期刊文献+
共找到2,691篇文章
< 1 2 135 >
每页显示 20 50 100
Could Glacier Geoengineering Freeze Sea Level Rise?
1
作者 Mitch Leslie 《Engineering》 2025年第2期12-14,共3页
The Thwaites Glacier in western Antarctica(Fig. 1) keeps glaciologists and climate scientists awake at night. The 120 kmwide glacier loses about 45 billion tonnes of ice each year, accounting for about 4% of global se... The Thwaites Glacier in western Antarctica(Fig. 1) keeps glaciologists and climate scientists awake at night. The 120 kmwide glacier loses about 45 billion tonnes of ice each year, accounting for about 4% of global sea level rise [1]. If it melted completely, sea levels would climb 65 cm, and follow-on effects could lead to a 3 m increase [2]. But if some scientists' vision becomes reality, in 10–15 years construction crews will sail into the Amundsen Sea off Antarctica to begin building an 80 km long underwater curtain that will shield the glacier from the warm currents that are accelerating its decline [3]. 展开更多
关键词 glaciologists glacier geoengineering sea level rise ice loss global sea level rise Thwaites Glacier thwaites glacier climate scientists
在线阅读 下载PDF
Stratigraphic Forward Modeling of Late Quaternary Fluvial Dynamics in the Indus River Delta, Pakistan: Insights into Sea Level-Driven Sedimentary Evolution 被引量:1
2
作者 HASSAN Hafiz Ahmed Raza LIU Keyu +3 位作者 LIU Jianliang MUNAWAR Muhammad Jawad REHMAN Saif Ur HUSSAIN Abid 《Journal of Ocean University of China》 2025年第6期1500-1518,共19页
Fluvial systems play a crucial role in coastal and riverine ecosystems, making it essential to understand their responses to sea level changes for preserving biodiversity and managing natural resources. The evolution ... Fluvial systems play a crucial role in coastal and riverine ecosystems, making it essential to understand their responses to sea level changes for preserving biodiversity and managing natural resources. The evolution of the modern Indus River Delta offers a rare opportunity to study the interplay between sea level fluctuations, tectonism, sediment supply, and the corresponding fluvial responses. This study employs the ‘SedSim' stratigraphic forward model to simulate the delta's evolution from 200 kyr to the next5 kyr, drawing on data from field observations, Landsat imagery, digital elevation models, and previous studies. The model consists of 205 layers, each representing a 1-kyr time step, covering the last two glacial-interglacial cycles. Between 200 kyr and 130 kyr, during a lowstand period, sedimentation on the delta plain continued due to partial flow from the Indus River. During the last interglacial(130–60 kyr), rising sea levels led to peak sediment deposition, characteristic of a highstand phase. From 60 kyr to 18 kyr, sea levels dropped to their lowest during the Last Glacial Maximum(LGM), resulting in extensive erosion and minimal deposition on the delta plain. From 18 kyr to the present, rapidly rising sea levels, coupled with intensified monsoon activity, increased sedimentation rates and triggered avulsion and aggradation processes. The model accurately predicted depositional thickness across the delta plain, indicating a maximum of ca. 200 m at the shoreline platform, ca. 175 m in the northeastern delta, and ca. 100 m in the central delta. The study underscores the delta's vulnerability to future sea level rise, which–at a projected rate of 1 m/kyr–could significantly influence the densely populated, low-lying delta plain. These findings offer valuable insights into the geomorphic evolution of the Indus Delta and emphasize the socioeconomic implications of sea level change, underscoring the importance of proactive management and adaptation strategies. 展开更多
关键词 fluvial responses sea level changes glacial-interglacial cycle sedimentary evolution stratigraphic forward modeling Indus Delta
在线阅读 下载PDF
Variation in wind and wave with respect to sea level anomaly in China Seas and its adjacent waters based on remote sensing product
3
作者 Song Pan Weizeng Shao +3 位作者 Yongjun Jia Yuyi Hu Xingwei Jiang Zhengguang Zhang 《Acta Oceanologica Sinica》 2025年第10期29-43,共15页
Sea level has been rising gradually in recent decades.Against this background,this study utilizes synchronous multialtimeter measurements to investigate variations in wind and wave fields relative to sea level anomaly... Sea level has been rising gradually in recent decades.Against this background,this study utilizes synchronous multialtimeter measurements to investigate variations in wind and wave fields relative to sea level anomaly(SLA)in the China Seas and its adjacent waters.The validation between Haiyang-2(HY-2)measurement proceeded to be geophysical data records(GDR)and moored buoys indicate that HY-2 scatterometer-measured wind speed outperforms that derived from altimeter,with lower root-mean-squared error(RMSE)(1.87 m/s vs.2.03 m/s),smaller bias(−0.06 m/s vs.0.47 m/s),same correlation(COR)(0.84),and reduced scatter index(SI)(0.27 vs.0.29).Conversely,GDR product from HY-2 altimeter demonstrates reliable accuracy of significant wave height(SWH)(RMSE:0.37 m,bias:−0.03 m,COR:0.92,SI:0.30).Further time series analysis of HY-2 data reveals synchronized oscillations among SLA,wind speed and SWH with SLA strongly influencing wind speed under extreme conditions.Seasonal and regional disparities are evident:wind speed positively correlates with SLA in spring but shows a negative correlation in summer,while autumn and winter exhibit weak correlations.Periodic linkages between SWH and SLA are prominent in summer and autumn.In addition,the regional analysis shows that the Bohai Sea experiences declining autumn/winter wind speeds with higher SLA but without consistent SWH trends,while the Yellow Sea demonstrates summer covariation among wind speed,SWH and SLA.The East China Sea maintains synchronized SLA-wind speed-SWH relationship throughout spring,summer and winter,while the South China Sea shows alignment only in spring.The largest SLA,wind speed and SWH variations occur in the East China Sea and South China Sea,primarily driven by vigorous energy exchanges processes with the open ocean.These findings highlight distinct response mechanisms of regional marine dynamics to SLA,shaped by localized hydrological-climatic interactions. 展开更多
关键词 sea level anomaly WIND WAVE China seas
在线阅读 下载PDF
Assessing coastal erosion dynamics and sea level rise impacts on Kuala Nerus and Kuala Terengganu,Malaysia:a case study in climate-resilient coastal management
4
作者 Milad Bagheri Mohd Fadzil Akhir +4 位作者 Iraj Gholami Isabelle D.Wolf Nik Norliati Fitri Binti Md Nor Izham Mohamad Yusoff Siti Masayu Rosliah Abdul Rashid 《Episodes》 2025年第3期255-278,共24页
In the face of uncertainty about climate change,this study examines the dynamics of sea level rise and coastline erosion in the East Coast of Malaysia.It examines past changes in the shoreline,beach profiles,and erosi... In the face of uncertainty about climate change,this study examines the dynamics of sea level rise and coastline erosion in the East Coast of Malaysia.It examines past changes in the shoreline,beach profiles,and erosion rates using sophisticated coastal engineering models,remote sensing,field observations,and numerical modeling.The focus is on developing a strong approach for Coastal City Hazard Management(CCHM)zones and modeling erosion trends.Results show that coastal erosion poses a serious risk to socioeconomic activities,habitats,and biodiversity.It is made worse by sea level rise and human activity.There is an assessment of the implications and solutions for mitigation for critical regions.Policymakers,engaged in coastal hazard management and climate change adaptation will find the study vital as it promotes proactive measures to protect vulnerable coastal populations and ecosystems. 展开更多
关键词 developing strong approach sophisticated coastal engineering modelsremote sensingfield observationsand coastline erosion numerical modelingthe coastal erosion climate changethis sea level rise modeling erosion
在线阅读 下载PDF
Sea level rise projection in the South China Sea from CMIP5 models 被引量:6
5
作者 HUANG Chuanjiang QIAO Fangli 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第3期31-41,共11页
Future potential sea level change in the South China Sea (SCS) is estimated by using 24 CMIP5 models under different representative concentration pathway (RCP) scenarios. By the end of the 21st century (2081–210... Future potential sea level change in the South China Sea (SCS) is estimated by using 24 CMIP5 models under different representative concentration pathway (RCP) scenarios. By the end of the 21st century (2081–2100 relative to 1986–2005), the multimodel ensemble mean dynamic sea level (DSL) is projected to rise 0.9, 1.6, and 1.1 cm under RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively, resulting in a total sea level rise (SLR) of 40.9, 48.6, and 64.1 cm in the SCS. It indicates that the SCS will experience a substantial SLR over the 21st century, and the rise is only marginal larger than the global mean SLR. During the same period, the steric sea level (SSL) rise is estimated to be 6.7, 10.0, and 15.3 cm under the three scenarios, respectively, which accounts only for 16%, 21% and 24% of the total SLR in this region. The changes of the SSL in the SCS are almost out of phase with those of the DSL for the three scenarios. The central deep basin has a slightly weak DSL rise, but a strong SSL rise during the 21st century, compared with the north and southwest shelves. 展开更多
关键词 sea level rise South China sea dynamic sea level steric sea level CMIP5 models
在线阅读 下载PDF
Arctic Sea Level Variability from Oceanic Reanalysis and Observations
6
作者 Jinping WANG Xianyao CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第12期2362-2377,共16页
Quantifying the contributions to Arctic sea level(ASL)variability is critical to understand how the Arctic is responsing to ongoing climate change.Here,we use Ocean Reanalysis System 5(ORAS5)reanalysis data and tide g... Quantifying the contributions to Arctic sea level(ASL)variability is critical to understand how the Arctic is responsing to ongoing climate change.Here,we use Ocean Reanalysis System 5(ORAS5)reanalysis data and tide gauge and satellite altimetry observations to quantify contributions from different physical processes on the ASL variability.The ORAS5 reanalysis shows that the ASL is rising with a trend of 2.5±0.3 mm yr−1(95%confidence level)over 1979-2018,which can be attributed to four components:(i)the dominant component from the global sea level increase of 1.9±0.5 mm yr−1,explaining 69.7%of the total variance of the ASL time series;(ii)the Arctic Oscillation-induced mass redistribution between the deep central basin and shallow shelves,with no significant trend and explaining 6.3%of the total variance;(iii)the steric sea level increase centering on the Beaufort Gyre region with a trend of 0.5±0.1 mm yr−1 and explaining 29.1%of the total variance of the ASL time series;and(iv)the intrusion of Pacific water into the Arctic Ocean,with no significant trend and contributing 14.2%of the total ASL variability.Furthermore,the dramatic sea ice melting and the larger area of open water changes the impact of the large-scale atmospheric forcing on the ASL variability after 1995,and the ocean dynamic circulation plays a more important role in the ASL variability. 展开更多
关键词 sea level variability Arctic Ocean sea level rise steric sea level global warming
在线阅读 下载PDF
Numerical Simulation of the Influence of Mean Sea Level Rise on Typhoon Storm Surge in the East China Sea 被引量:4
7
作者 高志刚 韩树宗 +2 位作者 刘克修 郑运霞 于华明 《Marine Science Bulletin》 CAS 2008年第2期36-49,共14页
In this paper, ECOMSED (Estuarine Coastal Ocean Model with sediment transport) model is employed to simulate storm surge process caused by typhoon passing across East China Sea in nearly years. Capability of ECOMSED... In this paper, ECOMSED (Estuarine Coastal Ocean Model with sediment transport) model is employed to simulate storm surge process caused by typhoon passing across East China Sea in nearly years. Capability of ECOMSED to simulate storm surge is validated by comparing model result with observed data. Sensitivity experiments are designed to study the influence of sea level rise on typhoon storm surge. Numerical experiment shows that influence of mean sea level rise on typhoon storm surge is non-uniform spatially and changes as typhoon process differs. Maybe fixed boundary method would weaken the influence of mean sea level rise on storm surge, and free boundary method is suggested for the succeeding study. 展开更多
关键词 Storm surge simulation ECOMSED model East China sea sea level rise
在线阅读 下载PDF
Coral Reef and High Sea Level at Luhuitou, Hainan Island during the Holocene 被引量:2
8
作者 黄德银 施祺 张叶春 《Marine Science Bulletin》 CAS 2007年第2期61-70,共10页
According to the field survey and ^14C dating at Luhuitou, southern Hainan Island, a subsiding area, the authors conclude the high sea level history recorded by coral reef in the Holocene. At least 4 sea level high-st... According to the field survey and ^14C dating at Luhuitou, southern Hainan Island, a subsiding area, the authors conclude the high sea level history recorded by coral reef in the Holocene. At least 4 sea level high-stands can be identified from the distribution of coral reef ages: 7300 - 6000 cal.aBP, 4800 - 4700 cal.aBP, 4300 - 4200 cal.aBP and 3100 - 2900 cal.aBP. The highest sea level occurred around 7300 - 6700 cal.aBP, and biological-morphological zones took their shape during the stage. The later coral reefs developed in ponds, depressions, and developed outwards on both sides of Luhuitou peninsula. The modern coral reefs are developing in out reef flat and reef-front slope. Moreover, the time of high sea levels in the northern South China Sea recorded by coral reefs in the Luhuitou peninsula can link up with that in other parts of South China Sea. That means the high sea levels in the South China Sea during the Holocene, which are relative to the warming climate, have the global background. 展开更多
关键词 coral reef high sea level Luihuitou HOLOCENE
在线阅读 下载PDF
Long Term Sea Level Change and Water Mass Balance in the South China Sea 被引量:4
9
作者 RONG Zengrui LIU Yuguang ZONG Haibo XIU Peng 《Journal of Ocean University of China》 SCIE CAS 2009年第4期327-334,共8页
Sea level anomalies observed by altimeter during the 1993-2006 period, thermosteric sea level anomalies estimated by using subsurface temperature data produced by Ishii and SODA reanalysis data, tide gauge records and... Sea level anomalies observed by altimeter during the 1993-2006 period, thermosteric sea level anomalies estimated by using subsurface temperature data produced by Ishii and SODA reanalysis data, tide gauge records and HOAPS freshwater flux data were analyzed to investigate the long term sea level change and the water mass balance in the South China Sea, The altime- ter-observed sea level showed a rising rate of (3.5±0.9)mmyr-1 during the period 1993-2006, but this figure was considered to have been highly distorted by the relatively short time interval and the large inter-decadal variability, which apparently exists in both the thermosteric sea level and the observed sea level. Long term thermosteric sea level from 1945 to 2004 gave a rising rate of 0.15±0.06 mmyr-1. Tide gauge'data revealed this discrepancy and the regional distributions of the sea-level trends. Both the 'real' and the ther- mosteric sea level showed a good correspondence to ENSO: decreasing during El Nino years and increasing during La Nina years. Amplitude and phase differences between the 'real' sea level and the thermosteic sea level were substantially revealed on both sea- sonal and interannual time scales. As one of the possible factors, the freshwater flux might play an important role in balancing the water mass. 展开更多
关键词 sea level change South China sea thermosteric sea level mass exchange
在线阅读 下载PDF
Sea level change under IPCC-A2 scenario in Bohai, Yellow, and East China Seas 被引量:3
10
作者 Chang-lin CHEN Jun-cheng ZUO +2 位作者 Mei-xiang CHEN Zhi-gang GAO C.-K.SHUM 《Water Science and Engineering》 EI CAS CSCD 2014年第4期446-456,共11页
Because of the environmental and socioeconomic impacts of anthropogenic sea level rise (SLR), it is very important to understand the processes leading to past and present SLRs towards more reliable future SLR projec... Because of the environmental and socioeconomic impacts of anthropogenic sea level rise (SLR), it is very important to understand the processes leading to past and present SLRs towards more reliable future SLR projections. A regional ocean general circulation model (ROGCM), with a grid refinement in the Bohai, Yellow, and East China Seas (BYECSs), was set up to project SLR induced by the ocean dynamic change in the 21st century. The model does not consider the contributions from ice sheets and glacier melting. Data of all forcing terms required in the model came from the simulation of the Community Climate System Model version 3.0 (CCSM3) under the International Panel on Climate Change (IPCC)-A2 scenario. Simulation results show that at the end of the 21st century, the sea level in the BYECSs will rise about 0.12 to 0.20 m. The SLR in the BYECSs during the 21st century is mainly caused by the ocean mass redistribution due to the ocean dynamic change of the Pacific Ocean, which means that water in the Pacific Ocean tends to move to the continental shelves of the BYECSs, although the local steric sea level change is another factor. 展开更多
关键词 sea level rise steric sea level change IPCC-A2 scenario mass redistribution Bohai Yellow and East China seas
在线阅读 下载PDF
The Interannual and Decadal Variability of the Sea Level in the Japan/East Sea 被引量:1
11
作者 WANG Tianshun LIU Yuguang +1 位作者 ZONG Haibo RONG Zengrui 《Journal of Ocean University of China》 SCIE CAS 2009年第4期335-342,共8页
Sea level observed by altimeter during the 1993-2007 period and the thermosteric sea level from 1945 through 2005 obtained by using the global ocean temperature data sets recently published are used to investigate the... Sea level observed by altimeter during the 1993-2007 period and the thermosteric sea level from 1945 through 2005 obtained by using the global ocean temperature data sets recently published are used to investigate the interannual and decadal variability of the sea level in the Japan/East Sea (JES) and its response to E1 Nifio and Southern Oscillation (ENSO). Both the interannual variations of the sea level observed by altimeter and those of the thermosteric sea level obtained from reanalyzed data in the JES are closely related to ENSO. As a result, one important consequence is that the sea level trends are mainly caused by the thermal expansion in the JES. An 'enigma' is revealed that the correlation between the thermosterie sea level and ENSO during the PDO (Pacific Decadal Oscillation) warm phase (post mid-1970s) is inconsistent with that during the cold phase (pre mid-1970s) in the JES. The thermosteric sea level trends and the Southern Oscillation Index (SOI) suggest a strong negative correlation during the period 1977-1998, whereas there appears a relatively weak positive correlation during the period 1945-1976 in the JES. Based on the SODA (Simple Oceanographic Data Assimilation) datasets, possible mechanisms of the interannual and decadal variability of the sea level in the JES are discussed. Comprehensive analysis reveals that the negative anomalies of SOI correspond to the positive anomalies of the southeast wind stress, the net advective heat flux and the sea level in the JES during the PDO warm phase. During the PDO cold phase, the negative anomalies of SOI correspond to the positive anomalies of the southwest wind stress, the negative anomalies of the net advective heat flux and the sea level in the JES. 展开更多
关键词 interannual and decadal variability Japan/East sea sea level anomalies thermosteric sea level anomalies ENSO
在线阅读 下载PDF
Long-term Regional Dynamic Sea Level Changes from CMIP6 Projections 被引量:1
12
作者 Bruno FERRERO Marcos TONELLI +1 位作者 Fernanda MARCELLO Ilana WAINER 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第2期157-167,共11页
Anthropogenic climate forcing will cause the global mean sea level to rise over the 21st century.However,regional sea level is expected to vary across ocean basins,superimposed by the influence of natural internal cli... Anthropogenic climate forcing will cause the global mean sea level to rise over the 21st century.However,regional sea level is expected to vary across ocean basins,superimposed by the influence of natural internal climate variability.Here,we address the detection of dynamic sea level(DSL)changes by combining the perspectives of a single and a multimodel ensemble approach(the 50-member CanESM5 and a 27-model ensemble,respectively,all retrieved from the CMIP6 archive),under three CMIP6 projected scenarios:SSP1-2.6,SSP3-7.0 and SSP5-8.5.The ensemble analysis takes into account four key metrics:signal(S),noise(N),S/N ratio,and time of emergence(ToE).The results from both sets of ensembles agree in the fact that regions with higher S/N(associated with smaller uncertainties)also reflect earlier ToEs.The DSL signal is projected to emerge in the Southern Ocean,Southeast Pacific,Northwest Atlantic,and the Arctic.Results common for both sets of ensemble simulations show that while S progressively increases with increased projected emissions,N,in turn,does not vary substantially among the SSPs,suggesting that uncertainty arising from internal climate variability has little dependence on changes in the magnitude of external forcing.Projected changes are greater and quite similar for the scenarios SSP3-7.0 and SSP5-8.5 and considerably smaller for the SSP1-2.6,highlighting the importance of public policies towards lower emission scenarios and of keeping emissions below a certain threshold. 展开更多
关键词 dynamic sea level CMIP6 sea level rise SIGNAL-TO-NOISE time of emergence
在线阅读 下载PDF
The effects of mean sea level rise and strengthened winds on extreme sea levels in the Baltic Sea 被引量:1
13
作者 Magnus Hieronymus Christian Dieterich +1 位作者 Helén Andersson Robinson Hordoir 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2018年第6期366-371,I0003,共7页
Mean sea level rise and climatological wind speed changes occur as part of the ongoing climate change and future projections of both variables are still highly uncertain. Here the Baltic Sea’s response in extreme sea... Mean sea level rise and climatological wind speed changes occur as part of the ongoing climate change and future projections of both variables are still highly uncertain. Here the Baltic Sea’s response in extreme sea levels to perturbations in mean sea level and wind speeds is investigated in a series of simulations with a newly developed storm surge model based on the nucleus for European modeling of the ocean(NEMO)-Nordic. A simple linear model with only two tunable parameters is found to capture the changes in the return levels extremely well. The response to mean sea level rise is linear and nearly spatially uniform, meaning that a mean sea level rise of 1 m increases the return levels by a equal amount everywhere. The response to wind speed perturbations is more complicated and return levels are found to increase more where they are already high. This behaviour is alarming as it suggests that already flooding prone regions like the Gulf of Finland will be disproportionally adversely affected in a future windier climate. 展开更多
关键词 Extreme sea levels sea level rise Wind speeds Baltic sea
在线阅读 下载PDF
Effect of sea surface wind on the seasonal variation of sea level in the east of China seas
14
作者 牟林 迟永祥 +4 位作者 刘首华 宋军 林霄沛 李琰 张建立 《Marine Science Bulletin》 CAS 2013年第2期26-36,共11页
Sea level seasonal variations in the east of China seas from 2004 to 2006 are simulated by the advanced ROMS model. The results show similar sea level spatial features with TOPEX/Poseidon observations, with annual ran... Sea level seasonal variations in the east of China seas from 2004 to 2006 are simulated by the advanced ROMS model. The results show similar sea level spatial features with TOPEX/Poseidon observations, with annual ranges decreasing gradually from the sea coast to the Kuroshio region. By getting rid of wind stress in ROMS model, the simulated sea level results still show obvious seasonal variations. However, the phenomenon of sea level anomaly disappears in Min Zhe Current Coastwise (MZCF) and Su Bei current coastwise (SBCF), and the change of it from coastal area to ocean recedes. The seal level difference between Bohai, Yellow Sea (BYS) and East China Sea (ECS) becomes weaker in spring and autumn. The annual differences decrease obviously, and the gradual change of annual ranges from seacoast to the Kuroshio almost disappears. The annual ranges in BYS are nearly identical. The annual range ratio without the wind stress to with the wind stress increases gradually from the sea coast to Kuroshio region. 展开更多
关键词 sea level seasonal variation numerical simulation sea surface wind
在线阅读 下载PDF
Climate warming and sea level rise
15
作者 岳军 Dong YUE +2 位作者 吴桑云 耿秀山 赵长荣 《Marine Science Bulletin》 2012年第1期28-41,共14页
Based on a large number of actual data, the author believe that the modem global warming and sea level rise resulted from climate warming after the cold front of the Little Ice Age about 200 years ago and the developm... Based on a large number of actual data, the author believe that the modem global warming and sea level rise resulted from climate warming after the cold front of the Little Ice Age about 200 years ago and the developmnet of the sea level rise phase. In the past 30 years, the rate of sea level rise was increasing, which is under the background of the average temperature uplift 0.2F°(0.11℃)every 10 years in succession from the 1980s to the past 10 years this century. On the basis of the absolute and relative sea-level rise rate that was calculated from the tidal data during the same period at home and abroad in the last 30 years, in accordance with the resolutions of the 2010 climate conference in Cancun, at the same time, considering the previous prediction and research, the world's sea levels and the relative sea level in Tianjin, Shanghai, Dongying, Xiamen, Haikou and other coastal cities that have severe land subsidence in 2050 and 2100 are calculated and evaluated. 展开更多
关键词 global warming sea level rise RATE PREDICTION EVALUATION
在线阅读 下载PDF
Nontidal sea level changes in Hiroshima Bay,Japan
16
作者 ZHANG Chuanzheng KANEKO Arata +1 位作者 ZHU Xiaohua LIN Ju 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第9期47-55,共9页
Nontidal sea level changes generated in Hiroshima Bay of the Seto-Inland Sea in Japan are studied over various time scales, from the sub-tidal (2 d to 1 month) to inter-annual scales (〉2 years). The total sea lev... Nontidal sea level changes generated in Hiroshima Bay of the Seto-Inland Sea in Japan are studied over various time scales, from the sub-tidal (2 d to 1 month) to inter-annual scales (〉2 years). The total sea level variation produces a standard deviation (STD) of 12.5 cm. The inter-annual component of the sea level variation in Hiroshima Bay oscillates with a STD of 3.4 cm, forming a long-term trend of 4.9 mm/a. The STD of the sea level variation is 9.8 cm for the seasonal component (8 months to 2 years) and 4.7 cm for the intra-seasonal one (1 month to 8 months). Significant sea level variations with a STD of 4.2 cm also occur in the sub-tidal range. Special attention is paid to the sub-tidal sea level changes. It is found that the upwelling and associated transient sea level changes generated along the north coast of Hiroshima Bay (opened southward) by the strong northerly wind, play a significant role in sub-tidal sea level changes. The transient sea level changes are over 10 cm in most cases when caused by typhoons that pass through the Pacific Ocean offthe Kii Peninsula, located at about 400 km east of Hiroshima Bay. Reasonable sea level changes are evaluated by the balance of pressure forces at the onshore and offshore boundary of the study domain. 展开更多
关键词 nontidal sea level changes Hiroshima Bay UPWELLING transient sea level changes
在线阅读 下载PDF
Absolute sea level variability of Arctic Ocean in 1993–2018 from satellite altimetry and tide gauge observations
17
作者 Yanguang Fu Yikai Feng +1 位作者 Dongxu Zhou Xinghua Zhou 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第10期76-83,共8页
Arctic absolute sea level variations were analyzed based on multi-mission satellite altimetry data and tide gauge observations for the period of 1993–2018.The range of linear absolute sea level trends were found-2.00... Arctic absolute sea level variations were analyzed based on multi-mission satellite altimetry data and tide gauge observations for the period of 1993–2018.The range of linear absolute sea level trends were found-2.00 mm/a to 6.88 mm/a excluding the central Arctic,positive trend rates were predominantly located in shallow water and coastal areas,and negative rates were located in high-latitude areas and Baffin Bay.Satellite-derived results show that the average secular absolute sea level trend was(2.53±0.42)mm/a in the Arctic region.Large differences were presented between satellite-derived and tide gauge results,which are mainly due to low satellite data coverage,uncertainties in tidal height processing and vertical land movement(VLM).The VLM rates at 11 global navigation satellite system stations around the Arctic Ocean were analyzed,among which 6 stations were tide gauge colocated,the results indicate that the absolute sea level trends after VLM corrected were of the same magnitude as satellite altimetry results.Accurately calculating VLM is the primary uncertainty in interpreting tide gauge measurements such that differences between tide gauge and satellite altimetry data are attributable generally to VLM. 展开更多
关键词 Arctic Ocean absolute sea level variability sea level anomaly satellite altimetry tide gauge
在线阅读 下载PDF
Sea Level Records on Ouvéa Island in New Caledonia
18
作者 Nils-Axel Mörner 《Natural Science》 2020年第6期329-359,共31页
Ouvéa Island in New Caledonia emerges as a new sea level standard. It has excellent morphological records of former sea level positions at interglacial high-stands as well as records of Holocene changes in sea le... Ouvéa Island in New Caledonia emerges as a new sea level standard. It has excellent morphological records of former sea level positions at interglacial high-stands as well as records of Holocene changes in sea level from a maximum at about +1.5 m via a significant +70 cm level of sub-recent, probably 17<sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;"> century, age to a stable to falling sea level in present time.</span> 展开更多
关键词 sea level Last Interglacial The Holocene Sub-Recent sea level 17th Century The Present
在线阅读 下载PDF
From Cycles to Sequences:Sequence Stratigraphy and Relative Sea Level Change for the Late Cambrian of the North China Platform 被引量:23
19
作者 MEIMingxiang MAYongsheng +1 位作者 DENGJun CHENHuijun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2005年第3期372-383,共12页
In the Late Cambrian, the North China Platform was a typical carbonate ramp platform. The Upper Cambrian of the northern part of the North China Platform is famous for the development of bioherm limestones and storm c... In the Late Cambrian, the North China Platform was a typical carbonate ramp platform. The Upper Cambrian of the northern part of the North China Platform is famous for the development of bioherm limestones and storm calcirudites and can be divided from bottom to top into the Gushan, Changshan and Fengshan formations. In this set of strata, the deep-ramp mudstone and marls and the shallow-ramp packstones and grainstones constitute many carbonate meter-scale cycles of subtidal type. More tidal-flat dolomites are developed in the Upper Cambrian of the southern margin of the North China platform, in which limestone and dolomite beds also constitute many carbonate meter-scale cycles of the peritidal type. These cycles are marked by a variety of litho-facies successions. There are regularly vertical stacking patterns of meter-scale cycles in long-term third-order sequences, which is the key to discerning such sequences. Third- order sequence is marked by a particular sedimentary-facies succession that is the result of the environment-changing process of deepening and shoaling, which is genetically related to third-order sea level changes. Furthermore, four third- order sequences can be grouped in the Upper Cambrian of the North China Platform. The main features of these four third -order sequences in the northern part of the platform can be summarized as follows: firstly, sequence-boundaries are characterized by drowning unconformities; secondly, the sedimentary-facies succession is generally constituted by one from deep-ramp facies to shallow-ramp facies; thirdly, a succession of “CS (?)+HST” (i.e., “condensed section and high- stand system”) forms these four third-order sequences. The chief features for the third-order sequences in the southern part of the North China Platform comprises: more dolomites are developed in the HSTs of third-order sequences and also developed more carbonate meter-scale cycles of peritidal types; the sedimentary-facies succession of the third-order sequences is marked by “shallow ramp-tidal flat”; the sequence boundaries are characterized by exposure punctuated surfaces. According to the changes for the third-order sequences from the north to the south, a regular sequence- stratigraphic framework can be established. From cycles to sequences, the study of sequence stratigraphy from litho-facies successions to sedimentary-facies successions exposes that as follows: meter-scale cycles that are used as the basic working unit actually are litho-facies successions formed by the mechanism of a punctuated aggradational cycle, and third -order sequences that are constituted by regularly vertical stacking patterns of meter-scale cycles are marked by sedimentary-facies successions. On the basis of the changing curve of water depth at each section, the curve of the relative third-order sea level changes in the late Cambrian of the North China Platform can be integrated qualitatively from changing curve of water depth. The correlation of Late Cambrian long-term sea level changes between North China and North America demonstrates that there are not only similarities but also differences, reflecting control of long-term sea level changes both by global eustacy and by regional factors. 展开更多
关键词 squence stratigraphy relative sea level changes Late Cambrian North China Platform
在线阅读 下载PDF
Late Permian-Middle Triassic Sea Level Changes of Yangtze Platform 被引量:7
20
作者 Yin Hongfu Tong Jinnan (Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074) 《Journal of Earth Science》 SCIE CAS CSCD 1996年第1期101-104,共4页
This paper first introduces procedures leading to the establishment of Late Permian-Middle Triassic sea level change curve of Yangtze platform. Bathymetric curves extracted from curve of habitat types are first trans... This paper first introduces procedures leading to the establishment of Late Permian-Middle Triassic sea level change curve of Yangtze platform. Bathymetric curves extracted from curve of habitat types are first transformed to sea level curves stage by stage. Comparison between curves of Yangtze and the world reveals that because the Late Permian marine sequences are lacking in most parts of the world, the Late Permian to Griesbachian curve of Yangtze may serve as an important reference for further revision of the world curve. The Early-Middle Triassic short-term changes of Yangtze are briefly concordant with those of Haq's world curve, whereas their long-term changes are discordant. The latter, however, is representative of the East Asian regions affected by the Indosinian orogeny. Basically the third cycles of Yangtze and the world are only pertly concordant, and even in concordant cases their concrete boundaries are not coincident. This indicater that sea level changes are not strictly synchronous over the world. It seems that the 1st and 2nd cycles (supercycles and megacycles) may be world-wide, but not the 3rd cycles. 展开更多
关键词 PERMIAN TRIASSIC sea level change bathmetric curve Yangtze region.
在线阅读 下载PDF
上一页 1 2 135 下一页 到第
使用帮助 返回顶部