Textile strain sensors capable of monitoring human physiological signals and activities have great potential in health moni-toring and sports.However,fabricating sensors with a wide sensing range,high sensitivity,robu...Textile strain sensors capable of monitoring human physiological signals and activities have great potential in health moni-toring and sports.However,fabricating sensors with a wide sensing range,high sensitivity,robustness,and the capability for seamless integration into apparel remains challenging.In this work,a textile resistive strain sensor(TRSS)fabricated by selectively inlaying a conductive yarn,that is covered with water-repellent and antioxidative acrylic/copper complex fibers,into a highly elastic substrate via an industrialized knitting process is proposed.The conductive yarn is folded and compactly stacked to sense strains by changing contact resistance through contact separation of adjacent yarn sections in stretching.Owing to this folded structure,the TRSS has a wide sensing range(0–70%),high sensitivity(maximum gauge factor GF_(max)=1560),low detection limit(<0.5%),long-term fatigue resistance over 4000 cycles,and it can be seamlessly integrated into and become a part of various smart apparel products.An elbow sleeve,a knee sleeve and a sock are demon-strated to effectively monitor and distinguish various human bending motions.The fabrication strategy paves a viable way for customizing high-performance strain sensors for developing novel wearable electronics and smart clothing to detect multimode human motions.展开更多
With the newly proposed Global Ocean Observing Integration, ocean observing scope has been expanded from the region to the global, therefore the need of large-scale ocean observing system integration has become more a...With the newly proposed Global Ocean Observing Integration, ocean observing scope has been expanded from the region to the global, therefore the need of large-scale ocean observing system integration has become more and more urgent. Currently, ocean observing systems enabled ocean sensor networks are commonly developed by different organizations using specific technologies and platforms, which brings several challenges in ocean observing instrument (OOI) access and ocean observing system seamless integration. Furthermore, the development of ocean observing systems often suffers from low efficiency due to the complex prograrmning and debugging process. To solve these problems, a novel model, Complex Virtual Instrument (CVI) Model, is proposed. The model provides formal definitions on observing instrument description file, CVI description file, model calculation method, development model and interaction standard. In addition, this model establishes mathematical expressions of two model calculation operations, meanwhile builds the mapping relationship between observing instrument description file and CVI description file. The CVI based on the new model can achieve automatic access to different OOIs, seamless integration and communication for heterogeneous environments, and further implement standardized data access and management for the global unified ocean observing network. Throughout the development, integration and application of such CVI, the rationality and feasibility of the model have been evaluated. The results confirm that the proposed model can effectively implement heterogeneous system integration, improve development efficiency, make full usage of reusable components, reduce development cost, and enhance overall software system quality. We believe that our new model has great significance to promote the large-scale ocean observing system integration.展开更多
Illumination harmonization is an important but challenging task that aims to achieve illumination compatibility between the foreground and background under different illumination conditions.Most current studies mainly...Illumination harmonization is an important but challenging task that aims to achieve illumination compatibility between the foreground and background under different illumination conditions.Most current studies mainly focus on achieving seamless integration between the appearance(illumination or visual style)of the foreground object itself and the background scene or producing the foreground shadow.They rarely considered global illumination consistency(i.e.,the illumination and shadow of the foreground object).In our work,we introduce“Illuminator”,an image-based illumination editing technique.This method aims to achieve more realistic global illumination harmonization,ensuring consistent illumination and plausible shadows in complex indoor environments.The Illuminator contains a shadow residual generation branch and an object illumination transfer branch.The shadow residual generation branch introduces a novel attention-aware graph convolutional mechanism to achieve reasonable foreground shadow generation.The object illumination transfer branch primarily transfers background illumination to the foreground region.In addition,we construct a real-world indoor illumination harmonization dataset called RIH,which consists of various foreground objects and background scenes captured under diverse illumination conditions for training and evaluating our Illuminator.Our comprehensive experiments,conducted on the RIH dataset and a collection of real-world everyday life photos,validate the effectiveness of our method.展开更多
Buildings have both high as well as flexible energy demands and play an important role in the energy internet solution.The buildings’energy flexibility(BEF)is a widely recognized concept;however,how to unlock its pot...Buildings have both high as well as flexible energy demands and play an important role in the energy internet solution.The buildings’energy flexibility(BEF)is a widely recognized concept;however,how to unlock its potential is a relatively new research topic.In this paper,the authors provide an overview of the latest research related to BEF.An introduction to BEF is provided,methods developed for identifying and characterizing BEF are presented,and several key influencing factors are identified.The overview also covers various aggregation methods to scale up BEF impacts and service-oriented solutions for enabling BEF applications in different energy sectors.This work lays the groundwork for designing and developing seamless integration strategies for BEF use in both present and future energy systems.展开更多
基金supported by the National Key R&D Program of China(grant number 2019YFF0302100).
文摘Textile strain sensors capable of monitoring human physiological signals and activities have great potential in health moni-toring and sports.However,fabricating sensors with a wide sensing range,high sensitivity,robustness,and the capability for seamless integration into apparel remains challenging.In this work,a textile resistive strain sensor(TRSS)fabricated by selectively inlaying a conductive yarn,that is covered with water-repellent and antioxidative acrylic/copper complex fibers,into a highly elastic substrate via an industrialized knitting process is proposed.The conductive yarn is folded and compactly stacked to sense strains by changing contact resistance through contact separation of adjacent yarn sections in stretching.Owing to this folded structure,the TRSS has a wide sensing range(0–70%),high sensitivity(maximum gauge factor GF_(max)=1560),low detection limit(<0.5%),long-term fatigue resistance over 4000 cycles,and it can be seamlessly integrated into and become a part of various smart apparel products.An elbow sleeve,a knee sleeve and a sock are demon-strated to effectively monitor and distinguish various human bending motions.The fabrication strategy paves a viable way for customizing high-performance strain sensors for developing novel wearable electronics and smart clothing to detect multimode human motions.
基金supported by the National Natural Science Foundation of China(Nos.41606112,61103196,61379127,61379128)the National High Technology Research and Development Program 863(No.2013AA09A506)
文摘With the newly proposed Global Ocean Observing Integration, ocean observing scope has been expanded from the region to the global, therefore the need of large-scale ocean observing system integration has become more and more urgent. Currently, ocean observing systems enabled ocean sensor networks are commonly developed by different organizations using specific technologies and platforms, which brings several challenges in ocean observing instrument (OOI) access and ocean observing system seamless integration. Furthermore, the development of ocean observing systems often suffers from low efficiency due to the complex prograrmning and debugging process. To solve these problems, a novel model, Complex Virtual Instrument (CVI) Model, is proposed. The model provides formal definitions on observing instrument description file, CVI description file, model calculation method, development model and interaction standard. In addition, this model establishes mathematical expressions of two model calculation operations, meanwhile builds the mapping relationship between observing instrument description file and CVI description file. The CVI based on the new model can achieve automatic access to different OOIs, seamless integration and communication for heterogeneous environments, and further implement standardized data access and management for the global unified ocean observing network. Throughout the development, integration and application of such CVI, the rationality and feasibility of the model have been evaluated. The results confirm that the proposed model can effectively implement heterogeneous system integration, improve development efficiency, make full usage of reusable components, reduce development cost, and enhance overall software system quality. We believe that our new model has great significance to promote the large-scale ocean observing system integration.
基金supported by the National Natural Science Foundation of China(61972298 and 62372336),CAAI–Huawei MindSpore Open Fund,and Wuhan University–Huawei GeoInformatices Innovation Lab.
文摘Illumination harmonization is an important but challenging task that aims to achieve illumination compatibility between the foreground and background under different illumination conditions.Most current studies mainly focus on achieving seamless integration between the appearance(illumination or visual style)of the foreground object itself and the background scene or producing the foreground shadow.They rarely considered global illumination consistency(i.e.,the illumination and shadow of the foreground object).In our work,we introduce“Illuminator”,an image-based illumination editing technique.This method aims to achieve more realistic global illumination harmonization,ensuring consistent illumination and plausible shadows in complex indoor environments.The Illuminator contains a shadow residual generation branch and an object illumination transfer branch.The shadow residual generation branch introduces a novel attention-aware graph convolutional mechanism to achieve reasonable foreground shadow generation.The object illumination transfer branch primarily transfers background illumination to the foreground region.In addition,we construct a real-world indoor illumination harmonization dataset called RIH,which consists of various foreground objects and background scenes captured under diverse illumination conditions for training and evaluating our Illuminator.Our comprehensive experiments,conducted on the RIH dataset and a collection of real-world everyday life photos,validate the effectiveness of our method.
文摘Buildings have both high as well as flexible energy demands and play an important role in the energy internet solution.The buildings’energy flexibility(BEF)is a widely recognized concept;however,how to unlock its potential is a relatively new research topic.In this paper,the authors provide an overview of the latest research related to BEF.An introduction to BEF is provided,methods developed for identifying and characterizing BEF are presented,and several key influencing factors are identified.The overview also covers various aggregation methods to scale up BEF impacts and service-oriented solutions for enabling BEF applications in different energy sectors.This work lays the groundwork for designing and developing seamless integration strategies for BEF use in both present and future energy systems.