In this paper,we prove the existence of the scattering operator for the fractional magnetic Schrodinger operators.In order to do this,we construct the fractional distorted Fourier transforms with magnetic potentials.A...In this paper,we prove the existence of the scattering operator for the fractional magnetic Schrodinger operators.In order to do this,we construct the fractional distorted Fourier transforms with magnetic potentials.Applying the properties of the distorted Fourier transforms,the existence and the asymptotic completeness of the wave operators are obtained.Furthermore,we prove the absence of positive eigenvalues for fractional magnetic Schrodinger operators.展开更多
We consider the Schrodinger operators on graphs with a finite or countable number of edges and Schr?dinger operators on branched manifolds of variable dimension. In particular, a description of self-adjoint extensions...We consider the Schrodinger operators on graphs with a finite or countable number of edges and Schr?dinger operators on branched manifolds of variable dimension. In particular, a description of self-adjoint extensions of symmetric Schr?dinger operator, initially defined on a smooth function, whose support does not contain the branch points of the graph and branch points of the manifold. These results are obtained for graphs with a single vertex, graphs with multiple vertices and graphs with a single vertex and countable set of rays.展开更多
Let L1 and L2 be the Schrodinger operators on Rn and Rm, respectively. By using different maximal functions and Littlewood-Paley g function on distinct variables, in this paper,some characterizations for functions in ...Let L1 and L2 be the Schrodinger operators on Rn and Rm, respectively. By using different maximal functions and Littlewood-Paley g function on distinct variables, in this paper,some characterizations for functions in the product Hardy space HL1,L21(R^n×R^m) associated to operators L1 and L2 are obtained.展开更多
In this paper,we establish quantitative Green’s function estimates for some higher-dimensional lattice quasi-periodic(QP)Schrodinger operators.The resonances in the estimates can be described via a pair of symmetric ...In this paper,we establish quantitative Green’s function estimates for some higher-dimensional lattice quasi-periodic(QP)Schrodinger operators.The resonances in the estimates can be described via a pair of symmetric zeros of certain functions,and the estimates apply to the sub-exponential-type non-resonance conditions.As the application of quantitative Green’s function estimates,we prove both the arithmetic version of Anderson localization and the finite volume version of(1/2-)-Holder continuity of the integrated density of states(IDS)for such QP Schrodinger operators.This gives an affirmative answer to Bourgain’s problem in Bourgain(2000).展开更多
In this article,we derive the Lp-boundedness of the variation operators associated with the heat semigroup which is generated by the high order Schrodinger type operator(—Δ)^2+V%2 in R%n(n≥5)with V being a nonnegat...In this article,we derive the Lp-boundedness of the variation operators associated with the heat semigroup which is generated by the high order Schrodinger type operator(—Δ)^2+V%2 in R%n(n≥5)with V being a nonnegative potential satisfying the reverse Holder inequality.Furt her more,we prove the boundedness of the variation operators on associated Morrey spaces.In the proof of the main results,we always make use of the variation inequalities associated with the hea t semigroup genera ted by the biharmonic operator(-Δ)2.展开更多
We study inverse spectral problems for radial Schrodinger operators in L^(2)(0,1).It is well known that for a radial Schrodinger operator,two spectra for the different boundary conditions can uniquely determine the po...We study inverse spectral problems for radial Schrodinger operators in L^(2)(0,1).It is well known that for a radial Schrodinger operator,two spectra for the different boundary conditions can uniquely determine the potential.However,if the spectra corresponding to the radial Schrodinger operators with the two potential functions miss a finite number of eigenvalues,what is the relationship between the two potential functions?Inspired by Hochstadt(1973)'s work,which handled the Sturm-Liouville operator with the potential q∈L^(1)(0,1),we give a corresponding result for radial Schrodinger operators with a larger class of potentials than L^(1)(0,1).When q∈L^(1)(0,1),we also consider the case where the spectra corresponding to the radial Schrodinger operators with the two potential functions miss an infinite number of eigenvalues and the eigenvalues are close in some sense.展开更多
In this paper,we consider the area function SQ related to the Schrodinger operator ■ and its commutator SQ,b´establish the boundedness of SQ from Hp(w)to L^(p)_(ρ)(w)to L^(p)(w)or WL^(p)(w),as well as the bound...In this paper,we consider the area function SQ related to the Schrodinger operator ■ and its commutator SQ,b´establish the boundedness of SQ from Hp(w)to L^(p)_(ρ)(w)to L^(p)(w)or WL^(p)(w),as well as the boundedness of SQ,b´from H^(1)_(ρ)(w)to WL^(1)(w).展开更多
Explicit asymptotic properties of the integrated density of states N(λ)with respect to the spectrum for the random Schrödinger operator H^(ω)=(-△)^(α/2)+V^(ω)are established,whereα∈(0,2]and V^(ω)(X)=∑_(I...Explicit asymptotic properties of the integrated density of states N(λ)with respect to the spectrum for the random Schrödinger operator H^(ω)=(-△)^(α/2)+V^(ω)are established,whereα∈(0,2]and V^(ω)(X)=∑_(I∈Z^(d))ξ(i)(ω)W(x-i)is a random potential term generated by a sequence of independent and identically distributed random variables{ξ(i)}_(i)∈Z^(d)and a non-negative measurable function W(x).In particular,the exact order of asymptotic properties of N(λ)depends on the decay properties of the reference function W(x)and the spectrum properties of the first Dirichlet eigenvalue of(-△)^(α/2).展开更多
In this paper, the author gives a characterization of atomic Hardy spaces associated to Schrodinger operators by using area functions, and hence gets the dual spaces of atomic Hardy spaces.
In this article, we are concerned with the scattering problem of Schr?dinger operators with compactly supported potentials on the real line. We aim at combining the theory of Dirichlet series with scattering theory. N...In this article, we are concerned with the scattering problem of Schr?dinger operators with compactly supported potentials on the real line. We aim at combining the theory of Dirichlet series with scattering theory. New estimate on the number of poles is obtained under the situation that the growth of power series which is related to the potential is not too fast by using a classical result of Littlewood. We propose a new approach of Dirichlet series such that significant upper bounds and lower bounds on the number of poles are obtained. The results obtained in this paper improve and extend some related conclusions on this topic.展开更多
Let △ be full Laplacian on H-type group G. Then for every compact set D Ga local estimate of the Schrodinger maximal operator holds, that is,∫D^sup0〈t〈1|e^it△f(x)|^2dx≤||f||^2H^s,s〉1/2We also show that ...Let △ be full Laplacian on H-type group G. Then for every compact set D Ga local estimate of the Schrodinger maximal operator holds, that is,∫D^sup0〈t〈1|e^it△f(x)|^2dx≤||f||^2H^s,s〉1/2We also show that the above inequality fails when s 〈 1/4.展开更多
Given n≥2 and α≥1/2,we obtained an improved upbound of Hausdorff's dimension of the fractional Schrodinger operator;that is,supf∈H^(s)(R^(n)) dim_(H){x∈R^(n):limt→0 e^(it)(-△)^(α) f(x)≠f(x)}≤n+1-2(n+1)s/...Given n≥2 and α≥1/2,we obtained an improved upbound of Hausdorff's dimension of the fractional Schrodinger operator;that is,supf∈H^(s)(R^(n)) dim_(H){x∈R^(n):limt→0 e^(it)(-△)^(α) f(x)≠f(x)}≤n+1-2(n+1)s/n for n/2(n+1)<s≤n/2.展开更多
Let L = L0 + V be the higher order Schrodiger type operator where L0 is a homogeneous elliptic operator of order 2m in divergence form with bounded coeffi- cients and V is a real measurable function as multiplication...Let L = L0 + V be the higher order Schrodiger type operator where L0 is a homogeneous elliptic operator of order 2m in divergence form with bounded coeffi- cients and V is a real measurable function as multiplication operator (e.g., including (-△)m+v (m∈N) as special examples). In this paper, assume that V satisfies a strongly subcritical form condition associated with L0, the authors attempt to establish a the- HL (R) (0 〈 p ≤ 1) associated with the higher order Schrodinger ory of Hardy space P n type operator L. Specifically, we first define the molecular Hardy space Hp (JRn) by the so-called (p, q,ε, M) molecule associated to L and then establish its characterizations by the area integral defined by the heat semigroup e-tL.展开更多
In this paper, we consider cooperative hyperbolic systems involving Schr?dinger operator defined on ?Rn. First we prove the existence and uniqueness of the state for these systems. Then we find the necessary and suffi...In this paper, we consider cooperative hyperbolic systems involving Schr?dinger operator defined on ?Rn. First we prove the existence and uniqueness of the state for these systems. Then we find the necessary and sufficient conditions of optimal control for such systems of the boundary type. We also find the necessary and sufficient conditions of optimal control for same systems when the observation is on the boundary.展开更多
Let L = -△+V be a Schrodinger operator acting on L^2(R^n), n ≥ 1, where V ≠ 0 is a nonnegative locally integrable function on R^n. In this article, we will introduce weighted Hardy spaces Hp (w) associated wit...Let L = -△+V be a Schrodinger operator acting on L^2(R^n), n ≥ 1, where V ≠ 0 is a nonnegative locally integrable function on R^n. In this article, we will introduce weighted Hardy spaces Hp (w) associated with L by means of the square function and then study their atomic decomposition theory. We will also show that the Riesz transform △↓L^-1/2 associated with L is bounded from our new space HP(w) to the classical weighted Hardy sp ace HP ( w ) when n / (n + 1 ) 〈 p 〈 1 and w ∈ A 1 ∩ R H( 2 / p )'.展开更多
We study the dynamics of fundamental and double-pole breathers and solitons for the focusing and defocusing nonlinear Schrodinger equation with the sextic operator under non-zero boundary conditions. Our analysis main...We study the dynamics of fundamental and double-pole breathers and solitons for the focusing and defocusing nonlinear Schrodinger equation with the sextic operator under non-zero boundary conditions. Our analysis mainly focuses onthe dynamical properties of simple- and double-pole solutions. Firstly, through verification, we find that solutions undernon-zero boundary conditions can be transformed into solutions under zero boundary conditions, whether in simple-pole ordouble-pole cases. For the focusing case, in the investigation of simple-pole solutions, temporal periodic breather and thespatial-temporal periodic breather are obtained by modulating parameters. Additionally, in the case of multi-pole solitons,we analyze parallel-state solitons, bound-state solitons, and intersecting solitons, providing a brief analysis of their interactions.In the double-pole case, we observe that the two solitons undergo two interactions, resulting in a distinctive “triangle”crest. Furthermore, for the defocusing case, we briefly consider two situations of simple-pole solutions, obtaining one andtwo dark solitons.展开更多
In the present paper, the semi-commutative differential oparators associated with the 1-dimensional Dirac operator are constructed. Using this results, the hierarchy of the mKdV (-) polynomials are expressed in terms ...In the present paper, the semi-commutative differential oparators associated with the 1-dimensional Dirac operator are constructed. Using this results, the hierarchy of the mKdV (-) polynomials are expressed in terms of the KdV polynomials. These formulas give a new interpretation of the classical Darboux transformation and the Miura transformation. Moreover, the recursion operator associated with the hierarchy of the mKdV (-) polynomials is constructed by the algebraic method.展开更多
In the article we consider the fractional maximal operator Mα, 0 ≤α 〈 Q on any Carnot group G (i.e., nilpotent stratified Lie group) in the generalized Morrey spaces Mp,φ(G), where Q is the homogeneous dimens...In the article we consider the fractional maximal operator Mα, 0 ≤α 〈 Q on any Carnot group G (i.e., nilpotent stratified Lie group) in the generalized Morrey spaces Mp,φ(G), where Q is the homogeneous dimension of G. We find the conditions on the pair (φ1, φ2) which ensures the boundedness of the operator Ms from one generalized Morrey space Mp,φ1 (G) to another Mq,φ2 (G), 1. 〈 p ≤q 〈 ∞. 1/p - 1/q = α/Q, and from the space M1,φ1 (G) to the weak space Wq,φ2 (G), 1 〈 q 〈 ∞, 1 - 1/q = α/Q. Also find conditions on the φ which ensure the Adams type boundedness of the Ms from M α (G) from Mp,φ^1/p(G)to Mq,φ^1/q(G) for 1 〈p〈q〈∞ and fromM1,φ(G) toWMq,φ^1/q(G)for 1〈q〈∞. In the case b ∈ BMO(G) and 1 〈 p 〈 q 〈 ∞, find the sufficient conditions on the pair (φ1, φ2) which ensures the boundedness of the kth-order commutator operator Mb,α,k from Mp,φ1 (G) to Mq,φ2(G) with 1/p - 1/q = α/Q. Also find the sufficient conditions on the φ which ensures the boundedness of the operator Mb,α,k from Mp,φ^1/p(G) tom Mp,φ^1/p (G) for 1 〈p〈q〈∞. In all the cases the conditions for the boundedness of Mα are given it terms of supremaltype inequalities on (φ1, φ2) and φ , which do not assume any assumption on monotonicity of (φ1, φ2) and φ in r. As applications we consider the SchrSdinger operator -△G + V on G, where the nonnegative potential V belongs to the reverse Holder class B∞(G). The MB,φ1 - Mq,φ2 estimates for the operators V^γ(-△G + V)^-β and V^γ△↓G(-△G + V)^-β are obtained.展开更多
Let M^n be a compact Willmore submanifold in the unit sphere Sn+p. In this note, we investigate the first eigenvalue of the SchrSdinger operator L = -△ - q on M, where q is some potential function on M, and present...Let M^n be a compact Willmore submanifold in the unit sphere Sn+p. In this note, we investigate the first eigenvalue of the SchrSdinger operator L = -△ - q on M, where q is some potential function on M, and present a gap estimate for the first eigenvalue of L.展开更多
文摘In this paper,we prove the existence of the scattering operator for the fractional magnetic Schrodinger operators.In order to do this,we construct the fractional distorted Fourier transforms with magnetic potentials.Applying the properties of the distorted Fourier transforms,the existence and the asymptotic completeness of the wave operators are obtained.Furthermore,we prove the absence of positive eigenvalues for fractional magnetic Schrodinger operators.
文摘We consider the Schrodinger operators on graphs with a finite or countable number of edges and Schr?dinger operators on branched manifolds of variable dimension. In particular, a description of self-adjoint extensions of symmetric Schr?dinger operator, initially defined on a smooth function, whose support does not contain the branch points of the graph and branch points of the manifold. These results are obtained for graphs with a single vertex, graphs with multiple vertices and graphs with a single vertex and countable set of rays.
基金Supported by the National Natural Science Foundation of China(11471176)Natural Science Foundation of Shandong Province(BS2014SF002)
文摘Let L1 and L2 be the Schrodinger operators on Rn and Rm, respectively. By using different maximal functions and Littlewood-Paley g function on distinct variables, in this paper,some characterizations for functions in the product Hardy space HL1,L21(R^n×R^m) associated to operators L1 and L2 are obtained.
基金supported by National Natural Science Foundation of China(Grant No.12271380)supported by National Natural Science Foundation of China(Grant Nos.12171010 and 12288101)National Key R&D Program(Grant No.2021YFA1001600)。
文摘In this paper,we establish quantitative Green’s function estimates for some higher-dimensional lattice quasi-periodic(QP)Schrodinger operators.The resonances in the estimates can be described via a pair of symmetric zeros of certain functions,and the estimates apply to the sub-exponential-type non-resonance conditions.As the application of quantitative Green’s function estimates,we prove both the arithmetic version of Anderson localization and the finite volume version of(1/2-)-Holder continuity of the integrated density of states(IDS)for such QP Schrodinger operators.This gives an affirmative answer to Bourgain’s problem in Bourgain(2000).
基金supported by the National Natural Science Foundation of China(11701453)Fundamental Research Funds for the Central Universities(31020180QD05)+2 种基金The second author was supported by the National Natural Science Foundation of China(11971431,11401525)the Natural Science Foundation of Zhejiang Province(LY18A010006)and the first Class Discipline of Zhejiang-A(Zhejiang Gongshang University-Statistics).
文摘In this article,we derive the Lp-boundedness of the variation operators associated with the heat semigroup which is generated by the high order Schrodinger type operator(—Δ)^2+V%2 in R%n(n≥5)with V being a nonnegative potential satisfying the reverse Holder inequality.Furt her more,we prove the boundedness of the variation operators on associated Morrey spaces.In the proof of the main results,we always make use of the variation inequalities associated with the hea t semigroup genera ted by the biharmonic operator(-Δ)2.
基金supported by National Natural Science Foundation of China (Grant No.11871031)the Natural Science Foundation of Jiangsu Province of China (Grant No.BK 20201303)。
文摘We study inverse spectral problems for radial Schrodinger operators in L^(2)(0,1).It is well known that for a radial Schrodinger operator,two spectra for the different boundary conditions can uniquely determine the potential.However,if the spectra corresponding to the radial Schrodinger operators with the two potential functions miss a finite number of eigenvalues,what is the relationship between the two potential functions?Inspired by Hochstadt(1973)'s work,which handled the Sturm-Liouville operator with the potential q∈L^(1)(0,1),we give a corresponding result for radial Schrodinger operators with a larger class of potentials than L^(1)(0,1).When q∈L^(1)(0,1),we also consider the case where the spectra corresponding to the radial Schrodinger operators with the two potential functions miss an infinite number of eigenvalues and the eigenvalues are close in some sense.
文摘In this paper,we consider the area function SQ related to the Schrodinger operator ■ and its commutator SQ,b´establish the boundedness of SQ from Hp(w)to L^(p)_(ρ)(w)to L^(p)(w)or WL^(p)(w),as well as the boundedness of SQ,b´from H^(1)_(ρ)(w)to WL^(1)(w).
基金supported by the National Natural Science Foundation of China(12071076)the Scientific Research Start-up Foundation of Fujian University of Technology(GY-Z23238)the Program for Education and Scientific Research of Young and Middle-Aged Teachers in Fujian Province(JAT191128,JT180818)。
文摘Explicit asymptotic properties of the integrated density of states N(λ)with respect to the spectrum for the random Schrödinger operator H^(ω)=(-△)^(α/2)+V^(ω)are established,whereα∈(0,2]and V^(ω)(X)=∑_(I∈Z^(d))ξ(i)(ω)W(x-i)is a random potential term generated by a sequence of independent and identically distributed random variables{ξ(i)}_(i)∈Z^(d)and a non-negative measurable function W(x).In particular,the exact order of asymptotic properties of N(λ)depends on the decay properties of the reference function W(x)and the spectrum properties of the first Dirichlet eigenvalue of(-△)^(α/2).
文摘In this paper, the author gives a characterization of atomic Hardy spaces associated to Schrodinger operators by using area functions, and hence gets the dual spaces of atomic Hardy spaces.
基金Supported by the National Natural Science Foundation of China(Grant No.11261024)
文摘In this article, we are concerned with the scattering problem of Schr?dinger operators with compactly supported potentials on the real line. We aim at combining the theory of Dirichlet series with scattering theory. New estimate on the number of poles is obtained under the situation that the growth of power series which is related to the potential is not too fast by using a classical result of Littlewood. We propose a new approach of Dirichlet series such that significant upper bounds and lower bounds on the number of poles are obtained. The results obtained in this paper improve and extend some related conclusions on this topic.
基金supported by National Nature Science Foundation of China(11371036)
文摘Let △ be full Laplacian on H-type group G. Then for every compact set D Ga local estimate of the Schrodinger maximal operator holds, that is,∫D^sup0〈t〈1|e^it△f(x)|^2dx≤||f||^2H^s,s〉1/2We also show that the above inequality fails when s 〈 1/4.
基金Li Dan and Li Junfeng were supported by NSFC-DFG(11761131002)NSFC(12071052)Xiao Jie was supported by NSERC of Canada(202979463102000).
文摘Given n≥2 and α≥1/2,we obtained an improved upbound of Hausdorff's dimension of the fractional Schrodinger operator;that is,supf∈H^(s)(R^(n)) dim_(H){x∈R^(n):limt→0 e^(it)(-△)^(α) f(x)≠f(x)}≤n+1-2(n+1)s/n for n/2(n+1)<s≤n/2.
基金supported by NSFC(No.11301203)NSFC(No.11371057,11471033)+5 种基金NSFC(No.11371158)the Fundamental Research Funds for the Central Universities(CCNU-14A05037)the Fundamental Research Funds for the Central Universities(No.2014KJJCA10)SRFDP(No.20130003110003)the program for Changjiang ScholarsInnovative Research Team in University(No.IRT13066)
文摘Let L = L0 + V be the higher order Schrodiger type operator where L0 is a homogeneous elliptic operator of order 2m in divergence form with bounded coeffi- cients and V is a real measurable function as multiplication operator (e.g., including (-△)m+v (m∈N) as special examples). In this paper, assume that V satisfies a strongly subcritical form condition associated with L0, the authors attempt to establish a the- HL (R) (0 〈 p ≤ 1) associated with the higher order Schrodinger ory of Hardy space P n type operator L. Specifically, we first define the molecular Hardy space Hp (JRn) by the so-called (p, q,ε, M) molecule associated to L and then establish its characterizations by the area integral defined by the heat semigroup e-tL.
文摘In this paper, we consider cooperative hyperbolic systems involving Schr?dinger operator defined on ?Rn. First we prove the existence and uniqueness of the state for these systems. Then we find the necessary and sufficient conditions of optimal control for such systems of the boundary type. We also find the necessary and sufficient conditions of optimal control for same systems when the observation is on the boundary.
文摘Let L = -△+V be a Schrodinger operator acting on L^2(R^n), n ≥ 1, where V ≠ 0 is a nonnegative locally integrable function on R^n. In this article, we will introduce weighted Hardy spaces Hp (w) associated with L by means of the square function and then study their atomic decomposition theory. We will also show that the Riesz transform △↓L^-1/2 associated with L is bounded from our new space HP(w) to the classical weighted Hardy sp ace HP ( w ) when n / (n + 1 ) 〈 p 〈 1 and w ∈ A 1 ∩ R H( 2 / p )'.
基金the Fundamental Research Funds for the Central Universities(Grant No.2024MS126).
文摘We study the dynamics of fundamental and double-pole breathers and solitons for the focusing and defocusing nonlinear Schrodinger equation with the sextic operator under non-zero boundary conditions. Our analysis mainly focuses onthe dynamical properties of simple- and double-pole solutions. Firstly, through verification, we find that solutions undernon-zero boundary conditions can be transformed into solutions under zero boundary conditions, whether in simple-pole ordouble-pole cases. For the focusing case, in the investigation of simple-pole solutions, temporal periodic breather and thespatial-temporal periodic breather are obtained by modulating parameters. Additionally, in the case of multi-pole solitons,we analyze parallel-state solitons, bound-state solitons, and intersecting solitons, providing a brief analysis of their interactions.In the double-pole case, we observe that the two solitons undergo two interactions, resulting in a distinctive “triangle”crest. Furthermore, for the defocusing case, we briefly consider two situations of simple-pole solutions, obtaining one andtwo dark solitons.
基金supported by JSPS KAKENHI Grant Number 2354-0255.
文摘In the present paper, the semi-commutative differential oparators associated with the 1-dimensional Dirac operator are constructed. Using this results, the hierarchy of the mKdV (-) polynomials are expressed in terms of the KdV polynomials. These formulas give a new interpretation of the classical Darboux transformation and the Miura transformation. Moreover, the recursion operator associated with the hierarchy of the mKdV (-) polynomials is constructed by the algebraic method.
基金partially supported by the grant of Ahi Evran University Scientific Research Projects(FEN 4001.12.0018)partially supported by the grant of Ahi Evran University Scientific Research Projects(FEN 4001.12.0019)+1 种基金by the grant of Science Development Foundation under the President of the Republic of Azerbaijan project EIF-2010-1(1)-40/06-1partially supported by the Scientific and Technological Research Council of Turkey(TUBITAK Project No:110T695)
文摘In the article we consider the fractional maximal operator Mα, 0 ≤α 〈 Q on any Carnot group G (i.e., nilpotent stratified Lie group) in the generalized Morrey spaces Mp,φ(G), where Q is the homogeneous dimension of G. We find the conditions on the pair (φ1, φ2) which ensures the boundedness of the operator Ms from one generalized Morrey space Mp,φ1 (G) to another Mq,φ2 (G), 1. 〈 p ≤q 〈 ∞. 1/p - 1/q = α/Q, and from the space M1,φ1 (G) to the weak space Wq,φ2 (G), 1 〈 q 〈 ∞, 1 - 1/q = α/Q. Also find conditions on the φ which ensure the Adams type boundedness of the Ms from M α (G) from Mp,φ^1/p(G)to Mq,φ^1/q(G) for 1 〈p〈q〈∞ and fromM1,φ(G) toWMq,φ^1/q(G)for 1〈q〈∞. In the case b ∈ BMO(G) and 1 〈 p 〈 q 〈 ∞, find the sufficient conditions on the pair (φ1, φ2) which ensures the boundedness of the kth-order commutator operator Mb,α,k from Mp,φ1 (G) to Mq,φ2(G) with 1/p - 1/q = α/Q. Also find the sufficient conditions on the φ which ensures the boundedness of the operator Mb,α,k from Mp,φ^1/p(G) tom Mp,φ^1/p (G) for 1 〈p〈q〈∞. In all the cases the conditions for the boundedness of Mα are given it terms of supremaltype inequalities on (φ1, φ2) and φ , which do not assume any assumption on monotonicity of (φ1, φ2) and φ in r. As applications we consider the SchrSdinger operator -△G + V on G, where the nonnegative potential V belongs to the reverse Holder class B∞(G). The MB,φ1 - Mq,φ2 estimates for the operators V^γ(-△G + V)^-β and V^γ△↓G(-△G + V)^-β are obtained.
基金Supported by the National Natural Science Foundation of China(11071211)the Zhejiang Natural Science Foundation of China
文摘Let M^n be a compact Willmore submanifold in the unit sphere Sn+p. In this note, we investigate the first eigenvalue of the SchrSdinger operator L = -△ - q on M, where q is some potential function on M, and present a gap estimate for the first eigenvalue of L.