Taiwan Island is at the joint of Eurasian Continent and Pacific Plate, under threatening of typhoons and northeasterly strong winds. Consequently, enormous human lives and properties are lost every year. It is necessa...Taiwan Island is at the joint of Eurasian Continent and Pacific Plate, under threatening of typhoons and northeasterly strong winds. Consequently, enormous human lives and properties are lost every year. It is necessary to develop a coastal sea-state monitoring system. This paper introduces the coastal sea-state monitoring system (CSMS) along Taiwan coast. The COMC (Coastal Ocean Monitoring Center in National Cheng Kung University) built the Taiwan coastal sea-state monitoring system, which is modern and self-sufficient, consisting of data buoy, pile station, tide station, coastal weather station, and radar monitoring station. To assure the data quality, Data Quality Check Procedure (DQCP) and Standard Operation Procedure (SOP) were developed by the COMC. In further data analysis and data implementation of the observation, this paper also introduces some new methods that make the data with much more promising uses. These methods include empirical mode decomposition (EMD) used for the analysis of storm surge water level, wavelet transform used for the analysis of wave characteristics from nearshore X-band radar images, and data assimilation technique applied in wave nowcast operation. The coastal sea-state monitoring system has a great potential in providing ocean information to serve the society.展开更多
Although the annual global sea-air CO2 flux has been estimated extensively with various wind-dependent-k parameterizations,uncertainty still exists in the estimates. The sea-state-dependent-k parameterization is expec...Although the annual global sea-air CO2 flux has been estimated extensively with various wind-dependent-k parameterizations,uncertainty still exists in the estimates. The sea-state-dependent-k parameterization is expected to improve the uncertainty existing in these estimates. In the present study,the annual global sea-air CO2 flux is estimated with the sea-state-dependent-k parameterization proposed by Woolf(2005) ,using NOAA/NCEP reanalysis wind speed and hindcast wave data from 1998 to 2006,and a new estimate,-2.18 Gt C year-1,is obtained,which is comparable with previous estimates with biochemical methods. It is interesting to note that the averaged value of previous estimates with various wind-dependent-k parameterizations is almost identical to that of previous estimates with biochemical methods by various authors,and that the new estimate is quite consistent with these averaged estimates.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 51109075)Fundamental Research Funds for the Central Universities (Grant No. 2011B05814)Doctoral Fund of Ministry of Education of China (Grant No. 20100094120008)
文摘Taiwan Island is at the joint of Eurasian Continent and Pacific Plate, under threatening of typhoons and northeasterly strong winds. Consequently, enormous human lives and properties are lost every year. It is necessary to develop a coastal sea-state monitoring system. This paper introduces the coastal sea-state monitoring system (CSMS) along Taiwan coast. The COMC (Coastal Ocean Monitoring Center in National Cheng Kung University) built the Taiwan coastal sea-state monitoring system, which is modern and self-sufficient, consisting of data buoy, pile station, tide station, coastal weather station, and radar monitoring station. To assure the data quality, Data Quality Check Procedure (DQCP) and Standard Operation Procedure (SOP) were developed by the COMC. In further data analysis and data implementation of the observation, this paper also introduces some new methods that make the data with much more promising uses. These methods include empirical mode decomposition (EMD) used for the analysis of storm surge water level, wavelet transform used for the analysis of wave characteristics from nearshore X-band radar images, and data assimilation technique applied in wave nowcast operation. The coastal sea-state monitoring system has a great potential in providing ocean information to serve the society.
文摘Although the annual global sea-air CO2 flux has been estimated extensively with various wind-dependent-k parameterizations,uncertainty still exists in the estimates. The sea-state-dependent-k parameterization is expected to improve the uncertainty existing in these estimates. In the present study,the annual global sea-air CO2 flux is estimated with the sea-state-dependent-k parameterization proposed by Woolf(2005) ,using NOAA/NCEP reanalysis wind speed and hindcast wave data from 1998 to 2006,and a new estimate,-2.18 Gt C year-1,is obtained,which is comparable with previous estimates with biochemical methods. It is interesting to note that the averaged value of previous estimates with various wind-dependent-k parameterizations is almost identical to that of previous estimates with biochemical methods by various authors,and that the new estimate is quite consistent with these averaged estimates.