期刊文献+
共找到687篇文章
< 1 2 35 >
每页显示 20 50 100
Combining search space partition and abstraction for LTL model checking 被引量:2
1
作者 PU Fei ZHANG WenHui 《Science in China(Series F)》 2007年第6期793-810,共18页
The state space explosion problem is still the key obstacle for applying model checking to systems of industrial size. Abstraction-based methods have been particularly successful in this regard. This paper presents an... The state space explosion problem is still the key obstacle for applying model checking to systems of industrial size. Abstraction-based methods have been particularly successful in this regard. This paper presents an approach based on refinement of search space partition and abstraction which combines these two techniques for reducing the complexity of model checking. The refinement depends on the representation of each portion of search space. Especially, search space can be refined stepwise to get a better reduction. As reported in the case study, the integration of search space partition and abstraction improves the efficiency of verification with respect to the requirement of memory and obtains significant advantage over the use of each of them in isolation. 展开更多
关键词 search space partition REFINEMENT ABSTRACTION LTL model checking
原文传递
Near optimal MIMO detection with reduced search space
2
作者 Rongrong QIAN Tao PENG +1 位作者 Yuan QI Wenbo WANG 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2010年第1期59-64,共6页
A multi-input multi-output(MIMO)detection scheme that requires considerable low complexity but still achieves the near optimal performance is proposed.The fundamental idea of the proposed MIMO detection scheme consist... A multi-input multi-output(MIMO)detection scheme that requires considerable low complexity but still achieves the near optimal performance is proposed.The fundamental idea of the proposed MIMO detection scheme consists of two points:1)the computational complexity is restrained by a complexity limit in low signal-to-noise ratio(SNR)region;2)while in high SNR region,the complexity is significantly reduced by the proposed search space method.Comparing with existing fixed-complexity techniques of MIMO detection(e.g.,K-best sphere detector and reduced-search maximum-likelihood(RS ML)detection),the significant benefit of proposed detection scheme is that less computational power will be spent for the given data rate,or the throughput of detector can be increased for high SNR cases.According to the simulation results,the near optimal performance can be obtained while the detection complexity is kept considerable small. 展开更多
关键词 multi-input multi-output(MIMO) search space computational complexity posterior probability
原文传递
Using Genetic Algorithms to Improve the Search of the Weight Space in Cascade-Correlation Neural Network 被引量:1
3
作者 E.A.Mayer, K. J. Cios, L. Berke & A. Vary(University of Toledo, Toledo, OH 43606, U. S. A.)(NASA Lewis Research Center, Cleveland, OH) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1995年第2期9-21,共13页
In this paper, we use the global search characteristics of genetic algorithms to help search the weight space of the neurons in the cascade-correlation architecture. The cascade-correlation learning architecture is a ... In this paper, we use the global search characteristics of genetic algorithms to help search the weight space of the neurons in the cascade-correlation architecture. The cascade-correlation learning architecture is a technique of training and building neural networks that starts with a simple network of neurons and adds additional neurons as they are needed to suit a particular problem. In our approach, instead ofmodifying the genetic algorithm to account for convergence problems, we search the weight-space using the genetic algorithm and then apply the gradient technique of Quickprop to optimize the weights. This hybrid algorithm which is a combination of genetic algorithms and cascade-correlation is applied to the two spirals problem. We also use our algorithm in the prediction of the cyclic oxidation resistance of Ni- and Co-base superalloys. 展开更多
关键词 Genetic algorithm Cascade correlation Weight space search Neural network.
在线阅读 下载PDF
Levy Constrained Search in Fock Space:An Alternative Approach to Noninteger Electron Number 被引量:1
4
作者 AYERS Paul W. LEVY Mel 《物理化学学报》 SCIE CAS CSCD 北大核心 2018年第6期625-630,共6页
By extending the Levy wavefunction constrained search to Fock Space,one can define a wavefunction constrained search for electron densities in systems having noninteger number of electrons.For pure-state v-representab... By extending the Levy wavefunction constrained search to Fock Space,one can define a wavefunction constrained search for electron densities in systems having noninteger number of electrons.For pure-state v-representable densities,the results are equivalent to what one would obtain with the zero-temperature grand canonical ensemble.In other cases,the wavefunction constrained search in Fock space presents an upper bound to the grand canonical ensemble functional.One advantage of the Fock-space wavefunction constrained search functional over the zero-temperature grand-canonical ensemble constrained search functional is that certain specific excited states(i.e.,those that are not ground-statev-representable) are the stationary points of the Fock-space functional.However,a potential disadvantage of the Fock-space constrained search functional is that it is not convex. 展开更多
关键词 DENSITY FUNCTIONAL theory LEVY CONSTRAINED search FUNCTIONAL Fock space Fractional electron NUMBER Excited-state DENSITY FUNCTIONAL theory Universal DENSITY FUNCTIONAL Zero temperature grand canonicalensemble Convexity
在线阅读 下载PDF
A local space transfer learning-based parallel Bayesian optimization with its application
5
作者 Luhang Yang Xixiang Zhang +2 位作者 Jingyi Lu Zhou Tian Wenli Du 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第10期227-237,共11页
The optimization of process parameters in polyolefin production can bring significant economic benefits to the factory.However,due to small data sets,high costs associated with parameter verification cycles,and diffic... The optimization of process parameters in polyolefin production can bring significant economic benefits to the factory.However,due to small data sets,high costs associated with parameter verification cycles,and difficulty in establishing an optimization model,the optimization process is often restricted.To address this issue,we propose using a transfer learning Bayesian optimization strategy to improve the efficiency of parameter optimization while minimizing resource consumption.Specifically,we leverage Gaussian process(GP)regression models to establish an integrated model that incorporates both source and target grade production task data.We then measure the similarity weights of each model by comparing their predicted trends,and utilize these weights to accelerate the solution of optimal process parameters for producing target polyolefin grades.In order to enhance the accuracy of our approach,we acknowledge that measuring similarity in a global search space may not effectively capture local similarity characteristics.Therefore,we propose a novel method for transfer learning optimization that operates within a local space(LSTL-PBO).This method employs partial data acquired through random sampling from the target task data and utilizes Bayesian optimization techniques for model establishment.By focusing on a local search space,we aim to better discern and leverage the inherent similarities between source tasks and the target task.Additionally,we incorporate a parallel concept into our method to address multiple local search spaces simultaneously.By doing so,we can explore different regions of the parameter space in parallel,thereby increasing the chances of finding optimal process parameters.This localized approach allows us to improve the precision and effectiveness of our optimization process.The performance of our method is validated through experiments on benchmark problems,and we discuss the sensitivity of its hyperparameters.The results show that our proposed method can significantly improve the efficiency of process parameter optimization,reduce the dependence on source tasks,and enhance the method's robustness.This has great potential for optimizing processes in industrial environments. 展开更多
关键词 Transfer learning Bayesian optimization Process parameters Parallel framework Local search space
在线阅读 下载PDF
Enhanced Differentiable Architecture Search Based on Asymptotic Regularization
6
作者 Cong Jin Jinjie Huang +1 位作者 Yuanjian Chen Yuqing Gong 《Computers, Materials & Continua》 SCIE EI 2024年第2期1547-1568,共22页
In differentiable search architecture search methods,a more efficient search space design can significantly improve the performance of the searched architecture,thus requiring people to carefully define the search spa... In differentiable search architecture search methods,a more efficient search space design can significantly improve the performance of the searched architecture,thus requiring people to carefully define the search space with different complexity according to various operations.Meanwhile rationalizing the search strategies to explore the well-defined search space will further improve the speed and efficiency of architecture search.With this in mind,we propose a faster and more efficient differentiable architecture search method,AllegroNAS.Firstly,we introduce a more efficient search space enriched by the introduction of two redefined convolution modules.Secondly,we utilize a more efficient architectural parameter regularization method,mitigating the overfitting problem during the search process and reducing the error brought about by gradient approximation.Meanwhile,we introduce a natural exponential cosine annealing method to make the learning rate of the neural network training process more suitable for the search procedure.Moreover,group convolution and data augmentation are employed to reduce the computational cost.Finally,through extensive experiments on several public datasets,we demonstrate that our method can more swiftly search for better-performing neural network architectures in a more efficient search space,thus validating the effectiveness of our approach. 展开更多
关键词 Differentiable architecture search allegro search space asymptotic regularization natural exponential cosine annealing
在线阅读 下载PDF
Scheduling Optimization of Space Object Observations for Radar
7
作者 Xiongjun Fu Liping Wu +1 位作者 Chengyan Zhang Min Xie 《Journal of Beijing Institute of Technology》 EI CAS 2018年第1期36-42,共7页
An optimizing method of observation scheduling based on time-division multiplexing is proposed in this paper,and its efficiency is verified by outdoor experiments. The initial observation scheduling is first obtained ... An optimizing method of observation scheduling based on time-division multiplexing is proposed in this paper,and its efficiency is verified by outdoor experiments. The initial observation scheduling is first obtained by using a semi-random search algorithm,and secondly the connection time pair( CTP) between adjacent objects is optimized by using a genetic algorithm. After obtaining these two parameters,the final observation scheduling can be obtained. According to pre-designed tracks between each adjacent objects in observation order,the seamless observation of neighboring targets is derived by automatically steering the antenna beam,so the observation efficiency is improved. 展开更多
关键词 space objects observation scheduling semi-random search genetic algorithm
在线阅读 下载PDF
Motion Planning Algorithm and Simulation for Space Manipulators
8
作者 吴为民 洪炳熔 +1 位作者 刘宏 吴葳 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1996年第2期40-44,共5页
The specificities of collision-free path planning of space manipulators are analyzed. Path planning strategies are presented in consideration of these specificities, and an implementation procedure is also described i... The specificities of collision-free path planning of space manipulators are analyzed. Path planning strategies are presented in consideration of these specificities, and an implementation procedure is also described in detail according to these strategies. 展开更多
关键词 ss: space MANIPULATOR collision-free PATH planning configuration space graph searchING
在线阅读 下载PDF
Patterns in Heuristic Optimization Algorithms: A Comprehensive Analysis
9
作者 Robertas Damasevicius 《Computers, Materials & Continua》 2025年第2期1493-1538,共46页
Heuristic optimization algorithms have been widely used in solving complex optimization problems in various fields such as engineering,economics,and computer science.These algorithms are designed to find high-quality ... Heuristic optimization algorithms have been widely used in solving complex optimization problems in various fields such as engineering,economics,and computer science.These algorithms are designed to find high-quality solutions efficiently by balancing exploration of the search space and exploitation of promising solutions.While heuristic optimization algorithms vary in their specific details,they often exhibit common patterns that are essential to their effectiveness.This paper aims to analyze and explore common patterns in heuristic optimization algorithms.Through a comprehensive review of the literature,we identify the patterns that are commonly observed in these algorithms,including initialization,local search,diversity maintenance,adaptation,and stochasticity.For each pattern,we describe the motivation behind it,its implementation,and its impact on the search process.To demonstrate the utility of our analysis,we identify these patterns in multiple heuristic optimization algorithms.For each case study,we analyze how the patterns are implemented in the algorithm and how they contribute to its performance.Through these case studies,we show how our analysis can be used to understand the behavior of heuristic optimization algorithms and guide the design of new algorithms.Our analysis reveals that patterns in heuristic optimization algorithms are essential to their effectiveness.By understanding and incorporating these patterns into the design of new algorithms,researchers can develop more efficient and effective optimization algorithms. 展开更多
关键词 Heuristic optimization algorithms design patterns INITIALIZATION local search diversity maintenance ADAPTATION STOCHASTICITY exploration EXPLOITATION search space metaheuristics
在线阅读 下载PDF
数字产品创新的架构搜索空间与创新模式——用友U8软件案例研究
10
作者 顾元勋 王立扬 《北京联合大学学报(人文社会科学版)》 2025年第3期76-88,共13页
数字产品的架构创新会经历数次创新搜索、逐步增加模块,从而突破既有架构范围。即使在有主导设计的情境下,架构创新前进方向与行动仍有差异,即创新模式有多样化可能。已有文献多囿于既存架构范围内对创新模式的利用,却未解决创新模式生... 数字产品的架构创新会经历数次创新搜索、逐步增加模块,从而突破既有架构范围。即使在有主导设计的情境下,架构创新前进方向与行动仍有差异,即创新模式有多样化可能。已有文献多囿于既存架构范围内对创新模式的利用,却未解决创新模式生成问题。由此,架构发展规律和方向设计——创新搜索空间的构建机理仍不清楚。本文对用友U8软件产品的案例探索形成“情境—学习—行动”搜索空间框架。情境以制度压力刻画,组织学习包含方式和策略,行动反映模块间相关性。并由搜索空间界定防御、反应、分析、前瞻四种创新元模式。研究结果揭示了数字产品架构创新的搜索空间构建原理和创新模式生成机制,为架构创新提供机会方向和参考方案集,对数字产品创新战略形成具有启发意义。 展开更多
关键词 数字产品架构 搜索空间 创新元模式 情境压力 相关性
在线阅读 下载PDF
基于循环展开结构的抗侧信道攻击SM4 IP核设计
11
作者 张倩 高宜文 +2 位作者 刘月君 赵竟霖 张锐 《密码学报(中英文)》 北大核心 2025年第3期645-661,共17页
侧信道攻击防御能力是密码硬件安全技术能力要求之一.现有防护措施通常引入面积增加、吞吐率减低或随机数消耗等代价开销.本文从分组密码硬件结构特性角度出发,提出一种基于循环展开结构的抗侧信道攻击的硬件IP核设计方法,主要设计思想... 侧信道攻击防御能力是密码硬件安全技术能力要求之一.现有防护措施通常引入面积增加、吞吐率减低或随机数消耗等代价开销.本文从分组密码硬件结构特性角度出发,提出一种基于循环展开结构的抗侧信道攻击的硬件IP核设计方法,主要设计思想为构造轮数依赖型循环展开结构并选择密钥搜索空间为2128的循环展开结构,其技术优势之一为无需随机源.以SM4算法为验证示例,设计三种高安全SM4原型IP核,实现结构分别为八合一迭代结构(SM4-8r)、十六合一迭代结构(SM4-16r)以及全展开结构(SM4-32r).使用SAKURA-X评估板对三种原型IP核进行侧信道安全性评估,实验结果表明:使用100万条能量迹,未检测到一阶信息泄漏或二阶/三阶/四阶零偏移信息泄漏,验证了设计所具有的优良安全防护能力.在Kintex-7器件上对IP核设计进行了参考实现,三种实现使用的面积资源分别为4635LUTs+996Regs、8187LUTs+653Regs以及16925LUTs+1162Regs,对应的吞吐率分别为1147 Mbps、876 Mbps以及585 Mbps.就设计紧凑性而言,三种IP核实现的单位面积吞吐率分别为247.46 Kbps/LUT、107.00 Kbps/LUT以及34.56 Kbps/LUT.相较于紧凑性最佳的低安全二合一迭代结构(SM4-2r)实现,三种高安全实现的付出的紧凑性代价分别为71.43%、87.69%、96.02%. 展开更多
关键词 抗侧信道攻击 循环展开结构 SM4 密钥搜索空间 单位面积吞吐率
在线阅读 下载PDF
基于变化参与实例的空间并置模式增量挖掘方法
12
作者 芦俊丽 昌鑫 +1 位作者 罗浩瑜 刘士虎 《计算机应用研究》 北大核心 2025年第2期431-440,共10页
空间并置模式是一组空间特征的子集,它们的实例在空间中频繁关联。空间并置模式挖掘是空间数据挖掘的一个重要分支。然而,空间数据库随时间不断变化,高效的空间并置模式增量挖掘显得尤为重要。提出基于变化参与实例的空间并置模式增量... 空间并置模式是一组空间特征的子集,它们的实例在空间中频繁关联。空间并置模式挖掘是空间数据挖掘的一个重要分支。然而,空间数据库随时间不断变化,高效的空间并置模式增量挖掘显得尤为重要。提出基于变化参与实例的空间并置模式增量挖掘方法,相比传统的增量挖掘算法,不进行耗时的变化表实例生成操作,直接搜索变化参与实例。为加速变化参与实例搜索过程,提出了实例级搜索优化策略、启发式模式剪枝技术,进而提出了IMCP-CPI,讨论了算法的复杂度、正确性和完备性。在真实和模拟数据集上进行了大量实验验证IMCP-CPI的性能。结果表明IMCP-CPI远优于当前已知的5个空间并置模式增量挖掘算法,其效率提升数倍甚至数个量级。在变化数据占比为原数据集5%的新数据集中,当距离阈值d很大或者参与度阈值min_prev很小时,IMCP-CPI的性能比当前并置模式挖掘较优算法CPM-Col及改进算法CPM-iCol提升2~3倍。此外,当变化数据占比分别小于等于原数据集的25%和50%时,无论在参数变化还是可扩展性方面,IMCP-CPI均优于CPM-iCol和CPM-Col,这对具体实践中的方法选取给与了参考意见。 展开更多
关键词 空间并置模式挖掘 增量挖掘 变化参与实例 实例搜索空间 模式剪枝技术
在线阅读 下载PDF
空间双臂机器人漂浮基座扰动最小化轨迹规划 被引量:2
13
作者 张辉 左孝中 +1 位作者 张伟 高升 《电光与控制》 北大核心 2025年第2期24-31,共8页
针对空间双臂机器人轨迹规划问题,提出一种基于麻雀搜索算法的漂浮基座扰动最小化轨迹规划方法。首先,以双臂机器人各关节角度为优化变量,采用关节轨迹参数化方法构建机器人运动学模型;其次,将末端执行器的定位精度作为优化目标,将漂浮... 针对空间双臂机器人轨迹规划问题,提出一种基于麻雀搜索算法的漂浮基座扰动最小化轨迹规划方法。首先,以双臂机器人各关节角度为优化变量,采用关节轨迹参数化方法构建机器人运动学模型;其次,将末端执行器的定位精度作为优化目标,将漂浮基座扰动作为优化约束;同时,为保证规划过程的安全性,引入惩罚因子和碰撞检测机制,将轨迹规划问题转化为一个带约束的多目标优化问题;最后,通过麻雀搜索算法对该问题进行求解,得到双臂机器人最终的关节优化轨迹。仿真结果表明,所提方法在确保末端执行器定位精度的同时,有效减小了基座扰动,且在基座无约束条件下的性能优于传统的粒子群优化算法和模拟退火算法。 展开更多
关键词 轨迹规划 空间双臂机器人 智能搜索算法 多目标优化
在线阅读 下载PDF
基于解空间树的嵌入式软件测试数据生成方法
14
作者 李萍 杨丹 《邵阳学院学报(自然科学版)》 2025年第1期49-59,共11页
嵌入式软件中存在一些关键功能区域或者容易出现故障的区域。传统的测试数据生成方法可能是均匀地生成测试数据,而没有重点关注这些关键区域,导致存在大量冗余数据,降低了数据生成效果。对此,提出一种基于解空间树的嵌入式软件测试数据... 嵌入式软件中存在一些关键功能区域或者容易出现故障的区域。传统的测试数据生成方法可能是均匀地生成测试数据,而没有重点关注这些关键区域,导致存在大量冗余数据,降低了数据生成效果。对此,提出一种基于解空间树的嵌入式软件测试数据生成方法。首先针对原始源数据集进行数据预处理,然后基于处理后的数据,将原始源数据集的解空间表示为树状结构,满足覆盖标准,并有效减少冗余测试数据,提高测试效率。最后采用深度优先搜索与遗传算法相结合的方法对解空间树进行搜索,以生成嵌入式软件测试数据。结果表明,经过多个方面的评估,所研究方法的测试数据覆盖率在0.90~1.00之间,数据平衡指数始终高于0.97,且测试数据生成时间较短,说明该方法的数据生成效果较好,具有实用性。 展开更多
关键词 解空间树 嵌入式软件 测试数据 深度优先搜索 遗传算法 生成方法
在线阅读 下载PDF
引入威胁空间搜索的五子棋深度强化学习方法
15
作者 牛学芬 王子游 +3 位作者 陈灵 吴育华 刘雨泽 徐长明 《重庆理工大学学报(自然科学)》 北大核心 2025年第8期118-125,共8页
结合蒙特卡罗树搜索与深度神经网络的深度强化学习方法,已经成为解决复杂博弈问题的基准方法,但仍面临奖励稀疏及训练成本高等问题。为此,提出引入威胁空间搜索的五子棋深度强化学习方法:首先,设计了嵌入到蒙特卡罗树搜索的统一威胁空... 结合蒙特卡罗树搜索与深度神经网络的深度强化学习方法,已经成为解决复杂博弈问题的基准方法,但仍面临奖励稀疏及训练成本高等问题。为此,提出引入威胁空间搜索的五子棋深度强化学习方法:首先,设计了嵌入到蒙特卡罗树搜索的统一威胁空间搜索算法,缓解了奖励稀疏的问题;其次,提出了基于领域知识的双层知识库,加快算法搜索速度;此外,将威胁动作空间作为神经网络的输入特征,增强了模型对关键局部形势的感知能力;最后;利用走法过滤机制有效缩小了动作空间。实验结果表明:上述改进措施显著提升了自博弈程序的学习速度和竞技水平。 展开更多
关键词 蒙特卡罗树搜索 深度神经网络 威胁空间搜索 自博弈
在线阅读 下载PDF
基于果蝇算法的物联网节点定位方法研究
16
作者 牛红雁 牟云飞 《长江信息通信》 2025年第6期133-135,共3页
针对物联网节点定位精度问题,开展基于果蝇算法的物联网节点定位方法研究。通过优化果蝇算法的初始搜索空间,结合物联网节点的分布特性和信号强度信息,实现定位过程的快速收敛,利用果蝇算法的全局搜索能力,在优化后的初始搜索空间内快... 针对物联网节点定位精度问题,开展基于果蝇算法的物联网节点定位方法研究。通过优化果蝇算法的初始搜索空间,结合物联网节点的分布特性和信号强度信息,实现定位过程的快速收敛,利用果蝇算法的全局搜索能力,在优化后的初始搜索空间内快速找到潜在的定位区域。结合物联网节点间的距离测量数据,利用定位算法精确计算节点的实际位置,通过对比实验证明,该方法相较于现有定位方法,在定位精度方面显著提升。研究为物联网节点的精确定位提供了一种新的有效方法,具有广泛的应用前景。 展开更多
关键词 果蝇算法 节点 搜索空间 定位 物联网
在线阅读 下载PDF
Structure learning on Bayesian networks by finding the optimal ordering with and without priors 被引量:5
17
作者 HE Chuchao GAO Xiaoguang GUO Zhigao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1209-1227,共19页
Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based s... Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based search methods, we first propose to increase the search space, which can facilitate escaping from the local optima. We present our search operators with majorizations, which are easy to implement. Experiments show that the proposed algorithm can obtain significantly more accurate results. With regard to the problem of the decrease on efficiency due to the increase of the search space, we then propose to add path priors as constraints into the swap process. We analyze the coefficient which may influence the performance of the proposed algorithm, the experiments show that the constraints can enhance the efficiency greatly, while has little effect on the accuracy. The final experiments show that, compared to other competitive methods, the proposed algorithm can find better solutions while holding high efficiency at the same time on both synthetic and real data sets. 展开更多
关键词 Bayesian network structure learning ordering search space graph search space prior constraint
在线阅读 下载PDF
面向空间机器人辅助操作的任务规划方法研究
18
作者 房国强 常海涛 +2 位作者 刘星 刘正雄 黄攀峰 《系统仿真学报》 北大核心 2025年第2期325-334,共10页
针对空间机器人辅助操作时任务流程复杂、任务约束众多,导致任务规划困难的情况,提出了一种快速前向搜索算法和分层网络算法相结合的任务规划方法。将空间辅助操作任务规划过程分为任务规划和重规划。基于操作代价的快速前向搜索任务规... 针对空间机器人辅助操作时任务流程复杂、任务约束众多,导致任务规划困难的情况,提出了一种快速前向搜索算法和分层网络算法相结合的任务规划方法。将空间辅助操作任务规划过程分为任务规划和重规划。基于操作代价的快速前向搜索任务规划方法,得到操作代价最小的动作执行序列;基于分层网络的任务自适应重规划方法,根据问题排列移动、抓取、释放的修正补偿优先级对问题修正补偿。针对空间机器人在轨辅助加注任务进行了对比仿真,得到了操作代价最小的动作序列,并采用重规划算法解决了任务执行过程中环境信息变化导致的错误,验证了算法的有效性,为空间辅助操作提供了一种有效的任务规划方法。 展开更多
关键词 空间机器人 任务规划 重规划 快速前向搜索 分层任务网络
原文传递
基于改进2SFCA的荆州市公园绿地可达性研究 被引量:1
19
作者 张梦琪 蔡永香 《科技创新与应用》 2025年第11期81-85,共5页
公园绿地的可达性对居民生活和城市规划具有重要意义。针对现有研究对可达性计算过程中的供给能力影响因素考虑单一的问题,该研究以荆州市中心城区为例,综合考虑主观因素和客观因素对可达性的影响,基于公园绿地面积、植被覆盖度、分形... 公园绿地的可达性对居民生活和城市规划具有重要意义。针对现有研究对可达性计算过程中的供给能力影响因素考虑单一的问题,该研究以荆州市中心城区为例,综合考虑主观因素和客观因素对可达性的影响,基于公园绿地面积、植被覆盖度、分形维数、边缘密度和百度评分等数据,运用改进两步移动搜索法测度街道尺度下公园绿地可达性,并采用Moran's I等方法分析其空间聚集模式。研究结果显示,荆州市中心城区公园绿地可达性存在明显的空间差异,中部区域可达性较高,边缘区域较低,且整体呈现出较强的空间集聚性。该研究为荆州市优化公园绿地资源配置和城市规划提供科学依据,也可为其他类似地理现象的可达性研究提供参考。 展开更多
关键词 公园绿地 可达性 两步移动搜索法 熵权法 城市规划
在线阅读 下载PDF
基于多个子隐空间和双重预测器的神经网络搜索方法
20
作者 肖嘉敏 《计算机应用文摘》 2025年第19期101-104,共4页
在传统基于隐空间的神经网络架构搜索方法预训练完成后,其隐空间中的架构表征分布将固定不变。AG-Net提出了一种可持续更新的隐空间神经网络架构搜索方法,在一定程度上缓解了该问题。然而,AG-Net采用的单隐空间结构易导致搜索过程陷入... 在传统基于隐空间的神经网络架构搜索方法预训练完成后,其隐空间中的架构表征分布将固定不变。AG-Net提出了一种可持续更新的隐空间神经网络架构搜索方法,在一定程度上缓解了该问题。然而,AG-Net采用的单隐空间结构易导致搜索过程陷入局部最优解。为突破这一局限,文章提出一种基于多子隐空间与双重预测器的神经网络架构搜索方法。该方法通过引入多个子隐空间结构,有效增强了搜索过程的探索能力,避免陷入局部最优。同时,借助双重预测器机制融合局部与全局信息,进一步提升了搜索算法的综合性能。 展开更多
关键词 神经网络 神经网络架构搜索 隐空间优化
在线阅读 下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部