分别采用超声微波溶剂热法、常压溶剂热法及高压溶剂热法制备In_2Se_3/CuSe粉体,研究不同方法制备In_2Se_3/CuSe粉体的物相、形貌,并利用涂覆–快速热处理法制作薄膜太阳电池吸收层。通过XRD、Raman、FESEM和TEM对样品的物相、形貌和组...分别采用超声微波溶剂热法、常压溶剂热法及高压溶剂热法制备In_2Se_3/CuSe粉体,研究不同方法制备In_2Se_3/CuSe粉体的物相、形貌,并利用涂覆–快速热处理法制作薄膜太阳电池吸收层。通过XRD、Raman、FESEM和TEM对样品的物相、形貌和组成进行了表征。结果表明:超声微波溶剂热法和常压溶剂热法得到的产物是以In_2Se_3+CuSe混合相的形式存在,高压溶剂热法合成的In_2Se_3/CuSe粉体则呈核壳结构,(以In_2Se_3为核,CuSe为壳)。涂覆–快速热处理法制备CIS薄膜的FESEM照片结果表明,高压溶剂热法合成的In_2Se_3/CuSe更容易获得平整致密的薄膜。将该CIS薄膜直接用于电池器件的组装,获得的光电性能参数:Voc为50 m V,Jsc为8 m A/cm^2。展开更多
Antimony-based materials have become promising anodes within lithium-ion batteries(LIBs)due to their low cost and the high theoretical capacity.However,there is a potential to further enhance the electrochemical perfo...Antimony-based materials have become promising anodes within lithium-ion batteries(LIBs)due to their low cost and the high theoretical capacity.However,there is a potential to further enhance the electrochemical performance of such antimony-based materials.Herein,Sb2Se3@C nanofibers(Sb2Se3@CNFs)are designed and obtained via a novel electrospinning method.Upon electrochemically testing as an anode within LIBs,the Sb2Se3@CNFs(annealed at 600℃)delivers a remarkably good cycling performance of 625 mAh/g at 100 mA/g after 100 cycles.Moreover,it still remains at 490 mAh/g after 500 cycles with an applied current density of 1.0 A/g.The excellent performance of the Sb2 Se3@CNFs can be attributed to the fact that the N-doped C matrices not only remit the volume expansion of materials,but also enhance the electrical and ionic conductivity thusly increasing the lithium-ion diffusion.The obtained Sb2Se3@CNFs are promising anode for LIBs in the future.展开更多
Epitaxial growth and structural characteristics of metastableβ-In2Se3 thin films on H-terminated Si(111)substrates are studied.The In2Se3 thin films grown below theβ-to-αphase transition temperature(453 K)are chara...Epitaxial growth and structural characteristics of metastableβ-In2Se3 thin films on H-terminated Si(111)substrates are studied.The In2Se3 thin films grown below theβ-to-αphase transition temperature(453 K)are characterized to be strainedβ-In2Se3 mixed with significantγ-In2Se3 phases.The pure-phased single-crystallineβ-In2Se3 can be reproducibly achieved by in situ annealing the as-deposited poly-crystalline In2Se3 within the phase equilibrium temperature window ofβ-In2Se3.It is suggeted that the observedγ-to-βphase transition triggered by quite a low annealing temperature should be a rather lowered phase transition barrier of the epitaxy-stabilized In2Se3 thin-film system at a state far from thermodynamic equilibrium.展开更多
An in-depth understanding of the photoconductivity and photocarrier density at the interface is of great significance for improving the performance of optoelectronic devices. However, extraction of the photoconductivi...An in-depth understanding of the photoconductivity and photocarrier density at the interface is of great significance for improving the performance of optoelectronic devices. However, extraction of the photoconductivity and photocarrier density at the heterojunction interface remains elusive. Herein, we have obtained the photoconductivity and photocarrier density of 173 nm Sb2Se3/Si(type-Ⅰ heterojunction) and 90 nm Sb2Se3/Si(type-Ⅱ heterojunction) utilizing terahertz(THz) time-domain spectroscopy(THz-TDS) and a theoretical Drude model. Since type-Ⅰ heterojunctions accelerate carrier recombination and type-Ⅱ heterojunctions accelerate carrier separation, the photoconductivity and photocarrier density of the type-Ⅱ heterojunction(21.8×10^(4)S·m^(-1),1.5 × 10^(15)cm^(-3)) are higher than those of the type-Ⅰ heterojunction(11.8×10^(4)S·m^(-1),0.8×10^(15)cm^(-3)). These results demonstrate that a type-Ⅱ heterojunction is superior to a type-Ⅰ heterojunction for THz wave modulation. This work highlights THz-TDS as an effective tool for studying photoconductivity and photocarrier density at the heterojunction interface. In turn, the intriguing interfacial photoconductivity effect provides a way to improve the THz wave modulation performance.展开更多
We systematically investigated the electrical nanoplates through field effect transistor and properties of spiral-type and smooth Bi2Se3 conductive atomic force microscopy (CAFM) measurement. It is observed that bot...We systematically investigated the electrical nanoplates through field effect transistor and properties of spiral-type and smooth Bi2Se3 conductive atomic force microscopy (CAFM) measurement. It is observed that both nanoplates possess high conductivity and show metallic-like behavior. Compared to the smooth nanoplate, the spiral-type one exhibits the higher carrier concentration and lower mobility. CAFM characterization reveals that the conductance at the screw-dislocation edge is even higher than that on the terrace, implying that the dislocation can supply excess carriers to compensate the low mobility and achieve high conductivity. The unique structure and electrical properties make the spiral-type Bi2 Se3 nanoplates a good candidate for catalysts and gas sensors.展开更多
文摘分别采用超声微波溶剂热法、常压溶剂热法及高压溶剂热法制备In_2Se_3/CuSe粉体,研究不同方法制备In_2Se_3/CuSe粉体的物相、形貌,并利用涂覆–快速热处理法制作薄膜太阳电池吸收层。通过XRD、Raman、FESEM和TEM对样品的物相、形貌和组成进行了表征。结果表明:超声微波溶剂热法和常压溶剂热法得到的产物是以In_2Se_3+CuSe混合相的形式存在,高压溶剂热法合成的In_2Se_3/CuSe粉体则呈核壳结构,(以In_2Se_3为核,CuSe为壳)。涂覆–快速热处理法制备CIS薄膜的FESEM照片结果表明,高压溶剂热法合成的In_2Se_3/CuSe更容易获得平整致密的薄膜。将该CIS薄膜直接用于电池器件的组装,获得的光电性能参数:Voc为50 m V,Jsc为8 m A/cm^2。
基金supported by the National Natural Science Foundation of China(No.51302079)the Natural Science Foundation of Hunan Province(No.2017JJ1008)。
文摘Antimony-based materials have become promising anodes within lithium-ion batteries(LIBs)due to their low cost and the high theoretical capacity.However,there is a potential to further enhance the electrochemical performance of such antimony-based materials.Herein,Sb2Se3@C nanofibers(Sb2Se3@CNFs)are designed and obtained via a novel electrospinning method.Upon electrochemically testing as an anode within LIBs,the Sb2Se3@CNFs(annealed at 600℃)delivers a remarkably good cycling performance of 625 mAh/g at 100 mA/g after 100 cycles.Moreover,it still remains at 490 mAh/g after 500 cycles with an applied current density of 1.0 A/g.The excellent performance of the Sb2 Se3@CNFs can be attributed to the fact that the N-doped C matrices not only remit the volume expansion of materials,but also enhance the electrical and ionic conductivity thusly increasing the lithium-ion diffusion.The obtained Sb2Se3@CNFs are promising anode for LIBs in the future.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2018YFA0306102 and 2018YFA0306703)the National Natural Science Foundation of China(Grant Nos.61474014 and U1601208)the Sichuan Science and Technology Program,China(Grant Nos.2019YJ0202 and 20GJHZ0229).
文摘Epitaxial growth and structural characteristics of metastableβ-In2Se3 thin films on H-terminated Si(111)substrates are studied.The In2Se3 thin films grown below theβ-to-αphase transition temperature(453 K)are characterized to be strainedβ-In2Se3 mixed with significantγ-In2Se3 phases.The pure-phased single-crystallineβ-In2Se3 can be reproducibly achieved by in situ annealing the as-deposited poly-crystalline In2Se3 within the phase equilibrium temperature window ofβ-In2Se3.It is suggeted that the observedγ-to-βphase transition triggered by quite a low annealing temperature should be a rather lowered phase transition barrier of the epitaxy-stabilized In2Se3 thin-film system at a state far from thermodynamic equilibrium.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12261141662, 12074311, and 12004310)。
文摘An in-depth understanding of the photoconductivity and photocarrier density at the interface is of great significance for improving the performance of optoelectronic devices. However, extraction of the photoconductivity and photocarrier density at the heterojunction interface remains elusive. Herein, we have obtained the photoconductivity and photocarrier density of 173 nm Sb2Se3/Si(type-Ⅰ heterojunction) and 90 nm Sb2Se3/Si(type-Ⅱ heterojunction) utilizing terahertz(THz) time-domain spectroscopy(THz-TDS) and a theoretical Drude model. Since type-Ⅰ heterojunctions accelerate carrier recombination and type-Ⅱ heterojunctions accelerate carrier separation, the photoconductivity and photocarrier density of the type-Ⅱ heterojunction(21.8×10^(4)S·m^(-1),1.5 × 10^(15)cm^(-3)) are higher than those of the type-Ⅰ heterojunction(11.8×10^(4)S·m^(-1),0.8×10^(15)cm^(-3)). These results demonstrate that a type-Ⅱ heterojunction is superior to a type-Ⅰ heterojunction for THz wave modulation. This work highlights THz-TDS as an effective tool for studying photoconductivity and photocarrier density at the heterojunction interface. In turn, the intriguing interfacial photoconductivity effect provides a way to improve the THz wave modulation performance.
文摘We systematically investigated the electrical nanoplates through field effect transistor and properties of spiral-type and smooth Bi2Se3 conductive atomic force microscopy (CAFM) measurement. It is observed that both nanoplates possess high conductivity and show metallic-like behavior. Compared to the smooth nanoplate, the spiral-type one exhibits the higher carrier concentration and lower mobility. CAFM characterization reveals that the conductance at the screw-dislocation edge is even higher than that on the terrace, implying that the dislocation can supply excess carriers to compensate the low mobility and achieve high conductivity. The unique structure and electrical properties make the spiral-type Bi2 Se3 nanoplates a good candidate for catalysts and gas sensors.