The composite bucket foundations of offshore wind turbines penetrate minimally into the seabed, making local scour a significant threat to wind turbine stability. This study develops a physical model to examine local ...The composite bucket foundations of offshore wind turbines penetrate minimally into the seabed, making local scour a significant threat to wind turbine stability. This study develops a physical model to examine local scour patterns around a novel mono-column composite bucket foundation(MCCBF) under unidirectional flows. The experiments reveal that under weak-flow conditions, no significant scour pits develop at the front or lateral sides of the MCCBF,while two distinct scour pits form behind the lateral sides. Under strong-flow conditions, substantial scour pits emerge at both frontal and lateral sides of the bucket foundation, with two scour pits extending downstream on either side. The research demonstrates that both the range and depth of local scour increase with higher flow velocity and decreasing water depth, though the mechanisms influencing local scour around the MCCBF prove more complex than those affecting monopiles. The distinctive structural features of the MCCBF necessitate particular consideration of effects related to bucket foundation exposure. The study concludes by proposing an empirical formula for predicting maximum scour depth around the MCCBF.展开更多
Scour around bridge pier foundations is a complex phenomenon that can threaten structural stability.Accurate prediction of scour depth around compound piers remains challenging for bridge engineers.This study investig...Scour around bridge pier foundations is a complex phenomenon that can threaten structural stability.Accurate prediction of scour depth around compound piers remains challenging for bridge engineers.This study investigated the effect of foundation elevation on scour around compound piers and developed reliable scour depth prediction models for economical foundation design.Experiments were conducted under clear-water conditions using two circular piers:(1)a uniform pier(with a diameter of D)and(2)a compound pier consisting of a uniform pier resting on a circular foundation(with a foundation diameter(D_(f))of 2D)positioned at various elevations(Z)relative to the channel bed.Results showed that foundation elevation significantly affected scour depth.Foundations at or below the bed(Z/D≥0)reduced scour,while those projecting into the flow field(Z/D<0)increased scour.The optimal foundation elevation was found to be 0.1D below the bed level,yielding a 57%reduction in scour depth compared to the uniform pier due to its shielding effect against downflow and horseshoe vortices.In addition,regression,artificial neural network(ANN),and M5 model tree models were developed using experimental data from this and previous studies.The M5 model outperformed the traditional HEC-18 equation,regression,and ANN models,with a coefficient of determination greater than 0.85.Sensitivity analysis indicated that flow depth,foundation elevation,and diameter significantly influenced scour depth prediction,whereas sediment size had a lesser impact.展开更多
Offshore wind power plays a crucial role in energy strategies.The results of traditional small-scale physical models may be unreliable when extrapolated to large field scales.This study addressed this limitation by co...Offshore wind power plays a crucial role in energy strategies.The results of traditional small-scale physical models may be unreliable when extrapolated to large field scales.This study addressed this limitation by conducting large-scale(1:13)experiments to investigate the scour hole pattern and equilibrium scour depth around both slender and large monopiles under irregular waves.The experiments adopted KeuleganeCarpenter number(NKC)values from 1.01 to 8.89 and diffraction parameter(D/L,where D is the diameter of the monopile,and L is the wave length)values from 0.016 to 0.056.The results showed that changes in the maximum scour location and scour hole shape around a slender monopile were associated with NKC,with differences observed between irregular and regular waves.Improving the calculation of NKC enhanced the accuracy of existing scour formulae under irregular waves.The maximum scour locations around a large monopile were consistently found on both sides,regardless of NKC and D/L,but the scour hole topography was influenced by both parameters.Notably,the scour range around a large monopile was at least as large as the monopile diameter.展开更多
Under the combination of currents and waves, seabed scour occurs around offshore wind turbine foundations, which affects the stability and safe operation of offshore wind turbines. In this study, physical model experi...Under the combination of currents and waves, seabed scour occurs around offshore wind turbine foundations, which affects the stability and safe operation of offshore wind turbines. In this study, physical model experiments under unidirectional flow, bidirectional flow, and wave-current interactions with different flow directions around the pile group foundation were first conducted to investigate the development of scour around the pile group foundation.Additionally, a three-dimensional scour numerical model was established via the open-source software REEF3D to simulate the flow field and scour around the prototype-scale foundation. The impact of flow on scour was discussed.Under unidirectional flow, scour equilibrium was reached more quickly, with the maximum scour depth reaching approximately 1.2 times the pile diameter and the extent of the scour hole spanning about 4.9 times the pile diameter.Compared with those under unidirectional flow, the scour depths under combinations of currents and waves, as well as bidirectional flow, were slightly smaller. However, the morphology of scour holes was more uniform and symmetrical. The numerical simulation results show good agreement with the experimental data, demonstrating the impact of varying flow directions on the velocity distribution around the foundation, the morphology of scour holes, and the location of the maximum scour depth.展开更多
Elucidating the flow features around piles in local scouring processes is crucial for studies of local scouring mechanisms and scour depth estimates.This study details the flow turbulence characteristics of two submer...Elucidating the flow features around piles in local scouring processes is crucial for studies of local scouring mechanisms and scour depth estimates.This study details the flow turbulence characteristics of two submerged piles that are determined by solving the Navier-Stokes equations with the improved delayed detached eddy simulation model.This model is verified by comparing experimental and numerical results for hydrodynamic parameters with the literature for both square-crossing piles(SCPs)and circular-crossing piles(CCPs).Original topographies of flat and scoured beds(i.e.,the initial and equilibrium scouring stages)are based on experimental results obtained by the authors in the present paper.SCP and CCP flow features in the scouring process are discussed.The results indicate that during the scouring process,the time-averaged drag coefficient and root mean square(rms)of the lift coefficient increase linearly in the CCP test,while the rms of the lift coefficient in the SCP test decreases linearly.Moreover,the minimum pressure coefficient is always located in the upstream corners in the SCP case but moves from 72.5°to 79.5°when the scour hole is completely developed in the CCP case.Downward flow behind the pile,which is generated by separated boundary layers above the top face of the pile,can reach the sand bed and turn the separated shear layers into patches of small vortices in the near-wake regions.Thus,the high shear stress zones are mainly at the scour edges under scoured-bed conditions.展开更多
Water jet technology is widely used in submerged buried pipes as a non-traditional trenching process,often invol-ving a complex sediment response.An important adjustable and influential engineering variable in this tec...Water jet technology is widely used in submerged buried pipes as a non-traditional trenching process,often invol-ving a complex sediment response.An important adjustable and influential engineering variable in this technol-ogy is represented by the impinging distance.In this study,the FLOW-3D software was used to simulate the jet scouring of sand beds in a submerged environment.In particular,four sets of experimental conditions were con-sidered to discern the relationship between the maximum scour depth and mass and the impinging distance.As shown by the results,a critical impinging distance h0 exists by which the static scour depth can be maximized;the scour mass ratio between dynamic and static conditions decreases as the impinging distance increases.Moreover,the profile contours are similar when the erosion parameter Ec is in the range 0.35<Ec<2.Empirical equations applicable for predicting the jet trenching contour under both dynamic and static scour modes are also provided in this study.展开更多
A new scour countermeasure using solidified slurry for offshore foundation has been proposed recently.Fluidized solidified slurry is pumped to seabed area around foundation for scour protection or pumped into the deve...A new scour countermeasure using solidified slurry for offshore foundation has been proposed recently.Fluidized solidified slurry is pumped to seabed area around foundation for scour protection or pumped into the developed scour holes for scour repair as the fluidized material solidifies gradually.In the pumping operation and solidification,the engineering behaviors of solidified slurry require to be considered synthetically for the reliable application in scour repair and protection of ocean engineering such as the pumpability related flow value,flow diffusion behavior related rheological property,anti-scour performance related retention rate in solidification and bearing capacity related strength property after solidification.In this study,a series of laboratory tests are conducted to investigate the effects of mix proportion(initial water content and binder content)on the flow value,rheological properties,density,retention rate of solidified slurry and unconfined compressive strength(UCS).The results reveal that the flow value increases with the water content and decreases with the binder amount.All the solidified slurry exhibits Bingham plastic behavior when the shear rate is larger than 5 s^(-1).The Bingham model has been employed to fit the rheology test results,and empirical formulas for obtaining the density,yield stress and viscosity are established,providing scientific support for the numerical assessment of flow and diffusion of solidified slurry.Retention rate of solidified slurry decreases with the water flow velocity and flow value,which means the pumpability of solidified slurry is contrary to anti-scour performance.The unconfined compressive strength after solidification reduces as the water content increases and binder content decreases.A design and application procedure of solidified soil for scour repair and protection is also proposed for engineering reference.展开更多
The flow field near a spur dike such as down flow and horseshoe vortex system(HVS)are susceptible to the topographic changes in the local scouring process,resulting in variation of the sediment transport with time.In ...The flow field near a spur dike such as down flow and horseshoe vortex system(HVS)are susceptible to the topographic changes in the local scouring process,resulting in variation of the sediment transport with time.In this study,large eddy simulations with fixed-bed at different scouring stages were conducted to investigate the changes in flow field.The results imply that the bed deformation leads to an increase in flow rate per unit area,which represent the capability of sediment transportation by water,in the scour hole.Moreover,the intensity of turbulent kinetic energy and bimodal motion near the sand bed induced by the HVS were also varied.However,the peak moments between the two sediment transport mechanisms were different.Hence,understanding the complex feedback mechanism between topography and flow field is essential for the local scour problem.展开更多
Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil aroun...Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil around submarine pipelines is prone to local scour,severely affecting their operational safety.With the Yellow River Delta as the research area and based on the renormalized group(RNG)k-εturbulence model and Stokes fifth-order wave theory,this study solves the Navier-Stokes(N-S)equation using the finite difference method.The volume of fluid(VOF)method is used to describe the fluid-free surface,and a threedimensional numerical model of currents and waves-submarine pipeline-silty sandy seabed is established.The rationality of the numerical model is verified using a self-built waveflow flume.On this basis,in this study,the local scour development and characteristics of submarine pipelines in the Yellow River Delta silty sandy seabed in the prototype environment are explored and the influence of the presence of pipelines on hydrodynamic features such as surrounding flow field,shear stress,and turbulence intensity is analyzed.The results indicate that(1)local scour around submarine pipelines can be divided into three stages:rapid scour,slow scour,and stable scour.The maximum scour depth occurs directly below the pipeline,and the shape of the scour pits is asymmetric.(2)As the water depth decreases and the pipeline suspension height increases,the scour becomes more intense.(3)When currents go through a pipeline,a clear stagnation point is formed in front of the pipeline,and the flow velocity is positively correlated with the depth of scour.This study can provide a valuable reference for the protection of submarine pipelines in this area.展开更多
Local scour around offshore wind turbine foundations presents a considerable challenge due to its potential influence on structural stability,driven by hydrodynamic forces.While research has made strides in comprehend...Local scour around offshore wind turbine foundations presents a considerable challenge due to its potential influence on structural stability,driven by hydrodynamic forces.While research has made strides in comprehending scouring mechanisms,notable complexities persist,specifically with newer foundation types.Addressing these limitations is vital for advancing our understanding of scour mechanisms and for improving mitigation strategies in offshore wind energy development.This review synthesizes current findings on local scour across various offshore foundations,encompassing field observations,data-driven approaches,turbulence-sediment interactions,scour evolution processes,influencing factors,and numerical model advancements.The objective is to enrich our understanding of local scour mechanisms.In addition,future research directions are outlined,including the development of robust arti-ficial intelligence models for accurate predictions,the exploration of vortex structure characteristics,and the refinement of numerical models to strengthen prediction capabilities while minimizing computational efforts.展开更多
In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set o...In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set of four piles,each subjected to different hydromechanical conditions.In particular,this study aimed to determine how different attack angles—the angles at which the water flow impinges on the piles,and gap ratios—the ratios of the spacing between the piles to their diameters,influence the extent and nature of scour.A comprehensive series of 35 carefully designed experiments were orchestrated,each designed to dissect the nuances in how the gap ratio and attack angle might contribute to changes in the local scour observed at the base of pile groups.During these experimental trials,a wealth of local scour data were collected to support the analysis.These data included precise topographic profiles of the sediment bed around the pile groups,as well as detailed scour time histories showing the evolution of scour at strategic feature points throughout the test procedure.The analysis of the experimental data provided interesting insights.The study revealed that the interplay between the gap ratio and the attack angle had a pronounced influence on the scouring dynamics of the pile groups.One of the key observations was that the initial phases of scour,particularly within the first hour of water flow exposure,were characterized by a sharp increase in the scour depth occurring immediately in front of the piles.After this initial rapid development,the scour depth transitioned to a more gradual change rate.In contrast,the scour topography around the piles continuously evolved.This suggests that sediment displacement and the associated sculpting of the seabed around pile foundations are sustained and progressive processes,altering the underwater landscape over time.The results of this empirical investigation have significant implications for the design and construction of offshore multi-pile foundations,providing a critical reference for engineers and designers to estimate the expected scour depth around such structures,which is an integral part of decisions regarding foundation design,selection of structural materials,and implementation of scour protection measures.展开更多
Local scour around pipelines crossing rivers or in marine environments is a significant concern.It can lead to failure of the pipelines resulting in environmental side effects and economic losses.This study developed ...Local scour around pipelines crossing rivers or in marine environments is a significant concern.It can lead to failure of the pipelines resulting in environmental side effects and economic losses.This study developed an experimental method to reduce local scour around pipelines with a steady flow of clear water by installing cylindrical and cubical sacrificial piles.Three sizes of sacrificial piles were examined in a linear arrangement.Sacrificial piles were installed on the upstream side of the pipeline at three distances.Maximum scour depth reduction rates below the pipeline were computed.The results showed that sacrificial piles could protect a pipeline from local scour.A portion of scoured sediment around the sacrificial piles was deposited beneath the pipeline.This sediment accumulation reduced the scour depth beneath the pipeline.Analysis of the experimental results demonstrated that the size of piles(d),the spacing between piles,and the distance between the pipe and piles(Xp)were the variables that reduced the maximum scour beneath the pipeline with a diameter of D.For the piles with d=0.40D and 0.64D,X_(p)=4OD was the optimal distance to install a group of piles,and cubical piles could mitigate scour more effectively than cylindrical piles under similar conditions.For the piles with d=D,the greatest reduction in scour depth was achieved at X_(p)=50D with any desired spacings between piles,and cylindrical piles in this dimension could protect the pipeline against scour more effectively than cubical piles.展开更多
Understanding the relationship between unbalanced riverbed scouring or deposition and the evolution of central bars in natural conditions and human activity is useful for river regime control and waterway improvement ...Understanding the relationship between unbalanced riverbed scouring or deposition and the evolution of central bars in natural conditions and human activity is useful for river regime control and waterway improvement projects.Toward this end,we utilized the Yangzhong reach in the lower reaches of the Yangtze River as a case study and evaluated runoff,sediment content,and topographical data measured over the past 70 years(1951–2021).With the decrease in the amount of incoming sediment in the river basin,the Yangzhong reach exhibited a continuous state of scouring.The cumulative riverbed scouring volumes of the low-water and flood channels from 1981 to 2021 were 3.97×10^(8)and 4.14×10^(8)m^(3),respectively,with the riverbed scouring volume of the low-water channel accounting for 95.9%of that of the flood channel.Under quasi-natural runoff–sediment conditions,the evolution of the central bars in the Yangzhong reach was highly correlated with the amount of scouring or deposition.In particular,the Luochengzhou reach could be characterized as a meandering river with scouring on concave riverbanks and deposition on convex riverbanks.In the context of reduced incoming sediment,the beach area of the Yangzhong reach decreased by approximately 9.9%(from 2003 to 2021)and the central bars of the straight section areas decreased.Moreover,following operation of the Three Gorges Reservoir,both the Luocheng central bar and Jiangyin beach areas could be characterized as meandering rivers with convex riverbanks and beaches.In the quasi-natural period before the implementation of the waterway improvement project,the trend of high scouring intensity and increased fluid diversion ratio in the right branch of the Luocheng central bar was in accordance with the law that the short branch of the length is in a developing state under the condition of decreasing river sediment volume.With the control of riverbank protection and the construction of waterway improvement projects in the Yangzhong reach,the shapes of the riverbanks and central bars were effectively stabilized,and the linkage relationship formed in the quasi-natural period was interrupted.Overall,these findings provide a strong foundation for understanding riverbed scouring or deposition and the evolution of central bars under the influence of natural conditions and human activities,and will inform future river management and waterway dimension planning.展开更多
The Keulegan-Carpenter(KC)number is the main dimensionless parameter that affects the local scour of offshore wind power monopile foundations.This study conducted large-scale(1:13)physical model tests to study the loc...The Keulegan-Carpenter(KC)number is the main dimensionless parameter that affects the local scour of offshore wind power monopile foundations.This study conducted large-scale(1:13)physical model tests to study the local scour shape,equilibrium scour depth,and local scour volume of offshore wind power monopiles under the action of irregular waves with different KC numbers.Systematic experiments were carried out with the KC number ranging from 1.0 to 13.0.With a small KC number(KC<6),and especially when the KC number was less than 4,the scour mainly occurred on both cross-flow sides of the monopile with a low scour depth.When the KC number exceeded 4,the shape of the scour hole changed from a fan to an ellipse,and the maximum scour depth increased significantly with KC.With a large KC number(KC>6),the proposed method better predicted the equilibrium scour depth when the wave broke.In addition,according to the results of three-dimensional terrain scanning,the relationship between the local equilibrium scour volume of a single offshore wind power monopile and the KC number was derived.This provided a rational method for estimation of the riprap redundancy for monopile protection against scour.展开更多
This paper examines scour and scour countermeasures at bridge piers and abutments. Abutment scour is by far more complex than its counterpart associated with piers because of the possibility of the presence of a flood...This paper examines scour and scour countermeasures at bridge piers and abutments. Abutment scour is by far more complex than its counterpart associated with piers because of the possibility of the presence of a floodplain. Notwithstanding this, the mechanism of scour at both piers and abutments is very similar; moreover, the failure mechanisms associated with both armoring and flow-altering countermeasures are not very different. In rivers with a floodplain, abutment scour becomes much more complex. In cases where the abutment ends at or near to the floodplain, it can initiate bank erosion, which clearly is an important erosion problem that is quite distinct from the customary scour at either an abutment in rivers without a floodplain or a pier. For this reason, abutment scour can be very site-specific while pier-scour is more generic in nature. To this end, the ability to identify the type of abutment scour that may form in a particular channel is closely related to an engineer's ability to propose devices for effective scour countermeasure.By summarizing research efforts on using riprap as a pier or abutment countermeasure over the past few decades, this paper highlights the deficiencies of riprap in arresting pier scour. To this end, different failure mechanisms are identified. They are shear failure, winnowing failure, edge failure, bedform-induced failure and bed-degradation induced failure. Each failure mechanism can singly or, more likely, combine to cause the eventual breakdown of the riprap layer. The study shows that a riprap layer is vulnerable to other failure mechanisms even though it is adequately designed against shear failure, rendering it ineffective in arresting scour.展开更多
The sea bottom in front of a breakwater is scoured under the action of broken waves,and this will affect the stability of the breakwater.In this paper,the scours of sandy seabed in front of a breakwater under the acti...The sea bottom in front of a breakwater is scoured under the action of broken waves,and this will affect the stability of the breakwater.In this paper,the scours of sandy seabed in front of a breakwater under the action of broken waves are investigated experimentally.The depth and range of the scouring trough at the foot of a breakwater are studied,and the influence of open foundation-bed on scouring and depositing is also discussed.In order to apply the research results to practical projects,the scale of model sediment and the scale of scours and depositions are suggested.展开更多
In this article,current research findings of local scour at offshore windfarm monopile foundations are presented.The scour mechanisms and scour depth prediction formulas under different hydrodynamic conditions are sum...In this article,current research findings of local scour at offshore windfarm monopile foundations are presented.The scour mechanisms and scour depth prediction formulas under different hydrodynamic conditions are summarized,including the current-only condition,wave-only condition,combined wave-current condition,and complex dynamic condition.Furthermore,this article analyzes the influencing factors on the basis of classical equations for predicting the equilibrium scour depth under specific conditions.The weakness of existing researches and future prospects are also discussed.It is suggested that future research shall focus on physical experiments under unsteady tidal currents or other complex loadings.The computational fluid dynamics-discrete element method and artificial intelligence technique are suggested being adopted to study the scour at offshore windfarm foundations.展开更多
The erosion shape and the law of development of debris flow sabo dam downstream is a weak part in the study on debris flow erosion. The shape and development of scour pit have an important effect on the stability and ...The erosion shape and the law of development of debris flow sabo dam downstream is a weak part in the study on debris flow erosion. The shape and development of scour pit have an important effect on the stability and safety of debris flow sabo dam, which determines the foundational depth of the dam and the design of protective measures downstream. Study on the scouring law of sabo dam downstream can evaluate the erosion range and reasonably arrange auxiliary protective engineering. Therefore, a series of flume experiments are carried out including different debris flow characteristics (density is varying from 1.5 t/m3 to 2.1 t/m~) and different gully longitudinal slopes. The result shows that the scour pit appears as an oval shape in a plane and deep in the middle while superficial at the ends in the longitudinal section, the position of the maximum depth point moves towards downstream with an increase of flume slope angle. The maximum depth of scour pit is mainly affected by the longitudinal slope of gully, density of debris flow, and the characteristics of gully composition (particle size and the viscosity of soil). The result also indicates that the viscosity of soil will weaken the erosion extent. The interior slopes of scour pit are different between the upstream and the downstream, and the downstream slope is smaller than the upper one. For the viscous and non-viscous sands with the same distribution of gradation, the interior slope of non- viscous sand is smaller than the viscous sand.According to tbe regression analysis on the experimental data, the quantitative relationship between the interior slope of scour pit, slope of repose under water and the longitudinal slope of gully is established and it can be used to calculate the interior slope of scour pit. The results can provide the basis for the parameter design of the debris flow control engineering foundation.展开更多
Local scour around bridge abutments is a widespread problem that can result in structural failure. Collars can be used as a countermeasure to reduce the scour depth. In this study, the temporal scour development aroun...Local scour around bridge abutments is a widespread problem that can result in structural failure. Collars can be used as a countermeasure to reduce the scour depth. In this study, the temporal scour development around a wing-wall abutment was investigated with and without collars. The tests were carried out under clear-water conditions for different abutment lengths, with collars of different sizes placed at the bed level. When no collar was used in the experiments, 70% of the maximum scour depth occurred in less than 2 h. However, when a collar with a width greater than the length of the abutment was used, no scour was observed for up to 200 min from the beginning of the experiments. The results show that an increase in the collar width not only led to a lag time for the onset of scouring but also reduced the maximum scour depth. Moreover, an increased collar width led to a better performance in mitigating scouring around smaller abutments. Generally, the scour depth decreased by 9%-37% with different collar widths.展开更多
Local scour around bridge piers and abutments is one of the most significant causes of bridge failure.Despite a plethora of studies on scour around individual bridge piers or abutments,few studies have focused on the ...Local scour around bridge piers and abutments is one of the most significant causes of bridge failure.Despite a plethora of studies on scour around individual bridge piers or abutments,few studies have focused on the joint impact of a pier and an abutment in proximity to one another on scour.This study conducted laboratory experiments and flow analyses to examine the interaction of piers and abutments and their effect on clear-water scour.The experiments were conducted in a rectangular laboratory flume.They included 18 main tests(with a combination of different types of piers and abutments)and five control tests(with individual piers or abutments).Three pier types(a rectangular pier with a rounded edge,a group of three cylindrical piers,and a single cylindrical pier)and two abutment types(a wingewall abutment and a semicircular abutment)were used.An acoustic Doppler velocimeter was used to measure the three-dimensional flow velocity for analyses of streamline,velocity magnitude,vertical velocity,and bed shear stress.The results showed that the velocity near the pier and abutment increased by up to 80%.The maximum scour depth around the abutment increased by up to 19%.In contrast,the maximum scour depth around the pier increased significantly by up to l71%.The presence of the pier in the vicinity of the abutment led to an increase in the scour hole volume by up to 87%relative to the case with a solitary abutment.Empirical equations were also derived to accurately estimate the maximum scour depth at the pier adjacent to the abutment.展开更多
基金financially supported by the Scientific Research Foundation of China Three Gorges Corporation (Grant No. 32007095)。
文摘The composite bucket foundations of offshore wind turbines penetrate minimally into the seabed, making local scour a significant threat to wind turbine stability. This study develops a physical model to examine local scour patterns around a novel mono-column composite bucket foundation(MCCBF) under unidirectional flows. The experiments reveal that under weak-flow conditions, no significant scour pits develop at the front or lateral sides of the MCCBF,while two distinct scour pits form behind the lateral sides. Under strong-flow conditions, substantial scour pits emerge at both frontal and lateral sides of the bucket foundation, with two scour pits extending downstream on either side. The research demonstrates that both the range and depth of local scour increase with higher flow velocity and decreasing water depth, though the mechanisms influencing local scour around the MCCBF prove more complex than those affecting monopiles. The distinctive structural features of the MCCBF necessitate particular consideration of effects related to bucket foundation exposure. The study concludes by proposing an empirical formula for predicting maximum scour depth around the MCCBF.
文摘Scour around bridge pier foundations is a complex phenomenon that can threaten structural stability.Accurate prediction of scour depth around compound piers remains challenging for bridge engineers.This study investigated the effect of foundation elevation on scour around compound piers and developed reliable scour depth prediction models for economical foundation design.Experiments were conducted under clear-water conditions using two circular piers:(1)a uniform pier(with a diameter of D)and(2)a compound pier consisting of a uniform pier resting on a circular foundation(with a foundation diameter(D_(f))of 2D)positioned at various elevations(Z)relative to the channel bed.Results showed that foundation elevation significantly affected scour depth.Foundations at or below the bed(Z/D≥0)reduced scour,while those projecting into the flow field(Z/D<0)increased scour.The optimal foundation elevation was found to be 0.1D below the bed level,yielding a 57%reduction in scour depth compared to the uniform pier due to its shielding effect against downflow and horseshoe vortices.In addition,regression,artificial neural network(ANN),and M5 model tree models were developed using experimental data from this and previous studies.The M5 model outperformed the traditional HEC-18 equation,regression,and ANN models,with a coefficient of determination greater than 0.85.Sensitivity analysis indicated that flow depth,foundation elevation,and diameter significantly influenced scour depth prediction,whereas sediment size had a lesser impact.
基金supported by the National Nature Science Foundation of China National Outstanding Youth Science Fund Project(Grant No.52122109)the National Natural Science Foundation of China(Grants No.51861165102 and 52039005).
文摘Offshore wind power plays a crucial role in energy strategies.The results of traditional small-scale physical models may be unreliable when extrapolated to large field scales.This study addressed this limitation by conducting large-scale(1:13)experiments to investigate the scour hole pattern and equilibrium scour depth around both slender and large monopiles under irregular waves.The experiments adopted KeuleganeCarpenter number(NKC)values from 1.01 to 8.89 and diffraction parameter(D/L,where D is the diameter of the monopile,and L is the wave length)values from 0.016 to 0.056.The results showed that changes in the maximum scour location and scour hole shape around a slender monopile were associated with NKC,with differences observed between irregular and regular waves.Improving the calculation of NKC enhanced the accuracy of existing scour formulae under irregular waves.The maximum scour locations around a large monopile were consistently found on both sides,regardless of NKC and D/L,but the scour hole topography was influenced by both parameters.Notably,the scour range around a large monopile was at least as large as the monopile diameter.
基金financially supported by the National Key Research and Development Program of China (Grant No. 2021YFB2601100)the National Natural Science Foundation of China (Grant No. 51979190)。
文摘Under the combination of currents and waves, seabed scour occurs around offshore wind turbine foundations, which affects the stability and safe operation of offshore wind turbines. In this study, physical model experiments under unidirectional flow, bidirectional flow, and wave-current interactions with different flow directions around the pile group foundation were first conducted to investigate the development of scour around the pile group foundation.Additionally, a three-dimensional scour numerical model was established via the open-source software REEF3D to simulate the flow field and scour around the prototype-scale foundation. The impact of flow on scour was discussed.Under unidirectional flow, scour equilibrium was reached more quickly, with the maximum scour depth reaching approximately 1.2 times the pile diameter and the extent of the scour hole spanning about 4.9 times the pile diameter.Compared with those under unidirectional flow, the scour depths under combinations of currents and waves, as well as bidirectional flow, were slightly smaller. However, the morphology of scour holes was more uniform and symmetrical. The numerical simulation results show good agreement with the experimental data, demonstrating the impact of varying flow directions on the velocity distribution around the foundation, the morphology of scour holes, and the location of the maximum scour depth.
基金support from the National Natural Science Foundation of China (Nos.52301324 and 52001276)the Natural Science Foundation of Zhejiang Province (No.LQ24E090001)+2 种基金the Open Fund of Key Laboratory of Estuary and Coast of Zhejiang Province (No.ZIHE21005)the Natural Science Foundation of Ningbo (No.2021J096)the Zhejiang Transportation Science and Technology (No.2021064)。
文摘Elucidating the flow features around piles in local scouring processes is crucial for studies of local scouring mechanisms and scour depth estimates.This study details the flow turbulence characteristics of two submerged piles that are determined by solving the Navier-Stokes equations with the improved delayed detached eddy simulation model.This model is verified by comparing experimental and numerical results for hydrodynamic parameters with the literature for both square-crossing piles(SCPs)and circular-crossing piles(CCPs).Original topographies of flat and scoured beds(i.e.,the initial and equilibrium scouring stages)are based on experimental results obtained by the authors in the present paper.SCP and CCP flow features in the scouring process are discussed.The results indicate that during the scouring process,the time-averaged drag coefficient and root mean square(rms)of the lift coefficient increase linearly in the CCP test,while the rms of the lift coefficient in the SCP test decreases linearly.Moreover,the minimum pressure coefficient is always located in the upstream corners in the SCP case but moves from 72.5°to 79.5°when the scour hole is completely developed in the CCP case.Downward flow behind the pile,which is generated by separated boundary layers above the top face of the pile,can reach the sand bed and turn the separated shear layers into patches of small vortices in the near-wake regions.Thus,the high shear stress zones are mainly at the scour edges under scoured-bed conditions.
基金supported by the Research on the Prediction Mechanism of Corrosion for High Strength Steel in Deep Sea Service Driven by Multi-Scale,High-Dimension and Small-Sample Data(C2301002635)Research on the Influence of Nozzle Structure on the Scouring Effect of Submerged Water Jet(2023R411045)+1 种基金the Zhejiang Ocean University Outstanding Master’s Thesis Cultivation Project(ZJOUYJS20230018)the Scientific Research Project of Zhejiang Graduate Education Society in 2022(2022-021)which was gained by Chen.
文摘Water jet technology is widely used in submerged buried pipes as a non-traditional trenching process,often invol-ving a complex sediment response.An important adjustable and influential engineering variable in this technol-ogy is represented by the impinging distance.In this study,the FLOW-3D software was used to simulate the jet scouring of sand beds in a submerged environment.In particular,four sets of experimental conditions were con-sidered to discern the relationship between the maximum scour depth and mass and the impinging distance.As shown by the results,a critical impinging distance h0 exists by which the static scour depth can be maximized;the scour mass ratio between dynamic and static conditions decreases as the impinging distance increases.Moreover,the profile contours are similar when the erosion parameter Ec is in the range 0.35<Ec<2.Empirical equations applicable for predicting the jet trenching contour under both dynamic and static scour modes are also provided in this study.
基金financially supported by the Science and Technology Commission Foundation of Shanghai(Grant Nos.22DZ1208903,20DZ2251900)the National Natural Science Foundation of China(Grant No.51679134)。
文摘A new scour countermeasure using solidified slurry for offshore foundation has been proposed recently.Fluidized solidified slurry is pumped to seabed area around foundation for scour protection or pumped into the developed scour holes for scour repair as the fluidized material solidifies gradually.In the pumping operation and solidification,the engineering behaviors of solidified slurry require to be considered synthetically for the reliable application in scour repair and protection of ocean engineering such as the pumpability related flow value,flow diffusion behavior related rheological property,anti-scour performance related retention rate in solidification and bearing capacity related strength property after solidification.In this study,a series of laboratory tests are conducted to investigate the effects of mix proportion(initial water content and binder content)on the flow value,rheological properties,density,retention rate of solidified slurry and unconfined compressive strength(UCS).The results reveal that the flow value increases with the water content and decreases with the binder amount.All the solidified slurry exhibits Bingham plastic behavior when the shear rate is larger than 5 s^(-1).The Bingham model has been employed to fit the rheology test results,and empirical formulas for obtaining the density,yield stress and viscosity are established,providing scientific support for the numerical assessment of flow and diffusion of solidified slurry.Retention rate of solidified slurry decreases with the water flow velocity and flow value,which means the pumpability of solidified slurry is contrary to anti-scour performance.The unconfined compressive strength after solidification reduces as the water content increases and binder content decreases.A design and application procedure of solidified soil for scour repair and protection is also proposed for engineering reference.
基金supported by Shenzhen Science and Technology Program(Grant No.JCYJ20220818102012024)Hong Kong Research Grants Council(Grant Nos.T21–602/16-R and RGC R5037–18)。
文摘The flow field near a spur dike such as down flow and horseshoe vortex system(HVS)are susceptible to the topographic changes in the local scouring process,resulting in variation of the sediment transport with time.In this study,large eddy simulations with fixed-bed at different scouring stages were conducted to investigate the changes in flow field.The results imply that the bed deformation leads to an increase in flow rate per unit area,which represent the capability of sediment transportation by water,in the scour hole.Moreover,the intensity of turbulent kinetic energy and bimodal motion near the sand bed induced by the HVS were also varied.However,the peak moments between the two sediment transport mechanisms were different.Hence,understanding the complex feedback mechanism between topography and flow field is essential for the local scour problem.
基金China Postdoctoral Science Foundation,Grant/Award Number:2023M731999National Natural Science Foundation of China,Grant/Award Number:52301326。
文摘Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil around submarine pipelines is prone to local scour,severely affecting their operational safety.With the Yellow River Delta as the research area and based on the renormalized group(RNG)k-εturbulence model and Stokes fifth-order wave theory,this study solves the Navier-Stokes(N-S)equation using the finite difference method.The volume of fluid(VOF)method is used to describe the fluid-free surface,and a threedimensional numerical model of currents and waves-submarine pipeline-silty sandy seabed is established.The rationality of the numerical model is verified using a self-built waveflow flume.On this basis,in this study,the local scour development and characteristics of submarine pipelines in the Yellow River Delta silty sandy seabed in the prototype environment are explored and the influence of the presence of pipelines on hydrodynamic features such as surrounding flow field,shear stress,and turbulence intensity is analyzed.The results indicate that(1)local scour around submarine pipelines can be divided into three stages:rapid scour,slow scour,and stable scour.The maximum scour depth occurs directly below the pipeline,and the shape of the scour pits is asymmetric.(2)As the water depth decreases and the pipeline suspension height increases,the scour becomes more intense.(3)When currents go through a pipeline,a clear stagnation point is formed in front of the pipeline,and the flow velocity is positively correlated with the depth of scour.This study can provide a valuable reference for the protection of submarine pipelines in this area.
基金financially supported by the National Natural Science Foundation of China(No.52301326)the China Postdoctoral Science Foundation(No.2023M731999)the Open Foundation of the Key Laboratory of Coupling Process and Effect of Natural Resources Elements(No.2024KFKT017).
文摘Local scour around offshore wind turbine foundations presents a considerable challenge due to its potential influence on structural stability,driven by hydrodynamic forces.While research has made strides in comprehending scouring mechanisms,notable complexities persist,specifically with newer foundation types.Addressing these limitations is vital for advancing our understanding of scour mechanisms and for improving mitigation strategies in offshore wind energy development.This review synthesizes current findings on local scour across various offshore foundations,encompassing field observations,data-driven approaches,turbulence-sediment interactions,scour evolution processes,influencing factors,and numerical model advancements.The objective is to enrich our understanding of local scour mechanisms.In addition,future research directions are outlined,including the development of robust arti-ficial intelligence models for accurate predictions,the exploration of vortex structure characteristics,and the refinement of numerical models to strengthen prediction capabilities while minimizing computational efforts.
基金financially supported by the National Natural Science Foundation of China(Grant No.51890913)the Natural Science Foundation of Sichuan Province of China(Grant No.2023YFQ0111)。
文摘In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set of four piles,each subjected to different hydromechanical conditions.In particular,this study aimed to determine how different attack angles—the angles at which the water flow impinges on the piles,and gap ratios—the ratios of the spacing between the piles to their diameters,influence the extent and nature of scour.A comprehensive series of 35 carefully designed experiments were orchestrated,each designed to dissect the nuances in how the gap ratio and attack angle might contribute to changes in the local scour observed at the base of pile groups.During these experimental trials,a wealth of local scour data were collected to support the analysis.These data included precise topographic profiles of the sediment bed around the pile groups,as well as detailed scour time histories showing the evolution of scour at strategic feature points throughout the test procedure.The analysis of the experimental data provided interesting insights.The study revealed that the interplay between the gap ratio and the attack angle had a pronounced influence on the scouring dynamics of the pile groups.One of the key observations was that the initial phases of scour,particularly within the first hour of water flow exposure,were characterized by a sharp increase in the scour depth occurring immediately in front of the piles.After this initial rapid development,the scour depth transitioned to a more gradual change rate.In contrast,the scour topography around the piles continuously evolved.This suggests that sediment displacement and the associated sculpting of the seabed around pile foundations are sustained and progressive processes,altering the underwater landscape over time.The results of this empirical investigation have significant implications for the design and construction of offshore multi-pile foundations,providing a critical reference for engineers and designers to estimate the expected scour depth around such structures,which is an integral part of decisions regarding foundation design,selection of structural materials,and implementation of scour protection measures.
文摘Local scour around pipelines crossing rivers or in marine environments is a significant concern.It can lead to failure of the pipelines resulting in environmental side effects and economic losses.This study developed an experimental method to reduce local scour around pipelines with a steady flow of clear water by installing cylindrical and cubical sacrificial piles.Three sizes of sacrificial piles were examined in a linear arrangement.Sacrificial piles were installed on the upstream side of the pipeline at three distances.Maximum scour depth reduction rates below the pipeline were computed.The results showed that sacrificial piles could protect a pipeline from local scour.A portion of scoured sediment around the sacrificial piles was deposited beneath the pipeline.This sediment accumulation reduced the scour depth beneath the pipeline.Analysis of the experimental results demonstrated that the size of piles(d),the spacing between piles,and the distance between the pipe and piles(Xp)were the variables that reduced the maximum scour beneath the pipeline with a diameter of D.For the piles with d=0.40D and 0.64D,X_(p)=4OD was the optimal distance to install a group of piles,and cubical piles could mitigate scour more effectively than cylindrical piles under similar conditions.For the piles with d=D,the greatest reduction in scour depth was achieved at X_(p)=50D with any desired spacings between piles,and cylindrical piles in this dimension could protect the pipeline against scour more effectively than cubical piles.
基金National Natural Science Foundation of China,No.52279066Fundamental Research Funds for Central Welfare Research Institutes,No.TKS20230206The CRSRI Open Research Program,No.CKWV2021862/KY。
文摘Understanding the relationship between unbalanced riverbed scouring or deposition and the evolution of central bars in natural conditions and human activity is useful for river regime control and waterway improvement projects.Toward this end,we utilized the Yangzhong reach in the lower reaches of the Yangtze River as a case study and evaluated runoff,sediment content,and topographical data measured over the past 70 years(1951–2021).With the decrease in the amount of incoming sediment in the river basin,the Yangzhong reach exhibited a continuous state of scouring.The cumulative riverbed scouring volumes of the low-water and flood channels from 1981 to 2021 were 3.97×10^(8)and 4.14×10^(8)m^(3),respectively,with the riverbed scouring volume of the low-water channel accounting for 95.9%of that of the flood channel.Under quasi-natural runoff–sediment conditions,the evolution of the central bars in the Yangzhong reach was highly correlated with the amount of scouring or deposition.In particular,the Luochengzhou reach could be characterized as a meandering river with scouring on concave riverbanks and deposition on convex riverbanks.In the context of reduced incoming sediment,the beach area of the Yangzhong reach decreased by approximately 9.9%(from 2003 to 2021)and the central bars of the straight section areas decreased.Moreover,following operation of the Three Gorges Reservoir,both the Luocheng central bar and Jiangyin beach areas could be characterized as meandering rivers with convex riverbanks and beaches.In the quasi-natural period before the implementation of the waterway improvement project,the trend of high scouring intensity and increased fluid diversion ratio in the right branch of the Luocheng central bar was in accordance with the law that the short branch of the length is in a developing state under the condition of decreasing river sediment volume.With the control of riverbank protection and the construction of waterway improvement projects in the Yangzhong reach,the shapes of the riverbanks and central bars were effectively stabilized,and the linkage relationship formed in the quasi-natural period was interrupted.Overall,these findings provide a strong foundation for understanding riverbed scouring or deposition and the evolution of central bars under the influence of natural conditions and human activities,and will inform future river management and waterway dimension planning.
基金supported by the National Natural Science Foundation of China(Grants No.52001149,52039005,and 51861165102)the Research Funds for the Central Universities(Grants No.TKS20210102,TKS20210110,and TKS20210303)the Tianjin Science and Technology Planning Project(Grant No.17PTYPHZ00080).
文摘The Keulegan-Carpenter(KC)number is the main dimensionless parameter that affects the local scour of offshore wind power monopile foundations.This study conducted large-scale(1:13)physical model tests to study the local scour shape,equilibrium scour depth,and local scour volume of offshore wind power monopiles under the action of irregular waves with different KC numbers.Systematic experiments were carried out with the KC number ranging from 1.0 to 13.0.With a small KC number(KC<6),and especially when the KC number was less than 4,the scour mainly occurred on both cross-flow sides of the monopile with a low scour depth.When the KC number exceeded 4,the shape of the scour hole changed from a fan to an ellipse,and the maximum scour depth increased significantly with KC.With a large KC number(KC>6),the proposed method better predicted the equilibrium scour depth when the wave broke.In addition,according to the results of three-dimensional terrain scanning,the relationship between the local equilibrium scour volume of a single offshore wind power monopile and the KC number was derived.This provided a rational method for estimation of the riprap redundancy for monopile protection against scour.
文摘This paper examines scour and scour countermeasures at bridge piers and abutments. Abutment scour is by far more complex than its counterpart associated with piers because of the possibility of the presence of a floodplain. Notwithstanding this, the mechanism of scour at both piers and abutments is very similar; moreover, the failure mechanisms associated with both armoring and flow-altering countermeasures are not very different. In rivers with a floodplain, abutment scour becomes much more complex. In cases where the abutment ends at or near to the floodplain, it can initiate bank erosion, which clearly is an important erosion problem that is quite distinct from the customary scour at either an abutment in rivers without a floodplain or a pier. For this reason, abutment scour can be very site-specific while pier-scour is more generic in nature. To this end, the ability to identify the type of abutment scour that may form in a particular channel is closely related to an engineer's ability to propose devices for effective scour countermeasure.By summarizing research efforts on using riprap as a pier or abutment countermeasure over the past few decades, this paper highlights the deficiencies of riprap in arresting pier scour. To this end, different failure mechanisms are identified. They are shear failure, winnowing failure, edge failure, bedform-induced failure and bed-degradation induced failure. Each failure mechanism can singly or, more likely, combine to cause the eventual breakdown of the riprap layer. The study shows that a riprap layer is vulnerable to other failure mechanisms even though it is adequately designed against shear failure, rendering it ineffective in arresting scour.
基金the National Natural Science Foundation of China!(No.599790 1 9)
文摘The sea bottom in front of a breakwater is scoured under the action of broken waves,and this will affect the stability of the breakwater.In this paper,the scours of sandy seabed in front of a breakwater under the action of broken waves are investigated experimentally.The depth and range of the scouring trough at the foot of a breakwater are studied,and the influence of open foundation-bed on scouring and depositing is also discussed.In order to apply the research results to practical projects,the scale of model sediment and the scale of scours and depositions are suggested.
基金supported by the Major International Joint Research Project P0W3M of the National Natural Science Foundation of China(Grant No.51920105013)the General Project of the National Natural Science Foundation of China(Grant No.52071127).
文摘In this article,current research findings of local scour at offshore windfarm monopile foundations are presented.The scour mechanisms and scour depth prediction formulas under different hydrodynamic conditions are summarized,including the current-only condition,wave-only condition,combined wave-current condition,and complex dynamic condition.Furthermore,this article analyzes the influencing factors on the basis of classical equations for predicting the equilibrium scour depth under specific conditions.The weakness of existing researches and future prospects are also discussed.It is suggested that future research shall focus on physical experiments under unsteady tidal currents or other complex loadings.The computational fluid dynamics-discrete element method and artificial intelligence technique are suggested being adopted to study the scour at offshore windfarm foundations.
基金the National Natural Science Foundation of China (Nos. 40901007, 50979103)
文摘The erosion shape and the law of development of debris flow sabo dam downstream is a weak part in the study on debris flow erosion. The shape and development of scour pit have an important effect on the stability and safety of debris flow sabo dam, which determines the foundational depth of the dam and the design of protective measures downstream. Study on the scouring law of sabo dam downstream can evaluate the erosion range and reasonably arrange auxiliary protective engineering. Therefore, a series of flume experiments are carried out including different debris flow characteristics (density is varying from 1.5 t/m3 to 2.1 t/m~) and different gully longitudinal slopes. The result shows that the scour pit appears as an oval shape in a plane and deep in the middle while superficial at the ends in the longitudinal section, the position of the maximum depth point moves towards downstream with an increase of flume slope angle. The maximum depth of scour pit is mainly affected by the longitudinal slope of gully, density of debris flow, and the characteristics of gully composition (particle size and the viscosity of soil). The result also indicates that the viscosity of soil will weaken the erosion extent. The interior slopes of scour pit are different between the upstream and the downstream, and the downstream slope is smaller than the upper one. For the viscous and non-viscous sands with the same distribution of gradation, the interior slope of non- viscous sand is smaller than the viscous sand.According to tbe regression analysis on the experimental data, the quantitative relationship between the interior slope of scour pit, slope of repose under water and the longitudinal slope of gully is established and it can be used to calculate the interior slope of scour pit. The results can provide the basis for the parameter design of the debris flow control engineering foundation.
文摘Local scour around bridge abutments is a widespread problem that can result in structural failure. Collars can be used as a countermeasure to reduce the scour depth. In this study, the temporal scour development around a wing-wall abutment was investigated with and without collars. The tests were carried out under clear-water conditions for different abutment lengths, with collars of different sizes placed at the bed level. When no collar was used in the experiments, 70% of the maximum scour depth occurred in less than 2 h. However, when a collar with a width greater than the length of the abutment was used, no scour was observed for up to 200 min from the beginning of the experiments. The results show that an increase in the collar width not only led to a lag time for the onset of scouring but also reduced the maximum scour depth. Moreover, an increased collar width led to a better performance in mitigating scouring around smaller abutments. Generally, the scour depth decreased by 9%-37% with different collar widths.
文摘Local scour around bridge piers and abutments is one of the most significant causes of bridge failure.Despite a plethora of studies on scour around individual bridge piers or abutments,few studies have focused on the joint impact of a pier and an abutment in proximity to one another on scour.This study conducted laboratory experiments and flow analyses to examine the interaction of piers and abutments and their effect on clear-water scour.The experiments were conducted in a rectangular laboratory flume.They included 18 main tests(with a combination of different types of piers and abutments)and five control tests(with individual piers or abutments).Three pier types(a rectangular pier with a rounded edge,a group of three cylindrical piers,and a single cylindrical pier)and two abutment types(a wingewall abutment and a semicircular abutment)were used.An acoustic Doppler velocimeter was used to measure the three-dimensional flow velocity for analyses of streamline,velocity magnitude,vertical velocity,and bed shear stress.The results showed that the velocity near the pier and abutment increased by up to 80%.The maximum scour depth around the abutment increased by up to 19%.In contrast,the maximum scour depth around the pier increased significantly by up to l71%.The presence of the pier in the vicinity of the abutment led to an increase in the scour hole volume by up to 87%relative to the case with a solitary abutment.Empirical equations were also derived to accurately estimate the maximum scour depth at the pier adjacent to the abutment.