=(1059±386)mmol/m^(2),ΔP=(50±17)mmol/m^(2) andΔSi=(956±904)mmol/m^(2)],while the open sea had lower rates.The integrated chlorophyll a(Chl a)concentration at depths of 0–200 m ranged from 20.4 mg/m^(2) to 1420.0 mg/m^(2) and peaked in the polynya.In the study area,Haptophytes Phaeocystis antarctica was the dominant functional group(34%±27%),and diatoms acted as a secondary contributor(23%±14%).The major functional group and particulate OC(POC)contributor varied from diatoms(36%±12%)in the open sea to haptophytes(48%±31%)in the polynya waters.Strong light conditions and microelement limitations promoted the dominance of P.antarctica(low Fe forms)dominance in the ASP.The strong correlations between the POC and Chl a depth-integrated concentration suggest that the POC was primarily derived from phytoplankton,while dissolved OC(DOC)was influenced by consumer activity and water mass transport.In addition,the transport of OC in the upper 200 m of the water column within the ASP was quantified,revealing the predominantly westward fluxes for both DOC[9.0 mg/(m^(2)·s)]and POC[7.2 mg/(m^(2)·s)].The latitudinal transport exhibited the northward transport of DOC[8.1 mg/(m^(2)·s)]and southward transport of POC[4.3 mg/(m^(2)·s)]movement.These findings have significant implications for enhancing our understanding of how hydrodynamics influence OC cycling in polynya regions.
基金The National Basic Research Program of China(973 Program)under contract No.2015CB953904the National Natural Science Foundation of China under contract No.41575067
文摘This paper is focused on the seasonality change of Arctic sea ice extent (SIE) from 1979 to 2100 using newly available simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5). A new approach to compare the simulation metric of Arctic SIE between observation and 31 CMIP5 models was established. The approach is based on four factors including the climatological average, linear trend of SIE, span of melting season and annual range of SIE. It is more objective and can be popularized to other comparison of models. Six good models (GFDL-CM3, CESM1-BGC, MPI-ESM-LR, ACCESS-1.0, HadGEM2-CC, and HadGEM2-AO in turn) are found which meet the criterion closely based on above approach. Based on ensemble mean of the six models, we found that the Arctic sea ice will continue declining in each season and firstly drop below 1 million km2 (defined as the ice-free state) in September 2065 under RCP4.5 scenario and in September 2053 under RCP8.5 scenario. We also study the seasonal cycle of the Arctic SIE and find out the duration of Arctic summer (melting season) will increase by about I00 days under RCP4.5 scenario and about 200 days under RCPS.5 scenario relative to current circumstance by the end of the 21st century. Asymmetry of the Arctic SIE seasonal cycle with later freezing in fall and early melting in spring, would be more apparent in the future when the Arctic climate approaches to "tipping point", or when the ice-free Arctic Ocean appears. Annual range of SIE (seasonal melting ice extent) will increase almost linearly in the near future 30-40 years before the Arctic appears ice-free ocean, indicating the more ice melting in summer, the more ice freezing in winter, which may cause more extreme weather events in both winter and summer in the future years.
基金supported by the National Natural Science Foundation of China(contract No.41006002,No.41206013 and No.41106004)Open Fund of State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography of SOA(contract No.SOED1305)+3 种基金Open Fund of the Key Laboratory of Ocean Circulation and Waves,Chinese Academy of Sciences(contract No.KLOCAW1302)the Public Science and Technology Research Funds Projects of Ocean(contract No.200905001,No.201005019,and No.201205018)the Natural Science Foundation of State Ocean Administration(contract No.2012202,No.2012223,and No.2012224)Open Fund of Key Laboratory of Physical Oceanography,MOE(contract of Song jun)
文摘Sea level seasonal variations in the east of China seas from 2004 to 2006 are simulated by the advanced ROMS model. The results show similar sea level spatial features with TOPEX/Poseidon observations, with annual ranges decreasing gradually from the sea coast to the Kuroshio region. By getting rid of wind stress in ROMS model, the simulated sea level results still show obvious seasonal variations. However, the phenomenon of sea level anomaly disappears in Min Zhe Current Coastwise (MZCF) and Su Bei current coastwise (SBCF), and the change of it from coastal area to ocean recedes. The seal level difference between Bohai, Yellow Sea (BYS) and East China Sea (ECS) becomes weaker in spring and autumn. The annual differences decrease obviously, and the gradual change of annual ranges from seacoast to the Kuroshio almost disappears. The annual ranges in BYS are nearly identical. The annual range ratio without the wind stress to with the wind stress increases gradually from the sea coast to Kuroshio region.
基金funded by the National Natural Science Foundation of China (40806072)the National Science And Technology Supporting Plan (2007BAC03A0606)
文摘The Greenland Sea,Iceland Sea,and Norwegian Sea (GIN seas) form the main channel connecting the Arctic Ocean with other Oceans,where significant water and energy exchange take place,and play an important role in global climate change.In this study steric sea level,associated with temperature and salinity,in the GIN seas is examined based on analysis of the monthly temperature and salinity fields from Polar science center Hydrographic Climatology (PHC3.0).A method proposed by Tabata et al.is used to calculate steric sea level,in which,steric sea level change due to thermal expansion and haline contraction is termed as the thermosteric component (TC) and the halosteric component (SC),recpectively.Total steric sea level (TSSL) change is the sum of TC and SC.The study shows that SC is making more contributions than TC to the seasonal change of TSSL in the Greenland Sea,whereas TC contributes more in the Norwegian and the Iceland Seas.Annual variation of TSSL is larger than 50 mm over most regions of the GIN Seas,and can be larger than 200 mm at some locations such as 308 mm at 76.5 N,12.5 E and 246 mm at 77.5 N,17.5 W.