In underwater target search path planning,the accuracy of sonar models directly dictates the accurate assessment of search coverage.In contrast to physics-informed sonar models,traditional geometric sonar models fail ...In underwater target search path planning,the accuracy of sonar models directly dictates the accurate assessment of search coverage.In contrast to physics-informed sonar models,traditional geometric sonar models fail to accurately characterize the complex influence of marine environments.To overcome these challenges,we propose an acoustic physics-informed intelligent path planning framework for underwater target search,integrating three core modules:The acoustic-physical modeling module adopts 3D ray-tracing theory and the active sonar equation to construct a physics-driven sonar detection model,explicitly accounting for environmental factors that influence sonar performance across heterogeneous spaces.The hybrid parallel computing module adopts a message passing interface(MPI)/open multi-processing(Open MP)hybrid strategy for large-scale acoustic simulations,combining computational domain decomposition and physics-intensive task acceleration.The search path optimization module adopts the covariance matrix adaptation evolution algorithm to solve continuous optimization problems of heading angles,which ensures maximum search coverage for targets.Largescale experiments conducted in the Pacific and Atlantic Oceans demonstrate the framework's effectiveness:(1)Precise capture of sonar detection range variations from 5.45 km to 50 km in heterogeneous marine environments.(2)Significant speedup of 453.43×for acoustic physics modeling through hybrid parallelization.(3)Notable improvements of 7.23%in detection coverage and 15.86%reduction in optimization time compared to the optimal baseline method.The framework provides a robust solution for underwater search missions in complex marine environments.展开更多
Heart failure prediction is crucial as cardiovascular diseases become the leading cause of death worldwide,exacerbated by the COVID-19 pandemic.Age,cholesterol,and blood pressure datasets are becoming inadequate becau...Heart failure prediction is crucial as cardiovascular diseases become the leading cause of death worldwide,exacerbated by the COVID-19 pandemic.Age,cholesterol,and blood pressure datasets are becoming inadequate because they cannot capture the complexity of emerging health indicators.These high-dimensional and heterogeneous datasets make traditional machine learning methods difficult,and Skewness and other new biomarkers and psychosocial factors bias the model’s heart health prediction across diverse patient profiles.Modern medical datasets’complexity and high dimensionality challenge traditional predictionmodels like SupportVectorMachines and Decision Trees.Quantum approaches include QSVM,QkNN,QDT,and others.These Constraints drove research.The“QHF-CS:Quantum-Enhanced Heart Failure Prediction using Quantum CNN with Optimized Feature Qubit Selection with Cuckoo Search in Skewed Clinical Data”system was developed in this research.This novel system leverages a Quantum Convolutional Neural Network(QCNN)-based quantum circuit,enhanced by meta-heuristic algorithms—Cuckoo SearchOptimization(CSO),Artificial BeeColony(ABC),and Particle SwarmOptimization(PSO)—for feature qubit selection.Among these,CSO demonstrated superior performance by consistently identifying the most optimal and least skewed feature subsets,which were then encoded into quantum states for circuit construction.By integrating advanced quantum circuit feature maps like ZZFeatureMap,RealAmplitudes,and EfficientSU2,the QHF-CS model efficiently processes complex,high-dimensional data,capturing intricate patterns that classical models overlook.The QHF-CS model improves precision,recall,F1-score,and accuracy to 0.94,0.95,0.94,and 0.94.Quantum computing could revolutionize heart failure diagnostics by improving model accuracy and computational efficiency,enabling complex healthcare diagnostic breakthroughs.展开更多
Computer-assisted chemical structure searching plays a critical role for efficient structure screening in cheminformatics. We designed a high-performance chemical structure & data search engine called DCAIKU, buil...Computer-assisted chemical structure searching plays a critical role for efficient structure screening in cheminformatics. We designed a high-performance chemical structure & data search engine called DCAIKU, built on CouchDB and ElasticSearch engines. DCAIKU converts the chemical structure similarity search problem into a general text search problem to utilize off-the-shelf full-text search engines. DCAIKU also supports flexible document structures and heterogeneous datasets with the help of schema-less document database. Our evaluations show that DCAIKU can handle both keyword search and structural search against millions of records with both high accuracy and low latency. We expect that DCAIKU will lay the foundation towards large-scale and cost-effective structural search in materials science and chemistry research.展开更多
基金supported by Natural Science Foundation of Hu'nan Province(2024JJ5409)。
文摘In underwater target search path planning,the accuracy of sonar models directly dictates the accurate assessment of search coverage.In contrast to physics-informed sonar models,traditional geometric sonar models fail to accurately characterize the complex influence of marine environments.To overcome these challenges,we propose an acoustic physics-informed intelligent path planning framework for underwater target search,integrating three core modules:The acoustic-physical modeling module adopts 3D ray-tracing theory and the active sonar equation to construct a physics-driven sonar detection model,explicitly accounting for environmental factors that influence sonar performance across heterogeneous spaces.The hybrid parallel computing module adopts a message passing interface(MPI)/open multi-processing(Open MP)hybrid strategy for large-scale acoustic simulations,combining computational domain decomposition and physics-intensive task acceleration.The search path optimization module adopts the covariance matrix adaptation evolution algorithm to solve continuous optimization problems of heading angles,which ensures maximum search coverage for targets.Largescale experiments conducted in the Pacific and Atlantic Oceans demonstrate the framework's effectiveness:(1)Precise capture of sonar detection range variations from 5.45 km to 50 km in heterogeneous marine environments.(2)Significant speedup of 453.43×for acoustic physics modeling through hybrid parallelization.(3)Notable improvements of 7.23%in detection coverage and 15.86%reduction in optimization time compared to the optimal baseline method.The framework provides a robust solution for underwater search missions in complex marine environments.
文摘Heart failure prediction is crucial as cardiovascular diseases become the leading cause of death worldwide,exacerbated by the COVID-19 pandemic.Age,cholesterol,and blood pressure datasets are becoming inadequate because they cannot capture the complexity of emerging health indicators.These high-dimensional and heterogeneous datasets make traditional machine learning methods difficult,and Skewness and other new biomarkers and psychosocial factors bias the model’s heart health prediction across diverse patient profiles.Modern medical datasets’complexity and high dimensionality challenge traditional predictionmodels like SupportVectorMachines and Decision Trees.Quantum approaches include QSVM,QkNN,QDT,and others.These Constraints drove research.The“QHF-CS:Quantum-Enhanced Heart Failure Prediction using Quantum CNN with Optimized Feature Qubit Selection with Cuckoo Search in Skewed Clinical Data”system was developed in this research.This novel system leverages a Quantum Convolutional Neural Network(QCNN)-based quantum circuit,enhanced by meta-heuristic algorithms—Cuckoo SearchOptimization(CSO),Artificial BeeColony(ABC),and Particle SwarmOptimization(PSO)—for feature qubit selection.Among these,CSO demonstrated superior performance by consistently identifying the most optimal and least skewed feature subsets,which were then encoded into quantum states for circuit construction.By integrating advanced quantum circuit feature maps like ZZFeatureMap,RealAmplitudes,and EfficientSU2,the QHF-CS model efficiently processes complex,high-dimensional data,capturing intricate patterns that classical models overlook.The QHF-CS model improves precision,recall,F1-score,and accuracy to 0.94,0.95,0.94,and 0.94.Quantum computing could revolutionize heart failure diagnostics by improving model accuracy and computational efficiency,enabling complex healthcare diagnostic breakthroughs.
基金This work was supported by the National Natural Science Foundation of China,the Ministry of Science and Technology of China,and the Swedish Research Council.
文摘Computer-assisted chemical structure searching plays a critical role for efficient structure screening in cheminformatics. We designed a high-performance chemical structure & data search engine called DCAIKU, built on CouchDB and ElasticSearch engines. DCAIKU converts the chemical structure similarity search problem into a general text search problem to utilize off-the-shelf full-text search engines. DCAIKU also supports flexible document structures and heterogeneous datasets with the help of schema-less document database. Our evaluations show that DCAIKU can handle both keyword search and structural search against millions of records with both high accuracy and low latency. We expect that DCAIKU will lay the foundation towards large-scale and cost-effective structural search in materials science and chemistry research.