This study ingeniously synthesized a novel CdS/NiS hollow nanoflower sphere(HNS)using a one-step method to enhance photocatalytic hydrogen production activity.Compared to conventional preparation methods,this approach...This study ingeniously synthesized a novel CdS/NiS hollow nanoflower sphere(HNS)using a one-step method to enhance photocatalytic hydrogen production activity.Compared to conventional preparation methods,this approach features seamlessly interfaced contact that facilitates efficient electron transfer across the interface.The internal hollow structure allows for multiple light reflections,maximizing light absorption,while the exterior shell and inner surfaces simultaneously offer active sites for reactions.The modification with non-noble metal NiS enables the extraction of electrons from CdS to the NiS surface,achieving rapid charge separation.Furthermore,adsorption-free energy calculations reveal that the NiS surface is more conducive to photocatalytic hydrogen generation,providing additional reaction active sites.The results demonstrate a hydrogen production rate of 2.18 mmol g^(-1)h^(-1)for CdS/NiS HNS,which is 9.48 times greater than that of pristine CdS.This work presents a novel approach for synthesizing seamlessly interfaced contacts between photocatalysts and cocatalysts,offering new insight into efficient one-step synthesis for enhanced photocatalytic performance.展开更多
Humanoid robots are advanced general-purpose machines that mimic the human body,motion,and intelligence.They are capable of seamlessly integrating into human environments and utilizing existing infrastructure.
基金supported by the National Natural Science Foundation of China(Nos.22278169 and 51973078)the Excellent Scientific Research and Innovation team of the Education Department of Anhui Province(No.2022AH010028)+2 种基金the Major projects of the Education Department of Anhui Province(No.2022AH040068)the Key Foundation of Educational Commission of Anhui Province(Nos.2022AH050396 and 2022AH050376)Anhui Provincial Quality Engineering Project(No.2022sx134).
文摘This study ingeniously synthesized a novel CdS/NiS hollow nanoflower sphere(HNS)using a one-step method to enhance photocatalytic hydrogen production activity.Compared to conventional preparation methods,this approach features seamlessly interfaced contact that facilitates efficient electron transfer across the interface.The internal hollow structure allows for multiple light reflections,maximizing light absorption,while the exterior shell and inner surfaces simultaneously offer active sites for reactions.The modification with non-noble metal NiS enables the extraction of electrons from CdS to the NiS surface,achieving rapid charge separation.Furthermore,adsorption-free energy calculations reveal that the NiS surface is more conducive to photocatalytic hydrogen generation,providing additional reaction active sites.The results demonstrate a hydrogen production rate of 2.18 mmol g^(-1)h^(-1)for CdS/NiS HNS,which is 9.48 times greater than that of pristine CdS.This work presents a novel approach for synthesizing seamlessly interfaced contacts between photocatalysts and cocatalysts,offering new insight into efficient one-step synthesis for enhanced photocatalytic performance.
基金supported by the National Natural Science Foundation of China under Grant 52188102.
文摘Humanoid robots are advanced general-purpose machines that mimic the human body,motion,and intelligence.They are capable of seamlessly integrating into human environments and utilizing existing infrastructure.