Two Gd_(2)complexes,namely[Gd_(2)(dbm)_(2)(HL_(1))_(2)(CH_(3)OH)_(2)]·4CH_(3)OH(1)and[Gd_(2)(dbm)_(2)(L_(2))_(2)(CH_(3)OH)_(2)]·2CH_(3)OH(2),where H_(3)L_(1)=(Z)-N'-[4-(diethylamino)-2-hydroxybenzylidene...Two Gd_(2)complexes,namely[Gd_(2)(dbm)_(2)(HL_(1))_(2)(CH_(3)OH)_(2)]·4CH_(3)OH(1)and[Gd_(2)(dbm)_(2)(L_(2))_(2)(CH_(3)OH)_(2)]·2CH_(3)OH(2),where H_(3)L_(1)=(Z)-N'-[4-(diethylamino)-2-hydroxybenzylidene]-2-hydroxyacetohydrazide,H_(2)L_(2)=(E)-N'-(5-bromo-2-hydroxy-3-methoxybenzylidene)nicotinohydrazide,Hdbm=dibenzoylmethane,have been constructed by adopting the solvothermal method.Structural characterization unveils that both complexes 1 and 2 are constituted by two Gd^(3+)ions,two dbm-ions,two CH_(3)OH molecules,and two polydentate Schiff-base ligands(HL_(1)^(2-)or L_(2)^(2-)).In addition,complex 1 contains four free methanol molecules,whereas complex 2 harbors two free methanol molecules.By investigating the interactions between complexes 1 and 2 and four types of bacteria(Bacillus subtilis,Escherichia coli,Staphylococcus aureus,Candida albicans),it was found that both complexes 1 and 2 exhibited potent antibacte-rial activities.The interaction mechanisms between the ligands H_(3)L_(1),H_(2)L_(2),complexes 1 and 2,and calf thymus DNA(CT-DNA)were studied using ultraviolet-visible spectroscopy,fluorescence titration,and cyclic voltammetry.The results demonstrated that both complexes 1 and 2 can intercalate into CT-DNA molecules,thereby inhibiting bacterial proliferation to achieve the antibacterial effects.CCDC:2401116,1;2401117,2.展开更多
Two new complexes,[Zn_(2)(L1)(HL1)(NO_(3))]·CH_(3)OH(1)and[Zn_(3)(L2)(L3)_(3)Cl]·CH_(3)OH(2),were successfully synthesized by‘one-pot’method based on cinnoline-3-ylhydrazine ligand and zinc with 2-hydroxy-...Two new complexes,[Zn_(2)(L1)(HL1)(NO_(3))]·CH_(3)OH(1)and[Zn_(3)(L2)(L3)_(3)Cl]·CH_(3)OH(2),were successfully synthesized by‘one-pot’method based on cinnoline-3-ylhydrazine ligand and zinc with 2-hydroxy-4-methoxybenzaldehyde and 2-hydroxy-3-methoxybenzaldehyde ligands,respectively,where H_(2)L1=5-methoxy-2-(phthalazin-1-ylhydrazonomethyl)-phenol,H_(2)L2=2-methoxy-6-(phthalazin-1-yl-hydrazonomethyl)-phenol,HL3=2-(1,8-dihydro-[1,2,4]triazolo[3,4-α]phthalazin-3-yl)-6-methoxy-phenol.Complexes 1 and 2 were characterized by infrared spectroscopy,elemental analysis,single-crystal X-ray diffraction,powder X-ray diffraction,etc.It is worth noting that the cinnolin-3-yl-hydrazine ligand and 2-hydroxy-3-methoxybenzaldehyde form two types of Schiff bases(H_(2)L2 and HL3)when in situ reacting and coordinating with Zn(Ⅱ),and HL3 also has two coordination modes.In addition,the fluorescence performance showed that complex 1 can achieve selective and sensitive sensing of Al^(3+)in water with a detection limit of 6.37μmol·L^(-1).CCDC:2413978,1;2413979,2.展开更多
A tetranuclear Ln(Ⅲ)-based complex:[Dy_(4)(dbm)_(4)(L)_(6)(μ_(3)-OH)_(2)]·CH_(3)CN(1)(HL=5-[(4-methylbenzylidene)amino]quinolin-8-ol,Hdbm=dibenzoylmethane)was manufactured and its structure was characterized in...A tetranuclear Ln(Ⅲ)-based complex:[Dy_(4)(dbm)_(4)(L)_(6)(μ_(3)-OH)_(2)]·CH_(3)CN(1)(HL=5-[(4-methylbenzylidene)amino]quinolin-8-ol,Hdbm=dibenzoylmethane)was manufactured and its structure was characterized in detail.Xray diffraction analysis shows that complex 1 belongs to the monoclinic crystal system and its space group is P2_1/n,which contains a rhombic Dy_(4)core.Magnetic measurements of 1 suggest it possesses extraordinary single-molecule magnet(SMM)behavior.Its energy barrier U_(eff)/k_(B)was 116.7 K,and the pre-exponential coefficient τ_(0)=1.05×10~(-8)s.CCDC:2359322.展开更多
A[3+4]annulation of α-substituted allenes and Schiff bases is reported.This methodology serves as a conduit for the construction of a series of biologically important benzazepine derivatives in good to excellent yiel...A[3+4]annulation of α-substituted allenes and Schiff bases is reported.This methodology serves as a conduit for the construction of a series of biologically important benzazepine derivatives in good to excellent yields under mild conditions by an unprecedented mode involving β’-carbon of α-substituted allenes and the proposed mechanism is supported by capturing the intermediate.Moreover,this class of benzazepine derivatives exhibited potential ability of cytotoxicity toward cancer cells.展开更多
The emerging biomass-based epoxy vitrimers hold great potential to fulfill the requirements for sustainable development of society.Since the existence of dynamic chemical bonds in vitrimers often reduces both the ther...The emerging biomass-based epoxy vitrimers hold great potential to fulfill the requirements for sustainable development of society.Since the existence of dynamic chemical bonds in vitrimers often reduces both the thermal and mechanical properties of epoxy resins, it is challenging to produce recyclable epoxy vitrimers with both excellent mechanical properties and good thermal stability. Herein, a monomer 4-(((5-(hydroxymethyl)furan-2-yl)methylene)amino)phenol(FCN) containing furan ring with potential to form high density of hydrogen bonding among repeating units is designed and copolymerized with glycerol triglycidyl ether to yield epoxy resin(FCN-GTE), which intrinsically has dual hydrogen bond networks, dynamic imine structure and resultant high performance. Importantly, as compared to the BPA-GTE, the FCN-GTE exhibits significantly improved mechanical properties owing to the increased density of hydrogen bond network and physical crosslinking interaction. Furthermore, density functional theory(DFT) calculation and in situ FTIR analysis is conducted to decipher the formation mechanism of hydrogen bond network. In addition, the FCN-GTE possesses superior UV shielding, chemical degradation, and recyclability because of the existence of abundant imine bonds. Notably, the FCN-GTE-based carbon fiber composites could be completely recycled in an amine solution.This study provides a facile strategy for synthesizing recyclable biomass-based high-performance epoxy vitrimers and carbon fiber composites.展开更多
Schiff base metal complexes are of great importance in pharmaceutical science owing to their unique chemical properties, which enable them to exhibit diverse biological activities such as anti-bacterial,anti-oxidant, ...Schiff base metal complexes are of great importance in pharmaceutical science owing to their unique chemical properties, which enable them to exhibit diverse biological activities such as anti-bacterial,anti-oxidant, anti-inflammatory, and anti-tumor properties. Furthermore, Schiff base metal complexes can serve as reagents and catalysts in chemical reactions. This review aims to provide an overview of our recently published studies on Cu(Ⅱ) and Pd(Ⅱ) complexes derived from proline Schiff base ligands. We also discuss the potential applications of these metal complexes in the fields of antibacterial and chiral resolution.展开更多
While enol-keto tautomerism has attracted great interest in Schiff bases and related compounds in solution and crystal states,the self-assembly of energy-unfavored keto form were scarcely investigated.Here,we report a...While enol-keto tautomerism has attracted great interest in Schiff bases and related compounds in solution and crystal states,the self-assembly of energy-unfavored keto form were scarcely investigated.Here,we report a keto-form directed self-assembly of a naphthalene-attached enantiomeric N-salicylideneanil analog L/DGG-Nap accompanied with a significantly amplified circularly polarized luminescence(CPL).It was found that LGG-Nap exists as a mixture of enol and keto form in monomer at a diluted toluene solution.The increment of the concentrations leads to the formation of predominated keto form,which subsequently triggers the self-assembly.Cryo-transmission electron microscopy(Cryo-TEM)revealed that a hierarchical assembly process happened upon increasing the concentration of LGG-Nap in toluene.Individual nanofibers formed at 1×10-4 mol/L and transferred into helical nanofiber bundles in 5×10-3 mol/L.Interestingly,while these is nearly no circular dichroism(CD)or CPL in the monomeric solution,the assembly showed strong CD and CPL.Remarkably,the dissymmetry factor(glum)was significantly amplified from zero in solution through the 0.005 in individual nanofiber to 0.1 in nanofiber bundles.This work demonstrates that the enol-keto tautomerism can be broken and trigger the self-assembly upon increasing the concentration,which can subsequently direct the chiral self-assembly and significantly amplify the dissymmetry factor of assembled CPL materials.展开更多
Objective:We aim to develop a dual-functional bone regeneration scaffold(Qx-D)with antibacterial and osteogenic properties for infected bone defect treatment.Impact Statement:This study provides insights into antibact...Objective:We aim to develop a dual-functional bone regeneration scaffold(Qx-D)with antibacterial and osteogenic properties for infected bone defect treatment.Impact Statement:This study provides insights into antibacterial components that could be combined with naturally derived materials through a facile Schiff base reaction,offering a potential strategy to enhance antibacterial properties.Introduction:Naturally derived decalcified bone matrix(DBM)has been reported to be porous and biodegradable.DBM can induce various cell differentiations and participate in immune regulation,making it an ideal bone regeneration scaffold for bone defects.However,DBM does not exhibit antimicrobial properties.Therefore,it is essential to develop antibacterial functionalization method for DBM.Methods:DBM was modified with a macromolecular quaternary ammonium salt(QPEI).A series of Qx-D with tunable feeding ratios were synthesized through Schiff base reaction.The morphology,chemical property,in vitro antibacterial efficiency,in vitro biocompatibility,osteogenic property,and in vivo anti-infection performances were characterized.Results:All Qx-D exhibited marked antibacterial properties.Small adjustments in feed concentration could not induce changes in antibacterial properties.However,cell viability slightly decreased with increasing feed concentration.Q10-D demonstrated significant antibacterial properties and could promote recovery of infected bone defect in an animal model.Conclusion:Qx-D shows marked antibacterial properties and good biocompatibility.Moreover,Q10-D could be a potential choice for infected bone defects.展开更多
The serious environmental threat caused by petroleum-based plastics has spurred more researches in developing substitutes from renewable sources.Starch is desirable for fabricating bioplastic due to its abundance and ...The serious environmental threat caused by petroleum-based plastics has spurred more researches in developing substitutes from renewable sources.Starch is desirable for fabricating bioplastic due to its abundance and renewable nature.However,limitations such as brittleness,hydrophilicity,and thermal properties restrict its widespread application.To overcome these issues,covalent adaptable network was constructed to fabricate a fully bio-based starch plastic with multiple advantages via Schiff base reactions.This strategy endowed starch plastic with excellent thermal processability,as evidenced by a low glass transition temperature(T_(g)=20.15℃).Through introducing Priamine with long carbon chains,the starch plastic demonstrated superior flexibility(elongation at break=45.2%)and waterproof capability(water contact angle=109.2°).Besides,it possessed a good thermal stability and self-adaptability,as well as solvent resistance and chemical degradability.This work provides a promising method to fabricate fully bio-based plastics as alternative to petroleum-based plastics.展开更多
Two new dinuclear lanthanidecomplexes,namely[Ln_(2)(dbm)_(2)(HL)_(2)(CH_(3)OH)_(2)]·4CH_(3)OH[Ln=Tb(1)and Dy(2),Hdbm=dibenzoylmethane]have been synthesized using prepared multidentate Schiff base ligand H_(3)L(hy...Two new dinuclear lanthanidecomplexes,namely[Ln_(2)(dbm)_(2)(HL)_(2)(CH_(3)OH)_(2)]·4CH_(3)OH[Ln=Tb(1)and Dy(2),Hdbm=dibenzoylmethane]have been synthesized using prepared multidentate Schiff base ligand H_(3)L(hydroxy‑acetic acid(4‑diethylamino‑2‑hydroxy‑benzylidene)‑hydrazide)with good biological activity.Structure characterizations show that the complex comprises two Ln3+ions,two dbm-ions,two HL^(2-)ligands,two CH_(3)OH molecules,and four free methanol molecules.Each Ln^(3+)ion is eight‑coordinated.The two central Lnions are bridged by twoμ_(2)‑O atoms leading to a parallelogram[Ln2O2]core.The interaction between the compounds(H_(3)L,1,and 2)and the calf thymus DNA(CT‑DNA)has been further confirmed by UV‑Vis spectrometry,fluorescence titration,and cyclic voltammetry.The results showed that both 1 and 2 could undergo insertion with CT‑DNA.CCDC:2343005,1;2343006,2.展开更多
Rhodopsin is a seven-helical transmembrane protein with a retinal chromophore covalently bound to a conserved lysine in helix G via a retinal protonated Schiff base(RPSB).Microbial rhodopsins absorb light through chro...Rhodopsin is a seven-helical transmembrane protein with a retinal chromophore covalently bound to a conserved lysine in helix G via a retinal protonated Schiff base(RPSB).Microbial rhodopsins absorb light through chromophore and play a fundamental role in optogenetics.Numerous microbial rhodopsins have been discovered,contributing to diverse functions and colors.Solid-state NMR spectroscopy has been instrumental in elucidating the conformation of chromophores and the three-dimensional structure of microbial rhodopsins.This review focuses on the 15N chemical shift values of RPSB and summarizes recent progress in the field.We displayed the correlation between the 15N isotropic chemical shift values of RPSB and the maximum absorption wavelength of rhodopsin using solid-state NMR spectroscopy.展开更多
Hydrophobic Val derivative Schiff base copper(II) complexes and dipeptide (AlaAla, GlyGly) derivative Schiff base copper(II) complexes were introduced into egg white lysozyme. X-ray crystal structure analysis revealed...Hydrophobic Val derivative Schiff base copper(II) complexes and dipeptide (AlaAla, GlyGly) derivative Schiff base copper(II) complexes were introduced into egg white lysozyme. X-ray crystal structure analysis revealed amino acid derivative Schiff base copper(II) complexes were obtained. Herein we discuss primarily on the binding mode of copper(II) of the complexes obtained with egg white lysozyme. The electron density of copper(II) ions was confirmed by X-ray crystal structure analysis. The Val derivative Schiff base copper(II) complex was weakly bound at Arg114 of egg white lysozyme. In other copper(II) complexes, binding of copper(II) ions with dissociated ligands to various residues was observed. The binding sites of copper(II) ions were compared with computational scientific predictions.展开更多
文摘Two Gd_(2)complexes,namely[Gd_(2)(dbm)_(2)(HL_(1))_(2)(CH_(3)OH)_(2)]·4CH_(3)OH(1)and[Gd_(2)(dbm)_(2)(L_(2))_(2)(CH_(3)OH)_(2)]·2CH_(3)OH(2),where H_(3)L_(1)=(Z)-N'-[4-(diethylamino)-2-hydroxybenzylidene]-2-hydroxyacetohydrazide,H_(2)L_(2)=(E)-N'-(5-bromo-2-hydroxy-3-methoxybenzylidene)nicotinohydrazide,Hdbm=dibenzoylmethane,have been constructed by adopting the solvothermal method.Structural characterization unveils that both complexes 1 and 2 are constituted by two Gd^(3+)ions,two dbm-ions,two CH_(3)OH molecules,and two polydentate Schiff-base ligands(HL_(1)^(2-)or L_(2)^(2-)).In addition,complex 1 contains four free methanol molecules,whereas complex 2 harbors two free methanol molecules.By investigating the interactions between complexes 1 and 2 and four types of bacteria(Bacillus subtilis,Escherichia coli,Staphylococcus aureus,Candida albicans),it was found that both complexes 1 and 2 exhibited potent antibacte-rial activities.The interaction mechanisms between the ligands H_(3)L_(1),H_(2)L_(2),complexes 1 and 2,and calf thymus DNA(CT-DNA)were studied using ultraviolet-visible spectroscopy,fluorescence titration,and cyclic voltammetry.The results demonstrated that both complexes 1 and 2 can intercalate into CT-DNA molecules,thereby inhibiting bacterial proliferation to achieve the antibacterial effects.CCDC:2401116,1;2401117,2.
文摘Two new complexes,[Zn_(2)(L1)(HL1)(NO_(3))]·CH_(3)OH(1)and[Zn_(3)(L2)(L3)_(3)Cl]·CH_(3)OH(2),were successfully synthesized by‘one-pot’method based on cinnoline-3-ylhydrazine ligand and zinc with 2-hydroxy-4-methoxybenzaldehyde and 2-hydroxy-3-methoxybenzaldehyde ligands,respectively,where H_(2)L1=5-methoxy-2-(phthalazin-1-ylhydrazonomethyl)-phenol,H_(2)L2=2-methoxy-6-(phthalazin-1-yl-hydrazonomethyl)-phenol,HL3=2-(1,8-dihydro-[1,2,4]triazolo[3,4-α]phthalazin-3-yl)-6-methoxy-phenol.Complexes 1 and 2 were characterized by infrared spectroscopy,elemental analysis,single-crystal X-ray diffraction,powder X-ray diffraction,etc.It is worth noting that the cinnolin-3-yl-hydrazine ligand and 2-hydroxy-3-methoxybenzaldehyde form two types of Schiff bases(H_(2)L2 and HL3)when in situ reacting and coordinating with Zn(Ⅱ),and HL3 also has two coordination modes.In addition,the fluorescence performance showed that complex 1 can achieve selective and sensitive sensing of Al^(3+)in water with a detection limit of 6.37μmol·L^(-1).CCDC:2413978,1;2413979,2.
文摘A tetranuclear Ln(Ⅲ)-based complex:[Dy_(4)(dbm)_(4)(L)_(6)(μ_(3)-OH)_(2)]·CH_(3)CN(1)(HL=5-[(4-methylbenzylidene)amino]quinolin-8-ol,Hdbm=dibenzoylmethane)was manufactured and its structure was characterized in detail.Xray diffraction analysis shows that complex 1 belongs to the monoclinic crystal system and its space group is P2_1/n,which contains a rhombic Dy_(4)core.Magnetic measurements of 1 suggest it possesses extraordinary single-molecule magnet(SMM)behavior.Its energy barrier U_(eff)/k_(B)was 116.7 K,and the pre-exponential coefficient τ_(0)=1.05×10~(-8)s.CCDC:2359322.
基金financially supported by the National Natural Science Foundation of China(No.21572271).
文摘A[3+4]annulation of α-substituted allenes and Schiff bases is reported.This methodology serves as a conduit for the construction of a series of biologically important benzazepine derivatives in good to excellent yields under mild conditions by an unprecedented mode involving β’-carbon of α-substituted allenes and the proposed mechanism is supported by capturing the intermediate.Moreover,this class of benzazepine derivatives exhibited potential ability of cytotoxicity toward cancer cells.
基金financially supported by the National Natural Science Foundation of China (Nos.51973118, 22175121,52003160 and 22001175)Key-Area Research and Development Program of Guangdong Province (Nos.2019B010941001 and2019B010929002)+7 种基金the Natural Science Foundation of Guangdong Province (No.2020A1515010644)the Program for Guangdong Introducing Innovative and Entrepreneurial Teams(No.2019ZT08C642)Shenzhen Science and Technology Program (Nos.JCYJ20220818095810022, JSGGZD20220822095201003 and JCYJ20210324095412035)the start-up fund of Shenzhen University (No.000002110820)the Guangdong Natural Science Foundation (Nos.2022A1515011781 and2021A1515110086)Science and Technology Innovation Commission of Shenzhen,China (Nos.RCBS20200714114910141 and JCYJ20210324132816039)the Start-up Grant at Harbin Institute of Technology (Shenzhen),China (Nos.HA45001108 and HA11409049)Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application (No.ZDSYS20220527171407017)。
文摘The emerging biomass-based epoxy vitrimers hold great potential to fulfill the requirements for sustainable development of society.Since the existence of dynamic chemical bonds in vitrimers often reduces both the thermal and mechanical properties of epoxy resins, it is challenging to produce recyclable epoxy vitrimers with both excellent mechanical properties and good thermal stability. Herein, a monomer 4-(((5-(hydroxymethyl)furan-2-yl)methylene)amino)phenol(FCN) containing furan ring with potential to form high density of hydrogen bonding among repeating units is designed and copolymerized with glycerol triglycidyl ether to yield epoxy resin(FCN-GTE), which intrinsically has dual hydrogen bond networks, dynamic imine structure and resultant high performance. Importantly, as compared to the BPA-GTE, the FCN-GTE exhibits significantly improved mechanical properties owing to the increased density of hydrogen bond network and physical crosslinking interaction. Furthermore, density functional theory(DFT) calculation and in situ FTIR analysis is conducted to decipher the formation mechanism of hydrogen bond network. In addition, the FCN-GTE possesses superior UV shielding, chemical degradation, and recyclability because of the existence of abundant imine bonds. Notably, the FCN-GTE-based carbon fiber composites could be completely recycled in an amine solution.This study provides a facile strategy for synthesizing recyclable biomass-based high-performance epoxy vitrimers and carbon fiber composites.
基金the National Key R&D Program of China(No.2022YFA1302900)the National Natural Science Foundation of China (Nos.82130105, 92253305, 82121005, and 22177124)supported by the Lingang Laboratory (Nos.LG-GG-202204–02 and LG202103–04–01)。
文摘Schiff base metal complexes are of great importance in pharmaceutical science owing to their unique chemical properties, which enable them to exhibit diverse biological activities such as anti-bacterial,anti-oxidant, anti-inflammatory, and anti-tumor properties. Furthermore, Schiff base metal complexes can serve as reagents and catalysts in chemical reactions. This review aims to provide an overview of our recently published studies on Cu(Ⅱ) and Pd(Ⅱ) complexes derived from proline Schiff base ligands. We also discuss the potential applications of these metal complexes in the fields of antibacterial and chiral resolution.
基金National Natural Science foundation of China(Nos.21861132002,21773043,21973020 and 21890734).
文摘While enol-keto tautomerism has attracted great interest in Schiff bases and related compounds in solution and crystal states,the self-assembly of energy-unfavored keto form were scarcely investigated.Here,we report a keto-form directed self-assembly of a naphthalene-attached enantiomeric N-salicylideneanil analog L/DGG-Nap accompanied with a significantly amplified circularly polarized luminescence(CPL).It was found that LGG-Nap exists as a mixture of enol and keto form in monomer at a diluted toluene solution.The increment of the concentrations leads to the formation of predominated keto form,which subsequently triggers the self-assembly.Cryo-transmission electron microscopy(Cryo-TEM)revealed that a hierarchical assembly process happened upon increasing the concentration of LGG-Nap in toluene.Individual nanofibers formed at 1×10-4 mol/L and transferred into helical nanofiber bundles in 5×10-3 mol/L.Interestingly,while these is nearly no circular dichroism(CD)or CPL in the monomeric solution,the assembly showed strong CD and CPL.Remarkably,the dissymmetry factor(glum)was significantly amplified from zero in solution through the 0.005 in individual nanofiber to 0.1 in nanofiber bundles.This work demonstrates that the enol-keto tautomerism can be broken and trigger the self-assembly upon increasing the concentration,which can subsequently direct the chiral self-assembly and significantly amplify the dissymmetry factor of assembled CPL materials.
基金supported by the National Natural Science Foundation of China(grant nos.52122304,52293382,52221006,and 52073024)the Beijing Municipal Administration of Hospitals Incubating Program(grant no.PX2021005).
文摘Objective:We aim to develop a dual-functional bone regeneration scaffold(Qx-D)with antibacterial and osteogenic properties for infected bone defect treatment.Impact Statement:This study provides insights into antibacterial components that could be combined with naturally derived materials through a facile Schiff base reaction,offering a potential strategy to enhance antibacterial properties.Introduction:Naturally derived decalcified bone matrix(DBM)has been reported to be porous and biodegradable.DBM can induce various cell differentiations and participate in immune regulation,making it an ideal bone regeneration scaffold for bone defects.However,DBM does not exhibit antimicrobial properties.Therefore,it is essential to develop antibacterial functionalization method for DBM.Methods:DBM was modified with a macromolecular quaternary ammonium salt(QPEI).A series of Qx-D with tunable feeding ratios were synthesized through Schiff base reaction.The morphology,chemical property,in vitro antibacterial efficiency,in vitro biocompatibility,osteogenic property,and in vivo anti-infection performances were characterized.Results:All Qx-D exhibited marked antibacterial properties.Small adjustments in feed concentration could not induce changes in antibacterial properties.However,cell viability slightly decreased with increasing feed concentration.Q10-D demonstrated significant antibacterial properties and could promote recovery of infected bone defect in an animal model.Conclusion:Qx-D shows marked antibacterial properties and good biocompatibility.Moreover,Q10-D could be a potential choice for infected bone defects.
基金supported by the National Natural Science Foundation of China(U23A6005 and 32171721)State Key Laboratory of Pulp and Paper Engineering(202305,2023ZD01,2023C02)+1 种基金Guangdong Province Basic and Application Basic Research Fund(2023B1515040013)the Fundamental Research Funds for the Central Universities(2023ZYGXZR045).
文摘The serious environmental threat caused by petroleum-based plastics has spurred more researches in developing substitutes from renewable sources.Starch is desirable for fabricating bioplastic due to its abundance and renewable nature.However,limitations such as brittleness,hydrophilicity,and thermal properties restrict its widespread application.To overcome these issues,covalent adaptable network was constructed to fabricate a fully bio-based starch plastic with multiple advantages via Schiff base reactions.This strategy endowed starch plastic with excellent thermal processability,as evidenced by a low glass transition temperature(T_(g)=20.15℃).Through introducing Priamine with long carbon chains,the starch plastic demonstrated superior flexibility(elongation at break=45.2%)and waterproof capability(water contact angle=109.2°).Besides,it possessed a good thermal stability and self-adaptability,as well as solvent resistance and chemical degradability.This work provides a promising method to fabricate fully bio-based plastics as alternative to petroleum-based plastics.
文摘Two new dinuclear lanthanidecomplexes,namely[Ln_(2)(dbm)_(2)(HL)_(2)(CH_(3)OH)_(2)]·4CH_(3)OH[Ln=Tb(1)and Dy(2),Hdbm=dibenzoylmethane]have been synthesized using prepared multidentate Schiff base ligand H_(3)L(hydroxy‑acetic acid(4‑diethylamino‑2‑hydroxy‑benzylidene)‑hydrazide)with good biological activity.Structure characterizations show that the complex comprises two Ln3+ions,two dbm-ions,two HL^(2-)ligands,two CH_(3)OH molecules,and four free methanol molecules.Each Ln^(3+)ion is eight‑coordinated.The two central Lnions are bridged by twoμ_(2)‑O atoms leading to a parallelogram[Ln2O2]core.The interaction between the compounds(H_(3)L,1,and 2)and the calf thymus DNA(CT‑DNA)has been further confirmed by UV‑Vis spectrometry,fluorescence titration,and cyclic voltammetry.The results showed that both 1 and 2 could undergo insertion with CT‑DNA.CCDC:2343005,1;2343006,2.
基金supported in part by JSPS KAKENHI Grant Numbers in Japan(JP21H05229 to I.K.)JST CREST(JPMJCR21B2)The authors also thank Nobuko Yamaguchi for the financial support.
文摘Rhodopsin is a seven-helical transmembrane protein with a retinal chromophore covalently bound to a conserved lysine in helix G via a retinal protonated Schiff base(RPSB).Microbial rhodopsins absorb light through chromophore and play a fundamental role in optogenetics.Numerous microbial rhodopsins have been discovered,contributing to diverse functions and colors.Solid-state NMR spectroscopy has been instrumental in elucidating the conformation of chromophores and the three-dimensional structure of microbial rhodopsins.This review focuses on the 15N chemical shift values of RPSB and summarizes recent progress in the field.We displayed the correlation between the 15N isotropic chemical shift values of RPSB and the maximum absorption wavelength of rhodopsin using solid-state NMR spectroscopy.
文摘Hydrophobic Val derivative Schiff base copper(II) complexes and dipeptide (AlaAla, GlyGly) derivative Schiff base copper(II) complexes were introduced into egg white lysozyme. X-ray crystal structure analysis revealed amino acid derivative Schiff base copper(II) complexes were obtained. Herein we discuss primarily on the binding mode of copper(II) of the complexes obtained with egg white lysozyme. The electron density of copper(II) ions was confirmed by X-ray crystal structure analysis. The Val derivative Schiff base copper(II) complex was weakly bound at Arg114 of egg white lysozyme. In other copper(II) complexes, binding of copper(II) ions with dissociated ligands to various residues was observed. The binding sites of copper(II) ions were compared with computational scientific predictions.