This paper describes the datasets from the Scenario Model Intercomparison Project(ScenarioMIP)simulation experiments run with the Chinese Academy of Sciences Flexible Global Ocean–Atmosphere–Land System Model,GridPo...This paper describes the datasets from the Scenario Model Intercomparison Project(ScenarioMIP)simulation experiments run with the Chinese Academy of Sciences Flexible Global Ocean–Atmosphere–Land System Model,GridPoint version 3(CAS FGOALS-g3).FGOALS-g3 is driven by eight shared socioeconomic pathways(SSPs)with different sets of future emission,concentration,and land-use scenarios.All Tier 1 and 2 experiments were carried out and were initialized using historical runs.A branch run method was used for the ensemble simulations.Model outputs were three-hourly,six-hourly,daily,and/or monthly mean values for the primary variables of the four component models.An evaluation and analysis of the simulations is also presented.The present results are expected to aid research into future climate change and socio-economic development.展开更多
The datasets for the tier-1 Scenario Model Intercomparison Project(ScenarioMIP)experiments from the Chinese Academy of Sciences(CAS)Flexible Global Ocean-Atmosphere-Land System model,finite-volume version 3(CAS FGOALS...The datasets for the tier-1 Scenario Model Intercomparison Project(ScenarioMIP)experiments from the Chinese Academy of Sciences(CAS)Flexible Global Ocean-Atmosphere-Land System model,finite-volume version 3(CAS FGOALS-f3-L)are described in this study.ScenarioMIP is one of the core MIP experiments in phase 6 of the Coupled Model Intercomparison Project(CMIP6).Considering future CO2,CH4,N2O and other gases’concentrations,as well as land use,the design of ScenarioMIP involves eight pathways,including two tiers(tier-1 and tier-2)of priority.Tier-1 includes four combined Shared Socioeconomic Pathways(SSPs)with radiative forcing,i.e.,SSP1-2.6,SSP2-4.5,SSP3-7.0 and SSP5-8.5,in which the globally averaged radiative forcing at the top of the atmosphere around the year 2100 is approximately 2.6,4.5,7.0 and 8.5 W m−2,respectively.This study provides an introduction to the ScenarioMIP datasets of this model,such as their storage location,sizes,variables,etc.Preliminary analysis indicates that surface air temperatures will increase by about 1.89℃,3.07℃,4.06℃ and 5.17℃ by around 2100 under these four scenarios,respectively.Meanwhile,some other key climate variables,such as sea-ice extension,precipitation,heat content,and sea level rise,also show significant long-term trends associated with the radiative forcing increases.These datasets will help us understand how the climate will change under different anthropogenic and radiative forcings.展开更多
Flood regulation service(FRS)stands as one of the key benefits that people get from the ecosystem.Under the influence of climate change and human activities,the relationship between supply and demand of FRS would incr...Flood regulation service(FRS)stands as one of the key benefits that people get from the ecosystem.Under the influence of climate change and human activities,the relationship between supply and demand of FRS would increasingly affect regional flood risk and sustainable development.However,there was currently a lack of systematic study on the future supply-demand relationship of FRS in the flood-vulnerable area undergoing rapidly development in China.This study integrated the Scenario Model Intercomparison Project(ScenarioMIP)with the Shared Socioeconomic Pathways(SSPs)datasets and climate model data to quantify the supply-demand ratio(SDR)of FRS in the Yangtze River Delta(YRD),China from 2020 to 2050.Trend analyses were conducted using linear regres-sion,Theil-Sen median estimation,and Hurst exponent analysis,while key drivers of SDR changes were identified and quantified through the Lindeman-Merenda-Gold(LMG)method between 2021 and 2050.Results show that the supply of FRS in the YRD was generally insufficient to meet the demand.The imbalanced subbasins covered 88.24%of the total study area,with 34.48%of this imbal-anced area concentrated in the Southeastern Basin in China.During 2021 and 2050,the imbalance of FRS supply-demand relationship would largely aggravate in the YRD,of which the aggravated area would account for 77.23%.Under different scenarios,the SDR for FRS would decrease significantly,with rates ranging from-5.45×10^(-4) to-2.06×10^(-4)(P<0.05).Especially,the decline rate of SDR in the YRD Basin(DeltaB)reached 2.92 times that the average of YRD.Human activities were the primary factors that exacerbated the imbalance in FRS supply-demand relationship,of which the relative contribution rate exceeds 75%.Particular attention should be direc-ted toward critical regions like the Southeast Basin in China(SEB)and DeltaB where substantial aggravation of supply-demand imbal-ances of FRS is projected.展开更多
Global warming may result in increased polar amplification,but future temperature changes under different climate change scenarios have not been systematically investigated over Antarctica.An index of Antarctic amplif...Global warming may result in increased polar amplification,but future temperature changes under different climate change scenarios have not been systematically investigated over Antarctica.An index of Antarctic amplification(AnA)is defined,and the annual and seasonal variations of Antarctic mean temperature are examined from projections of the Coupled Model Intercomparison Project Phase 6(CMIP6)under scenarios SSP119,SSP126,SSP245,SSP370 and SSP585.AnA occurs under all scenarios,and is strongest in the austral summer and autumn,with an AnA index greater than 1.40.Although the warming over Antarctica accelerates with increased anthropogenic forcing,the magnitude of AnA is greatest in SSP126 instead of in SSP585,which may be affected by strong ocean heat uptake in high forcing scenario.Moreover,future AnA shows seasonal difference and regional difference.AnA is most conspicuous in the East Antarctic sector,with the amplification occurring under all scenarios and in all seasons,especially in austral summer when the AnA index is greater than 1.50,and the weakest signal appears in austral winter.Differently,the AnA over West Antarctica is strongest in austral autumn.Under SSP585,the temperature increase over the Antarctic Peninsula exceeds 0.5℃when the global average warming increases from 1.5℃to 2.0℃above preindustrial levels,except in the austral summer,and the AnA index in this region is strong in the austral autumn and winter.The projections suggest that the warming rate under different scenarios might make a large difference to the future AnA.展开更多
基金This study was supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0603903,2017YFA0603901,and 2017YFA0603902)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB42010404)the National Basic Research(973)Program of China(Grant Nos.2015CB954102).
文摘This paper describes the datasets from the Scenario Model Intercomparison Project(ScenarioMIP)simulation experiments run with the Chinese Academy of Sciences Flexible Global Ocean–Atmosphere–Land System Model,GridPoint version 3(CAS FGOALS-g3).FGOALS-g3 is driven by eight shared socioeconomic pathways(SSPs)with different sets of future emission,concentration,and land-use scenarios.All Tier 1 and 2 experiments were carried out and were initialized using historical runs.A branch run method was used for the ensemble simulations.Model outputs were three-hourly,six-hourly,daily,and/or monthly mean values for the primary variables of the four component models.An evaluation and analysis of the simulations is also presented.The present results are expected to aid research into future climate change and socio-economic development.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA19060102 and XDB42000000)the National Natural Science Foundation of China(Grants Nos.41530426 and 91958201)。
文摘The datasets for the tier-1 Scenario Model Intercomparison Project(ScenarioMIP)experiments from the Chinese Academy of Sciences(CAS)Flexible Global Ocean-Atmosphere-Land System model,finite-volume version 3(CAS FGOALS-f3-L)are described in this study.ScenarioMIP is one of the core MIP experiments in phase 6 of the Coupled Model Intercomparison Project(CMIP6).Considering future CO2,CH4,N2O and other gases’concentrations,as well as land use,the design of ScenarioMIP involves eight pathways,including two tiers(tier-1 and tier-2)of priority.Tier-1 includes four combined Shared Socioeconomic Pathways(SSPs)with radiative forcing,i.e.,SSP1-2.6,SSP2-4.5,SSP3-7.0 and SSP5-8.5,in which the globally averaged radiative forcing at the top of the atmosphere around the year 2100 is approximately 2.6,4.5,7.0 and 8.5 W m−2,respectively.This study provides an introduction to the ScenarioMIP datasets of this model,such as their storage location,sizes,variables,etc.Preliminary analysis indicates that surface air temperatures will increase by about 1.89℃,3.07℃,4.06℃ and 5.17℃ by around 2100 under these four scenarios,respectively.Meanwhile,some other key climate variables,such as sea-ice extension,precipitation,heat content,and sea level rise,also show significant long-term trends associated with the radiative forcing increases.These datasets will help us understand how the climate will change under different anthropogenic and radiative forcings.
基金Under the auspices of National Natural Science Foundation of China(No.42101251)。
文摘Flood regulation service(FRS)stands as one of the key benefits that people get from the ecosystem.Under the influence of climate change and human activities,the relationship between supply and demand of FRS would increasingly affect regional flood risk and sustainable development.However,there was currently a lack of systematic study on the future supply-demand relationship of FRS in the flood-vulnerable area undergoing rapidly development in China.This study integrated the Scenario Model Intercomparison Project(ScenarioMIP)with the Shared Socioeconomic Pathways(SSPs)datasets and climate model data to quantify the supply-demand ratio(SDR)of FRS in the Yangtze River Delta(YRD),China from 2020 to 2050.Trend analyses were conducted using linear regres-sion,Theil-Sen median estimation,and Hurst exponent analysis,while key drivers of SDR changes were identified and quantified through the Lindeman-Merenda-Gold(LMG)method between 2021 and 2050.Results show that the supply of FRS in the YRD was generally insufficient to meet the demand.The imbalanced subbasins covered 88.24%of the total study area,with 34.48%of this imbal-anced area concentrated in the Southeastern Basin in China.During 2021 and 2050,the imbalance of FRS supply-demand relationship would largely aggravate in the YRD,of which the aggravated area would account for 77.23%.Under different scenarios,the SDR for FRS would decrease significantly,with rates ranging from-5.45×10^(-4) to-2.06×10^(-4)(P<0.05).Especially,the decline rate of SDR in the YRD Basin(DeltaB)reached 2.92 times that the average of YRD.Human activities were the primary factors that exacerbated the imbalance in FRS supply-demand relationship,of which the relative contribution rate exceeds 75%.Particular attention should be direc-ted toward critical regions like the Southeast Basin in China(SEB)and DeltaB where substantial aggravation of supply-demand imbal-ances of FRS is projected.
基金supported by the National Natural Science Foundation of China(Grant No.42276260,41671073)the 2021 technical support talent project of the Chinese Academy of Sciences。
文摘Global warming may result in increased polar amplification,but future temperature changes under different climate change scenarios have not been systematically investigated over Antarctica.An index of Antarctic amplification(AnA)is defined,and the annual and seasonal variations of Antarctic mean temperature are examined from projections of the Coupled Model Intercomparison Project Phase 6(CMIP6)under scenarios SSP119,SSP126,SSP245,SSP370 and SSP585.AnA occurs under all scenarios,and is strongest in the austral summer and autumn,with an AnA index greater than 1.40.Although the warming over Antarctica accelerates with increased anthropogenic forcing,the magnitude of AnA is greatest in SSP126 instead of in SSP585,which may be affected by strong ocean heat uptake in high forcing scenario.Moreover,future AnA shows seasonal difference and regional difference.AnA is most conspicuous in the East Antarctic sector,with the amplification occurring under all scenarios and in all seasons,especially in austral summer when the AnA index is greater than 1.50,and the weakest signal appears in austral winter.Differently,the AnA over West Antarctica is strongest in austral autumn.Under SSP585,the temperature increase over the Antarctic Peninsula exceeds 0.5℃when the global average warming increases from 1.5℃to 2.0℃above preindustrial levels,except in the austral summer,and the AnA index in this region is strong in the austral autumn and winter.The projections suggest that the warming rate under different scenarios might make a large difference to the future AnA.