The advent of large language models(LLMs)has made knowledge acquisition and content creation increasingly easier and cheaper,which in turn redefines learning and urges transformation in software engineering education....The advent of large language models(LLMs)has made knowledge acquisition and content creation increasingly easier and cheaper,which in turn redefines learning and urges transformation in software engineering education.To do so,there is a need to understand the impact of LLMs on software engineering education.In this paper,we conducted a preliminary case study on three software requirements engineering classes where students are allowed to use LLMs to assist in their projects.Based on the students’experience,performance,and feedback from a survey conducted at the end of the courses,we characterized the challenges and benefits of applying LLMs in software engineering education.This research contributes to the ongoing discourse on the integration of LLMs in education,emphasizing both their prominent potential and the need for balanced,mindful usage.展开更多
Quantum software development utilizes quantum phenomena such as superposition and entanglement to address problems that are challenging for classical systems.However,it must also adhere to critical quantum constraints...Quantum software development utilizes quantum phenomena such as superposition and entanglement to address problems that are challenging for classical systems.However,it must also adhere to critical quantum constraints,notably the no-cloning theorem,which prohibits the exact duplication of unknown quantum states and has profound implications for cryptography,secure communication,and error correction.While existing quantum circuit representations implicitly honor such constraints,they lack formal mechanisms for early-stage verification in software design.Addressing this constraint at the design phase is essential to ensure the correctness and reliability of quantum software.This paper presents a formal metamodeling framework using UML-style notation and and Object Constraint Language(OCL)to systematically capture and enforce the no-cloning theorem within quantum software models.The proposed metamodel formalizes key quantum concepts—such as entanglement and teleportation—and encodes enforceable invariants that reflect core quantum mechanical laws.The framework’s effectiveness is validated by analyzing two critical edge cases—conditional copying with CNOT gates and quantum teleportation—through instance model evaluations.These cases demonstrate that the metamodel can capture nuanced scenarios that are often mistaken as violations of the no-cloning theorem but are proven compliant under formal analysis.Thus,these serve as constructive validations that demonstrate the metamodel’s expressiveness and correctness in representing operations that may appear to challenge the no-cloning theorem but,upon rigorous analysis,are shown to comply with it.The approach supports early detection of conceptual design errors,promoting correctness prior to implementation.The framework’s extensibility is also demonstrated by modeling projective measurement,further reinforcing its applicability to broader quantum software engineering tasks.By integrating the rigor of metamodeling with fundamental quantum mechanical principles,this work provides a structured,model-driven approach that enables traditional software engineers to address quantum computing challenges.It offers practical insights into embedding quantum correctness at the modeling level and advances the development of reliable,error-resilient quantum software systems.展开更多
To address the severe challenges posed by the international situation and meet the needs of the national major development strategies,the traditional software engineering talent cultivation model lacks interdisciplina...To address the severe challenges posed by the international situation and meet the needs of the national major development strategies,the traditional software engineering talent cultivation model lacks interdisciplinary education focused on specific fields,making it difficult to cultivate engineering leaders with multidisciplinary backgrounds who are capable of solving complex real-world problems.To solve this problem,based on the decade-long interdisciplinary talent cultivation achievements of the College of Software Engineering at Sichuan University,this article proposes the“Software Engineering+”innovative talent cultivation paradigm.It provides an analysis through professional construction of interdisciplinary talents,the design of talent cultivation frameworks,the formulation of cultivation plans,the establishment of interdisciplinary curriculum systems,the reform of teaching modes,and the improvement of institutional systems.Scientific solutions are proposed,and five project models implemented and operated by the College of Software Engineering at Sichuan University are listed as practical examples,offering significant reference value.展开更多
With the rapid development of software engineering,traditional teaching methods are confronted with the challenges of short knowledge update cycles and the rapid emergence of new technologies.By analyzing the current ...With the rapid development of software engineering,traditional teaching methods are confronted with the challenges of short knowledge update cycles and the rapid emergence of new technologies.By analyzing the current situation of the mismatch between educational practices and industrial change,this study proposes an innovative teaching model—“Micro-practices”.This model integrates new knowledge and new technologies into the teaching process quickly and flexibly through practical teaching projects with“short class time,small capacity,and cloud environment”to meet the different educational needs of students,teachers,and enterprises.The aim is to train innovative software engineering talents who can meet the challenges of the future.展开更多
Building a collaborative education mechanism,improving students’engineering practice and innovation abilities,and cultivating software engineering innovation talents that meet industry needs are of great significance...Building a collaborative education mechanism,improving students’engineering practice and innovation abilities,and cultivating software engineering innovation talents that meet industry needs are of great significance for fully implementing the“Excellent Engineer Education and Training Program”of the Ministry of Education and achieving the goal of building a strong engineering education country.The School of Information and Software Engineering of the University of Electronic Science and Technology of China(UESTC)has been thoroughly studying and implementing Xi Jinping Thought on Socialism with Chinese Characteristics for a New Era and the spirit of the 20th CPC National Congress.The school has steadfastly promoted the Project of Nurturing the Soul of the New Era.The school has taken moral education as its core,deeply explored the resources of“all staff,throughout the process,in all aspects”,and constructed and implemented the collaborative education mechanism.These efforts have laid a solid foundation for cultivating excellent talents in software engineering in the new era.展开更多
This paper presents a case study of the collaborative integration between the School of Information and Software Engineering at the University of Electronic Science and Technology of China(UESTC)and SI-TECH,highlighti...This paper presents a case study of the collaborative integration between the School of Information and Software Engineering at the University of Electronic Science and Technology of China(UESTC)and SI-TECH,highlighting the complementary advantages of both the University and the enterprise.By jointly establishing research institutes and engaging in diversified collaborative initiatives,the University and the enterprise have embarked on a pathway of School-enterprise Integration.Through a virtuous cycle of cooperation and continuous advancement,they have explored a comprehensive talent cultivation model in“5G”software engineering innovation practices based on this integration.Furthermore,this endeavor aims to facilitate the transformation of technological achievements and provides valuable insights for fostering innovative talents in the field of electronic information through enhanced integration between the University and the enterprise.展开更多
With the rapid advancement of information technology,the quality assurance and evaluation of software engineering education have become pivotal concerns for higher education institutions.In this paper,we focus on a co...With the rapid advancement of information technology,the quality assurance and evaluation of software engineering education have become pivotal concerns for higher education institutions.In this paper,we focus on a comparative study of software engineering education in China and Europe,aiming to explore the theoretical frameworks and practical pathways employed in both regions.Initially,we introduce and contrast the engineering education accreditation systems of China and Europe,including the Chinese engineering education accreditation framework and the European EUR-ACE(European Accreditation of Engineering Programmes)standards,highlighting their core principles and evaluation methodologies.Subsequently,we provide case studies of several universities in China and Europe,such as Sun Yat-sen University,Tsinghua University,Technical University of Munich,and Imperial College London.Finally,we offer recommendations to foster mutual learning and collaboration between Chinese and European institutions,aiming to enhance the overall quality of software engineering education globally.This work provides valuable insights for educational administrators,faculty members,and policymakers,contributing to the ongoing improvement and innovative development of software engineering education in China and Europe.展开更多
This paper discusses the related contents of the integration application of information technology and computer software engineering.First,it briefly expounds the concepts and integration background of information tec...This paper discusses the related contents of the integration application of information technology and computer software engineering.First,it briefly expounds the concepts and integration background of information technology and computer software engineering.Then,it deeply analyzes the application status and significance of the integration application of information technology and computer software engineering in different fields.Finally,it briefly describes the specific application paths of the integration of information technology and computer software engineering,hoping to provide some valuable references for promoting the in-depth integration and development of information technology and computer software engineering.展开更多
In response to the current issues in the construction of software engineering(SE)degree granting program,such as insufficient resource integration,low level of internationalization,and inadequate quality control,we pr...In response to the current issues in the construction of software engineering(SE)degree granting program,such as insufficient resource integration,low level of internationalization,and inadequate quality control,we propose the Software Engineering Degree Granting Program Construction Practice Project at Harbin Institute of Technology(HIT).This project aims to explore new models for software talent cultivation,establish a superior SE degree granting program,and ultimately cultivate outstanding internationalized composite SE professionals to support the high-quality development of the national software industry.To this end,we design a distinctive overall construction idea and plan for the SE degree granting program,which are characterized by“3I3S:three highlights for specialized cultivation and strictness in three aspects to ensure quality control”.After years of practice and validation of the project at the School of Software at HIT,this project has proven effective in optimizing talent cultivation models,enhancing students’practical abilities,promoting international exchange and cooperation,advancing industry-education integration,and meeting industrial needs.展开更多
The advancement of Internet of Things(IoT)technology is driving industries toward intelligent digital transformation,highlighting the crucial role of software engineering.Despite this,the integration of software engin...The advancement of Internet of Things(IoT)technology is driving industries toward intelligent digital transformation,highlighting the crucial role of software engineering.Despite this,the integration of software engineering into IoT engineering education remains underexplored.To address this gap,the School of Software at North University of China,in collaboration with QST Innovation Technology Group Co.,Ltd.(QST),has developed an innovative educational mechanism.This initiative focuses on the software engineering IoT track and optimizes the teaching process through the outcome-based education(OBE)concept.It incorporates military-industrial characteristics,introduces advanced information and technology curricula,and enhances laboratory infrastructure.The goal is to cultivate innovative talents with unique capabilities,thereby fostering the comprehensive development and application of IoT technology.展开更多
Quality engineers play a key role in software product development,covering various stages such as requirements analysis,design,coding,testing,and delivery.Its responsibilities include formulating quality standards,wri...Quality engineers play a key role in software product development,covering various stages such as requirements analysis,design,coding,testing,and delivery.Its responsibilities include formulating quality standards,writing test cases,conducting functional and performance tests,and optimizing the product based on feedback.In government procurement projects,quality evaluation focuses on process compliance,security,and functional compatibility.KPI evaluation trees are commonly used for quantitative assessment,and a dynamic adjustment mechanism for indicators needs to be established to cope with complex demands.In addition,risk-driven testing and agile development should be combined to set up quality access control to ensure that each iteration version meets expectations.The multi-dimensional quality assurance and verification scoring mechanism can effectively enhance product reliability and reduce project risks.展开更多
Agile Transformations are challenging processes for organizations that look to extend the benefits of Agile philosophy and methods beyond software engineering.Despite the impact of these transformations on orga-nizati...Agile Transformations are challenging processes for organizations that look to extend the benefits of Agile philosophy and methods beyond software engineering.Despite the impact of these transformations on orga-nizations,they have not been extensively studied in academia.We conducted a study grounded in workshops and interviews with 99 participants from 30 organizations,including organizations undergoing transformations(“final organizations”)and companies supporting these processes(“consultants”).The study aims to understand the motivations,objectives,and factors driving and challenging these transformations.Over 700 responses were collected to the question and categorized into 32 objectives.The findings show that organizations primarily aim to achieve customer centricity and adaptability,both with 8%of the mentions.Other primary important objectives,with above 4%of mentions,include alignment of goals,lean delivery,sustainable processes,and a flatter,more team-based organizational structure.We also detect discrepancies in perspectives between the objectives identified by the two kinds of organizations and the existing agile literature and models.This misalignment highlights the need for practitioners to understand with the practical realities the organizations face.展开更多
Sentiment analysis is becoming increasingly important in today’s digital age, with social media being a significantsource of user-generated content. The development of sentiment lexicons that can support languages ot...Sentiment analysis is becoming increasingly important in today’s digital age, with social media being a significantsource of user-generated content. The development of sentiment lexicons that can support languages other thanEnglish is a challenging task, especially for analyzing sentiment analysis in social media reviews. Most existingsentiment analysis systems focus on English, leaving a significant research gap in other languages due to limitedresources and tools. This research aims to address this gap by building a sentiment lexicon for local languages,which is then used with a machine learning algorithm for efficient sentiment analysis. In the first step, a lexiconis developed that includes five languages: Urdu, Roman Urdu, Pashto, Roman Pashto, and English. The sentimentscores from SentiWordNet are associated with each word in the lexicon to produce an effective sentiment score. Inthe second step, a naive Bayesian algorithm is applied to the developed lexicon for efficient sentiment analysis ofRoman Pashto. Both the sentiment lexicon and sentiment analysis steps were evaluated using information retrievalmetrics, with an accuracy score of 0.89 for the sentiment lexicon and 0.83 for the sentiment analysis. The resultsshowcase the potential for improving software engineering tasks related to user feedback analysis and productdevelopment.展开更多
End-user computing empowers non-developers to manage data and applications, enhancing collaboration and efficiency. Spreadsheets, a prime example of end-user programming environments widely used in business for data a...End-user computing empowers non-developers to manage data and applications, enhancing collaboration and efficiency. Spreadsheets, a prime example of end-user programming environments widely used in business for data analysis. However, Excel functionalities have limits compared to dedicated programming languages. This paper addresses this gap by proposing a prototype for integrating Python’s capabilities into Excel through on-premises desktop to build custom spreadsheet functions with Python. This approach overcomes potential latency issues associated with cloud-based solutions. This prototype utilizes Excel-DNA and IronPython. Excel-DNA allows creating custom Python functions that seamlessly integrate with Excel’s calculation engine. IronPython enables the execution of these Python (CSFs) directly within Excel. C# and VSTO add-ins form the core components, facilitating communication between Python and Excel. This approach empowers users with a potentially open-ended set of Python (CSFs) for tasks like mathematical calculations, statistical analysis, and even predictive modeling, all within the familiar Excel interface. This prototype demonstrates smooth integration, allowing users to call Python (CSFs) just like standard Excel functions. This research contributes to enhancing spreadsheet capabilities for end-user programmers by leveraging Python’s power within Excel. Future research could explore expanding data analysis capabilities by expanding the (CSFs) functions for complex calculations, statistical analysis, data manipulation, and even external library integration. The possibility of integrating machine learning models through the (CSFs) functions within the familiar Excel environment.展开更多
As quantum computing transitions from a theoretical domain to a practical technology, many aspects of established practice in software engineering are being faced with new challenges. Quantum Software Engineering has ...As quantum computing transitions from a theoretical domain to a practical technology, many aspects of established practice in software engineering are being faced with new challenges. Quantum Software Engineering has been developed to address the peculiar needs that arise with quantum systems’ dependable, scalable, and fault-tolerant software development. The present paper critically reviews how traditional software engineering methodologies can be reshaped to fit into the quantum field. This also entails providing some critical contributions: frameworks to integrate classical and quantum systems, new error mitigation techniques, and the development of quantum-specific testing and debugging tools. In this respect, best practices have been recommended to ensure that future quantum software can harness the evolving capabilities of quantum hardware with continued performance, reliability, and scalability. The work is supposed to act as a foundational guide for the researcher and developer as quantum computing approaches widespread scientific and industrial adoption.展开更多
Engineering practice is the key bridge between college education and actual work in the industry.In order to deliver qualified talents with engineering quality to the industry,this paper explores integrating software ...Engineering practice is the key bridge between college education and actual work in the industry.In order to deliver qualified talents with engineering quality to the industry,this paper explores integrating software engineering thinking into the Embedded System Design course.A practical and effective teaching mode is designed consisting of immersive learning,case-based learning,progressive practice,interactive learning,and autonomous learning.Through this teaching mode,multi-levels of closed-loop have been established including final project cycle closed-loop,testing cycle closed-loop,and product cycle closed-loop.During this process,students gradually transition to putting forward product requirements,carrying out design and development,thinking and solving problems,collaborating,and assuring quality from the perspective of software engineering.The practice results show that students’engineering quality has been significantly improved.展开更多
With the rapid development of information technology,the demand for talents in the field of software engineering is growing.In order to cultivate high-quality software engineering talents who meet the market demand,un...With the rapid development of information technology,the demand for talents in the field of software engineering is growing.In order to cultivate high-quality software engineering talents who meet the market demand,universities have continuously carried out the construction of software engineering majors.Accreditation Board for Engineering and Technology(ABET)certification,as an internationally recognized higher education quality assurance system,provides important reference and guidance for the construction of software engineering majors.Guided by student learning outcomes and core competencies,combined with the characteristics of software engineering talent cultivation,the innovation of talent cultivation mode takes industry-education integration and school-enterprise cooperation as the main development paths and explores comprehensive reform of the major in terms of professional positioning and goals,curriculum system,teaching conditions,and teachers.This comprehensive reform model has effectively promoted the development of major construction and improved the quality of talent cultivation.展开更多
Under the background of“new engineering”construction,software engineering teaching pays more attention to cultivating students’engineering practice and innovation ability.In view of the inconsistency between develo...Under the background of“new engineering”construction,software engineering teaching pays more attention to cultivating students’engineering practice and innovation ability.In view of the inconsistency between development and demand design,team division of labor,difficult measurement of individual contribution,single assessment method,and other problems in traditional practice teaching,this paper proposes that under the guidance of agile development methods,software engineering courses should adopt Scrum framework to organize course project practice,use agile collaboration platform to implement individual work,follow up experiment progress,and ensure effective project advancement.The statistical data of curriculum“diversity”assessment show that there is an obvious improvement effect on students’software engineering ability and quality.展开更多
In recent years,with the rapid development of software systems,the continuous expansion of software scale and the increasing complexity of systems have led to the emergence of a growing number of software metrics.Defe...In recent years,with the rapid development of software systems,the continuous expansion of software scale and the increasing complexity of systems have led to the emergence of a growing number of software metrics.Defect prediction methods based on software metric elements highly rely on software metric data.However,redundant software metric data is not conducive to efficient defect prediction,posing severe challenges to current software defect prediction tasks.To address these issues,this paper focuses on the rational clustering of software metric data.Firstly,multiple software projects are evaluated to determine the preset number of clusters for software metrics,and various clustering methods are employed to cluster the metric elements.Subsequently,a co-occurrence matrix is designed to comprehensively quantify the number of times that metrics appear in the same category.Based on the comprehensive results,the software metric data are divided into two semantic views containing different metrics,thereby analyzing the semantic information behind the software metrics.On this basis,this paper also conducts an in-depth analysis of the impact of different semantic view of metrics on defect prediction results,as well as the performance of various classification models under these semantic views.Experiments show that the joint use of the two semantic views can significantly improve the performance of models in software defect prediction,providing a new understanding and approach at the semantic view level for defect prediction research based on software metrics.展开更多
Based on "MOOC + SPOC + Flipped Classroom", a particular blending teaching pattern adapting to MOOC teaching is proposed to strengthen software engineering students' abilities to study themselves and pra...Based on "MOOC + SPOC + Flipped Classroom", a particular blending teaching pattern adapting to MOOC teaching is proposed to strengthen software engineering students' abilities to study themselves and practice innovatively. Firstly, the process of MOOC development in China is introduced. The distinguishing feature and effect of MOOC teaching are analyzed, followed by the comparison with traditional class. The online Plus offline blending teaching pattern is the combination of online self-study on MOOC before class, seminar study of flipped classroom in class and the summary after class. With the demonstration of a typical case, a progressive strategy is given to implement blending teaching. Finally, the blending teaching pattern is assessed from multiple perspectives, of which both advantages and disadvantages are dissected. Through primary exploration, introducing online study and flipped classroom, blending teaching plays a positive role in software engineering teaching, which means traditional teaching pattern is changed. Meanwhile, students' innovative consciousness and practical ability are inspired. Nevertheless, new problems arise, so that intensive practice and improvement are necessary.展开更多
基金supported in part by the Teaching Reform Project of Chongqing University of Posts and Telecommunications,China under Grant No.XJG23234Chongqing Municipal Higher Education Teaching Reform Research Project under Grant No.203399the Doctoral Direct Train Project of Chongqing Science and Technology Bureau under Grant No.CSTB2022BSXM-JSX0007。
文摘The advent of large language models(LLMs)has made knowledge acquisition and content creation increasingly easier and cheaper,which in turn redefines learning and urges transformation in software engineering education.To do so,there is a need to understand the impact of LLMs on software engineering education.In this paper,we conducted a preliminary case study on three software requirements engineering classes where students are allowed to use LLMs to assist in their projects.Based on the students’experience,performance,and feedback from a survey conducted at the end of the courses,we characterized the challenges and benefits of applying LLMs in software engineering education.This research contributes to the ongoing discourse on the integration of LLMs in education,emphasizing both their prominent potential and the need for balanced,mindful usage.
文摘Quantum software development utilizes quantum phenomena such as superposition and entanglement to address problems that are challenging for classical systems.However,it must also adhere to critical quantum constraints,notably the no-cloning theorem,which prohibits the exact duplication of unknown quantum states and has profound implications for cryptography,secure communication,and error correction.While existing quantum circuit representations implicitly honor such constraints,they lack formal mechanisms for early-stage verification in software design.Addressing this constraint at the design phase is essential to ensure the correctness and reliability of quantum software.This paper presents a formal metamodeling framework using UML-style notation and and Object Constraint Language(OCL)to systematically capture and enforce the no-cloning theorem within quantum software models.The proposed metamodel formalizes key quantum concepts—such as entanglement and teleportation—and encodes enforceable invariants that reflect core quantum mechanical laws.The framework’s effectiveness is validated by analyzing two critical edge cases—conditional copying with CNOT gates and quantum teleportation—through instance model evaluations.These cases demonstrate that the metamodel can capture nuanced scenarios that are often mistaken as violations of the no-cloning theorem but are proven compliant under formal analysis.Thus,these serve as constructive validations that demonstrate the metamodel’s expressiveness and correctness in representing operations that may appear to challenge the no-cloning theorem but,upon rigorous analysis,are shown to comply with it.The approach supports early detection of conceptual design errors,promoting correctness prior to implementation.The framework’s extensibility is also demonstrated by modeling projective measurement,further reinforcing its applicability to broader quantum software engineering tasks.By integrating the rigor of metamodeling with fundamental quantum mechanical principles,this work provides a structured,model-driven approach that enables traditional software engineers to address quantum computing challenges.It offers practical insights into embedding quantum correctness at the modeling level and advances the development of reliable,error-resilient quantum software systems.
基金supported by the 2023 Sichuan Province Higher Education Talent Cultivation and Teaching Reform Major Project“Exploration and Practice of Interdisciplinary and Integrated Industrial Software Talent Cultivation Model”(JG2023-14)the Sichuan University Higher Education Teaching Reform Project(10th Phase)Research and Exploration of Practical Teaching Mode under the New Major Background of“Cross Disciplinary and Integration”(SCU10128)。
文摘To address the severe challenges posed by the international situation and meet the needs of the national major development strategies,the traditional software engineering talent cultivation model lacks interdisciplinary education focused on specific fields,making it difficult to cultivate engineering leaders with multidisciplinary backgrounds who are capable of solving complex real-world problems.To solve this problem,based on the decade-long interdisciplinary talent cultivation achievements of the College of Software Engineering at Sichuan University,this article proposes the“Software Engineering+”innovative talent cultivation paradigm.It provides an analysis through professional construction of interdisciplinary talents,the design of talent cultivation frameworks,the formulation of cultivation plans,the establishment of interdisciplinary curriculum systems,the reform of teaching modes,and the improvement of institutional systems.Scientific solutions are proposed,and five project models implemented and operated by the College of Software Engineering at Sichuan University are listed as practical examples,offering significant reference value.
基金funded by Universityindustry Collaborative Education Program(No.220605181024725)the Undergraduate Education and Teaching Reform Research Project of Northwestern Polytechnical University(No.22GZ13083)。
文摘With the rapid development of software engineering,traditional teaching methods are confronted with the challenges of short knowledge update cycles and the rapid emergence of new technologies.By analyzing the current situation of the mismatch between educational practices and industrial change,this study proposes an innovative teaching model—“Micro-practices”.This model integrates new knowledge and new technologies into the teaching process quickly and flexibly through practical teaching projects with“short class time,small capacity,and cloud environment”to meet the different educational needs of students,teachers,and enterprises.The aim is to train innovative software engineering talents who can meet the challenges of the future.
文摘Building a collaborative education mechanism,improving students’engineering practice and innovation abilities,and cultivating software engineering innovation talents that meet industry needs are of great significance for fully implementing the“Excellent Engineer Education and Training Program”of the Ministry of Education and achieving the goal of building a strong engineering education country.The School of Information and Software Engineering of the University of Electronic Science and Technology of China(UESTC)has been thoroughly studying and implementing Xi Jinping Thought on Socialism with Chinese Characteristics for a New Era and the spirit of the 20th CPC National Congress.The school has steadfastly promoted the Project of Nurturing the Soul of the New Era.The school has taken moral education as its core,deeply explored the resources of“all staff,throughout the process,in all aspects”,and constructed and implemented the collaborative education mechanism.These efforts have laid a solid foundation for cultivating excellent talents in software engineering in the new era.
文摘This paper presents a case study of the collaborative integration between the School of Information and Software Engineering at the University of Electronic Science and Technology of China(UESTC)and SI-TECH,highlighting the complementary advantages of both the University and the enterprise.By jointly establishing research institutes and engaging in diversified collaborative initiatives,the University and the enterprise have embarked on a pathway of School-enterprise Integration.Through a virtuous cycle of cooperation and continuous advancement,they have explored a comprehensive talent cultivation model in“5G”software engineering innovation practices based on this integration.Furthermore,this endeavor aims to facilitate the transformation of technological achievements and provides valuable insights for fostering innovative talents in the field of electronic information through enhanced integration between the University and the enterprise.
基金supported by the Guangdong Higher Education Association’s“14th Five Year Plan”2024 Higher Education Research Project(24GYB03)the Natural Science Foundation of Guangdong Province(2024A1515010255)。
文摘With the rapid advancement of information technology,the quality assurance and evaluation of software engineering education have become pivotal concerns for higher education institutions.In this paper,we focus on a comparative study of software engineering education in China and Europe,aiming to explore the theoretical frameworks and practical pathways employed in both regions.Initially,we introduce and contrast the engineering education accreditation systems of China and Europe,including the Chinese engineering education accreditation framework and the European EUR-ACE(European Accreditation of Engineering Programmes)standards,highlighting their core principles and evaluation methodologies.Subsequently,we provide case studies of several universities in China and Europe,such as Sun Yat-sen University,Tsinghua University,Technical University of Munich,and Imperial College London.Finally,we offer recommendations to foster mutual learning and collaboration between Chinese and European institutions,aiming to enhance the overall quality of software engineering education globally.This work provides valuable insights for educational administrators,faculty members,and policymakers,contributing to the ongoing improvement and innovative development of software engineering education in China and Europe.
文摘This paper discusses the related contents of the integration application of information technology and computer software engineering.First,it briefly expounds the concepts and integration background of information technology and computer software engineering.Then,it deeply analyzes the application status and significance of the integration application of information technology and computer software engineering in different fields.Finally,it briefly describes the specific application paths of the integration of information technology and computer software engineering,hoping to provide some valuable references for promoting the in-depth integration and development of information technology and computer software engineering.
基金supported in part by the Education Reform Key Projects of Heilongjiang Province under Grant Nos.SJGZ20220011,SJGZ20220012,and SJGZY2024008。
文摘In response to the current issues in the construction of software engineering(SE)degree granting program,such as insufficient resource integration,low level of internationalization,and inadequate quality control,we propose the Software Engineering Degree Granting Program Construction Practice Project at Harbin Institute of Technology(HIT).This project aims to explore new models for software talent cultivation,establish a superior SE degree granting program,and ultimately cultivate outstanding internationalized composite SE professionals to support the high-quality development of the national software industry.To this end,we design a distinctive overall construction idea and plan for the SE degree granting program,which are characterized by“3I3S:three highlights for specialized cultivation and strictness in three aspects to ensure quality control”.After years of practice and validation of the project at the School of Software at HIT,this project has proven effective in optimizing talent cultivation models,enhancing students’practical abilities,promoting international exchange and cooperation,advancing industry-education integration,and meeting industrial needs.
基金supported in part by the Universityindustry Collaborative Education Program of the Ministry of Education under Grant No.202102383004。
文摘The advancement of Internet of Things(IoT)technology is driving industries toward intelligent digital transformation,highlighting the crucial role of software engineering.Despite this,the integration of software engineering into IoT engineering education remains underexplored.To address this gap,the School of Software at North University of China,in collaboration with QST Innovation Technology Group Co.,Ltd.(QST),has developed an innovative educational mechanism.This initiative focuses on the software engineering IoT track and optimizes the teaching process through the outcome-based education(OBE)concept.It incorporates military-industrial characteristics,introduces advanced information and technology curricula,and enhances laboratory infrastructure.The goal is to cultivate innovative talents with unique capabilities,thereby fostering the comprehensive development and application of IoT technology.
文摘Quality engineers play a key role in software product development,covering various stages such as requirements analysis,design,coding,testing,and delivery.Its responsibilities include formulating quality standards,writing test cases,conducting functional and performance tests,and optimizing the product based on feedback.In government procurement projects,quality evaluation focuses on process compliance,security,and functional compatibility.KPI evaluation trees are commonly used for quantitative assessment,and a dynamic adjustment mechanism for indicators needs to be established to cope with complex demands.In addition,risk-driven testing and agile development should be combined to set up quality access control to ensure that each iteration version meets expectations.The multi-dimensional quality assurance and verification scoring mechanism can effectively enhance product reliability and reduce project risks.
基金funding from the European Commission for the Ruralities Project(grant agreement no.101060876).
文摘Agile Transformations are challenging processes for organizations that look to extend the benefits of Agile philosophy and methods beyond software engineering.Despite the impact of these transformations on orga-nizations,they have not been extensively studied in academia.We conducted a study grounded in workshops and interviews with 99 participants from 30 organizations,including organizations undergoing transformations(“final organizations”)and companies supporting these processes(“consultants”).The study aims to understand the motivations,objectives,and factors driving and challenging these transformations.Over 700 responses were collected to the question and categorized into 32 objectives.The findings show that organizations primarily aim to achieve customer centricity and adaptability,both with 8%of the mentions.Other primary important objectives,with above 4%of mentions,include alignment of goals,lean delivery,sustainable processes,and a flatter,more team-based organizational structure.We also detect discrepancies in perspectives between the objectives identified by the two kinds of organizations and the existing agile literature and models.This misalignment highlights the need for practitioners to understand with the practical realities the organizations face.
基金Researchers supporting Project Number(RSPD2024R576),King Saud University,Riyadh,Saudi Arabia.
文摘Sentiment analysis is becoming increasingly important in today’s digital age, with social media being a significantsource of user-generated content. The development of sentiment lexicons that can support languages other thanEnglish is a challenging task, especially for analyzing sentiment analysis in social media reviews. Most existingsentiment analysis systems focus on English, leaving a significant research gap in other languages due to limitedresources and tools. This research aims to address this gap by building a sentiment lexicon for local languages,which is then used with a machine learning algorithm for efficient sentiment analysis. In the first step, a lexiconis developed that includes five languages: Urdu, Roman Urdu, Pashto, Roman Pashto, and English. The sentimentscores from SentiWordNet are associated with each word in the lexicon to produce an effective sentiment score. Inthe second step, a naive Bayesian algorithm is applied to the developed lexicon for efficient sentiment analysis ofRoman Pashto. Both the sentiment lexicon and sentiment analysis steps were evaluated using information retrievalmetrics, with an accuracy score of 0.89 for the sentiment lexicon and 0.83 for the sentiment analysis. The resultsshowcase the potential for improving software engineering tasks related to user feedback analysis and productdevelopment.
文摘End-user computing empowers non-developers to manage data and applications, enhancing collaboration and efficiency. Spreadsheets, a prime example of end-user programming environments widely used in business for data analysis. However, Excel functionalities have limits compared to dedicated programming languages. This paper addresses this gap by proposing a prototype for integrating Python’s capabilities into Excel through on-premises desktop to build custom spreadsheet functions with Python. This approach overcomes potential latency issues associated with cloud-based solutions. This prototype utilizes Excel-DNA and IronPython. Excel-DNA allows creating custom Python functions that seamlessly integrate with Excel’s calculation engine. IronPython enables the execution of these Python (CSFs) directly within Excel. C# and VSTO add-ins form the core components, facilitating communication between Python and Excel. This approach empowers users with a potentially open-ended set of Python (CSFs) for tasks like mathematical calculations, statistical analysis, and even predictive modeling, all within the familiar Excel interface. This prototype demonstrates smooth integration, allowing users to call Python (CSFs) just like standard Excel functions. This research contributes to enhancing spreadsheet capabilities for end-user programmers by leveraging Python’s power within Excel. Future research could explore expanding data analysis capabilities by expanding the (CSFs) functions for complex calculations, statistical analysis, data manipulation, and even external library integration. The possibility of integrating machine learning models through the (CSFs) functions within the familiar Excel environment.
文摘As quantum computing transitions from a theoretical domain to a practical technology, many aspects of established practice in software engineering are being faced with new challenges. Quantum Software Engineering has been developed to address the peculiar needs that arise with quantum systems’ dependable, scalable, and fault-tolerant software development. The present paper critically reviews how traditional software engineering methodologies can be reshaped to fit into the quantum field. This also entails providing some critical contributions: frameworks to integrate classical and quantum systems, new error mitigation techniques, and the development of quantum-specific testing and debugging tools. In this respect, best practices have been recommended to ensure that future quantum software can harness the evolving capabilities of quantum hardware with continued performance, reliability, and scalability. The work is supposed to act as a foundational guide for the researcher and developer as quantum computing approaches widespread scientific and industrial adoption.
文摘Engineering practice is the key bridge between college education and actual work in the industry.In order to deliver qualified talents with engineering quality to the industry,this paper explores integrating software engineering thinking into the Embedded System Design course.A practical and effective teaching mode is designed consisting of immersive learning,case-based learning,progressive practice,interactive learning,and autonomous learning.Through this teaching mode,multi-levels of closed-loop have been established including final project cycle closed-loop,testing cycle closed-loop,and product cycle closed-loop.During this process,students gradually transition to putting forward product requirements,carrying out design and development,thinking and solving problems,collaborating,and assuring quality from the perspective of software engineering.The practice results show that students’engineering quality has been significantly improved.
基金Digital Twin and Acoustic Perception Research Team(2021XJTD06)。
文摘With the rapid development of information technology,the demand for talents in the field of software engineering is growing.In order to cultivate high-quality software engineering talents who meet the market demand,universities have continuously carried out the construction of software engineering majors.Accreditation Board for Engineering and Technology(ABET)certification,as an internationally recognized higher education quality assurance system,provides important reference and guidance for the construction of software engineering majors.Guided by student learning outcomes and core competencies,combined with the characteristics of software engineering talent cultivation,the innovation of talent cultivation mode takes industry-education integration and school-enterprise cooperation as the main development paths and explores comprehensive reform of the major in terms of professional positioning and goals,curriculum system,teaching conditions,and teachers.This comprehensive reform model has effectively promoted the development of major construction and improved the quality of talent cultivation.
文摘Under the background of“new engineering”construction,software engineering teaching pays more attention to cultivating students’engineering practice and innovation ability.In view of the inconsistency between development and demand design,team division of labor,difficult measurement of individual contribution,single assessment method,and other problems in traditional practice teaching,this paper proposes that under the guidance of agile development methods,software engineering courses should adopt Scrum framework to organize course project practice,use agile collaboration platform to implement individual work,follow up experiment progress,and ensure effective project advancement.The statistical data of curriculum“diversity”assessment show that there is an obvious improvement effect on students’software engineering ability and quality.
基金supported by the CCF-NSFOCUS‘Kunpeng’Research Fund(CCF-NSFOCUS2024012).
文摘In recent years,with the rapid development of software systems,the continuous expansion of software scale and the increasing complexity of systems have led to the emergence of a growing number of software metrics.Defect prediction methods based on software metric elements highly rely on software metric data.However,redundant software metric data is not conducive to efficient defect prediction,posing severe challenges to current software defect prediction tasks.To address these issues,this paper focuses on the rational clustering of software metric data.Firstly,multiple software projects are evaluated to determine the preset number of clusters for software metrics,and various clustering methods are employed to cluster the metric elements.Subsequently,a co-occurrence matrix is designed to comprehensively quantify the number of times that metrics appear in the same category.Based on the comprehensive results,the software metric data are divided into two semantic views containing different metrics,thereby analyzing the semantic information behind the software metrics.On this basis,this paper also conducts an in-depth analysis of the impact of different semantic view of metrics on defect prediction results,as well as the performance of various classification models under these semantic views.Experiments show that the joint use of the two semantic views can significantly improve the performance of models in software defect prediction,providing a new understanding and approach at the semantic view level for defect prediction research based on software metrics.
基金supported by 2016 Shandong province undergraduate universities teaching reform research project:Exploration and practice of teaching reform and innovation mode of higher education based on MOOC (No.B2016Z018),Research and application of blended teaching mode based on MOOC+SPOCs+ flipped classroom(No.B2016Z020)teaching research project of 2016 Postgraduate Education Innovation Project in Shandong Province:Study on multidimensional education quality evaluation system for professional degree graduate students (SDYZ1603),research project of higher computer education:"Study of Staged Practice Education and Innovation Ability Development"(ER2016009),the Chinese National Supervisory Committee for the Education of Master of Engineering under Grant(No.2016-ZDn-6),Shandong Provincial Department of Education under Grant(No.SDYY14003) and teaching research project of Harbin Institute of Technology at Weihai (BK201602) as well
文摘Based on "MOOC + SPOC + Flipped Classroom", a particular blending teaching pattern adapting to MOOC teaching is proposed to strengthen software engineering students' abilities to study themselves and practice innovatively. Firstly, the process of MOOC development in China is introduced. The distinguishing feature and effect of MOOC teaching are analyzed, followed by the comparison with traditional class. The online Plus offline blending teaching pattern is the combination of online self-study on MOOC before class, seminar study of flipped classroom in class and the summary after class. With the demonstration of a typical case, a progressive strategy is given to implement blending teaching. Finally, the blending teaching pattern is assessed from multiple perspectives, of which both advantages and disadvantages are dissected. Through primary exploration, introducing online study and flipped classroom, blending teaching plays a positive role in software engineering teaching, which means traditional teaching pattern is changed. Meanwhile, students' innovative consciousness and practical ability are inspired. Nevertheless, new problems arise, so that intensive practice and improvement are necessary.