期刊文献+
共找到13,832篇文章
< 1 2 250 >
每页显示 20 50 100
Dynamic impact simulation tests of deep roadways affected by high stress and fault slip
1
作者 Qi Wang Yuncai Wang +3 位作者 Zhenhua Jiang Hongpu Kang Chong Zhang Bei Jiang 《International Journal of Mining Science and Technology》 2025年第4期519-537,共19页
As coal mining depth increases,the combined effects of high stress,mining stress,and fault structures make dynamic impact hazards more frequent.The reproduction of dynamic impact phenomena is basis for studying their ... As coal mining depth increases,the combined effects of high stress,mining stress,and fault structures make dynamic impact hazards more frequent.The reproduction of dynamic impact phenomena is basis for studying their occurrence patterns and control mechanisms.Physical simulation test represents an efficacious methodology.However,there is currently a lack of simulation devices that can effectively simulate two types of dynamic impact phenomena,including high stress and fault slip dynamic impact.To solve aforementioned issues,the physical simulation test system for dynamic impact in deep roadways developed by authors is employed to carry out comparative tests of high stress and fault slip dynamic impact.The phenomena of high stress and fault slip dynamic impact are reproduced successfully.A comparative analysis is conducted on dynamic phenomena,stress evolution,roadway deformation,and support force.The high stress dynamic impact roadway instability mode,which is characterized by the release of high energy accompanied by symmetric damage,and the fault slip dynamic impact roadway instability mode,which is characterized by the propagation of unilateral stress waves accompanied by asymmetric damage,are clarified.On the basis,the differentiated control concepts for different types of dynamic impact in deep roadways are proposed. 展开更多
关键词 Deep roadway Dynamic impact simulation high stress Fault slip Occurrence law
在线阅读 下载PDF
Changes in shale microstructure and fluid flow under high temperature:Experimental analysis and fluid-structure interaction simulation
2
作者 Xiang-Ru Chen Xin Tang +4 位作者 Rui-Gang Zhang Heng Yang Qiu-Qi Chen Zhang-Ping Yan Lei Zhang 《Petroleum Science》 2025年第4期1699-1711,共13页
Oil shale is characterized by a dense structure,low proportion of pores and fissures,and low permeability.Pore-fracture systems serve as crucial channels for shale oil migration,directly influencing the production eff... Oil shale is characterized by a dense structure,low proportion of pores and fissures,and low permeability.Pore-fracture systems serve as crucial channels for shale oil migration,directly influencing the production efficiency of shale oil resources.Effectively stimulating oil shale reservoirs remains a challenging and active research topic.This investigation employed shale specimens obtained from the Longmaxi Formation.Scanning electron microscopy,fluid injection experiments,and fluid-structure interaction simulations were used to comprehensively analyze structural changes and fluid flow behavior under high temperatures from microscopic to macroscopic scales.Experimental results indicate that the temperature has little effect on the structure and permeability of shale before 300℃.However,there are two threshold temperatures within the range of 300 to 600℃that have significant effects on the structure and permeability of oil shale.The first threshold temperature is between 300 and 400℃,which causes the oil shale porosity,pore-fracture ratio,and permeability begin to increase.This is manifested by the decrease in micropores and mesopores,the increase in macropores,and the formation of a large number of isolated pores and fissures within the shale.The permeability increases but not significantly.The second threshold temperature is between 500 and 600℃,which increases the permeability of oil shale significantly.During this stage,micropores and mesopores are further reduced,and macropores are significantly enlarged.A large number of connected and penetrated pores and fissures are formed.More numerous and thicker streamlines appear inside the oil shale.The experimental results demonstrate that high temperatures significantly alter the microstructure and permeability of oil shale.At the same time,the experimental results can provide a reference for the research of in-situ heating techniques in oil shale reservoir transformation. 展开更多
关键词 high temperature treatment Oil shale Longmaxi Formation Fluidestructure interaction Fluid simulation
原文传递
Molecular Dynamics Simulations of Micromechanical Behaviours for AlCoCrFeNi_(2.1)High Entropy Alloy during Nanoindentation
3
作者 Ji-Peng Yang Hai-Feng Zhang +1 位作者 Hong-Chao Ji Nan Jia 《Acta Metallurgica Sinica(English Letters)》 2025年第2期218-232,共15页
Eutectic high entropy alloys are noted for their excellent castability and comprehensive mechanical properties.The excellent mechanical properties are closely related to the activation and evolution of deformation mec... Eutectic high entropy alloys are noted for their excellent castability and comprehensive mechanical properties.The excellent mechanical properties are closely related to the activation and evolution of deformation mechanisms at the atomic scale.In this work,AlCoCrFeNi2.1 alloy is taken as the research object.The mechanical behaviors and deformation mechanisms of the FCC and B2 single crystals with different orientations and the FCC/B2 composites with K-S orientation relationship during nanoindentation processes are systematically studied by molecular dynamics simulations.The results show that the mechanical behaviors of FCC single crystals are significantly orientation-dependent,meanwhile,the indentation force of[110]single crystal is the lowest at the elastic-plastic transition point,and that for[100]single crystal is the lowest in plastic deformation stage.Compared with FCC,the stress for B2 single crystals at the elastic-plastic transition point is higher.However,more deformation systems such as stacking faults,twins and dislocation loops are activated in FCC single crystal during the plastic deformation process,resulting in higher indentation force.For composites,the flow stress increases with the increase of B2 phase thickness during the initial stage of deformation.When indenter penetrates heterogeneous interface,the significantly increased deformation system in FCC phase leads to a significant increase in indentation force.The mechanical behaviors and deformation mechanisms depend on the component single crystal.When the thickness of the component layer is less than 15 nm,the heterogeneous interfaces fail to prevent the dislocation slip and improve the indentation force.The results will enrich the plastic deformation mechanisms of multi-principal eutectic alloys and provide guidance for the design of nanocrystalline metallic materials. 展开更多
关键词 high entropy alloy Mechanical behavior Plastic deformation mechanism NANOINDENTATION Molecular dynamics simulation
原文传递
ICA-Net:improving class activation for weakly supervised semantic segmentation via joint contrastive and simulation learning
4
作者 YE Zhuang LIU Ruyu SUN Bo 《Optoelectronics Letters》 2025年第3期188-192,共5页
In the field of optoelectronics,certain types of data may be difficult to accurately annotate,such as high-resolution optoelectronic imaging or imaging in certain special spectral ranges.Weakly supervised learning can... In the field of optoelectronics,certain types of data may be difficult to accurately annotate,such as high-resolution optoelectronic imaging or imaging in certain special spectral ranges.Weakly supervised learning can provide a more reliable approach in these situations.Current popular approaches mainly adopt the classification-based class activation maps(CAM)as initial pseudo labels to solve the task. 展开更多
关键词 high resolution imaging supervised learning class activation maps joint contrastive simulation learning special spectral ranges weakly supervised learning OPTOELECTRONICS
原文传递
Numerical simulation of optimum mining design for high stress hard-rock deposit based on inducing fracturing mechanism 被引量:3
5
作者 姚金蕊 马春德 +1 位作者 李夕兵 杨金林 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第9期2241-2247,共7页
The 3D numerical simulation model of deep hard-rock deposit in Kaiyang Phosphate Mine of Guiyang was established based on the practical engineering using 3DEC numerical simulation software. The distribution characteri... The 3D numerical simulation model of deep hard-rock deposit in Kaiyang Phosphate Mine of Guiyang was established based on the practical engineering using 3DEC numerical simulation software. The distribution characteristics of displacement fields and plastic zones of the orebody were simulated in three different excavation cases, including the case of excavation artificial inducted roadway in the orebody, the case of horizontal or vertical excavation direction and the case of the upward or downward excavation order. The simulation results indicate that the plastic zone and displacement field of surrounding rock around the inducted roadway are continuously increasing with the increase of the exposure time after digging an artificial inducted roadway in the orebody. Thus the raw rock ore becomes easier to be fragmented, which provides advantageous conditions for roadheader to cut high stress hard-rock. It is worthy noting that there is a large difference in effective utilization of deep ground pressure between horizontal and vertical excavation directions. The later can produce larger deformation and fracture zone than the former on the rock mass around the deduced roadway, which means that the later may utilize the high ground pressure more effectively to break hard-rock. And the obtained results also show that upward excavation order is more helpful for ground pressure to break rock than downward excavation order. 展开更多
关键词 inducted fracturing high stress hard-rock deposit excavation case roadheader excavation numerical simulation
在线阅读 下载PDF
Large eddy simulation study of 3D wind field in a complex mountainous area under different boundary conditions 被引量:2
6
作者 Yan LI Lei YAN Xuhui HE 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第7期541-556,共16页
Large eddy simulations generally are used to predict 3D wind field characteristics in complex mountainous areas.Certain simulation boundary conditions,such as the height and length of the computational domain or the c... Large eddy simulations generally are used to predict 3D wind field characteristics in complex mountainous areas.Certain simulation boundary conditions,such as the height and length of the computational domain or the characteristics of inflow turbulence,can significantly impact the quality of predictions.In this study,we examined these boundary conditions within the context of the mountainous terrain around a long-span cable-stayed bridge using a wind tunnel experiment.Various sizes of computational domains and turbulent incoming wind velocities were used in large eddy simulations.The results show that when the height of the computational domain is five times greater than the height of the terrain model,there is minimal influence from the top wall on the wind field characteristics in this complex mountainous area.Expanding the length of the wake region of the computational domain has negligible effects on the wind fields.Turbulence in the inlet boundary reduces the length of the wake region on a leeward hill with a low slope,but has less impact on the mean wind velocity of steep hills. 展开更多
关键词 Large eddy simulation(LES) Spectral representation method Recycling method high mountainous canyon Wind characteristics Atmospheric boundary layer Computational domain
原文传递
Gating system optimization of high pressure die casting thin-wall AlSi10MnMg longitudinal loadbearing beam based on numerical simulation 被引量:9
7
作者 Xu Zhao Ping Wang +4 位作者 Tao Li Bo-yu Zhang Peng Wang Guan-zhou Wang Shi-qi Lu 《China Foundry》 SCIE 2018年第6期436-442,共7页
High pressure die casting(HPDC) is a kind of near net shape manufacturing method. However, air entrapment in HPDC parts has serious effects upon the casting quality. In order to reduce the air entrapment defects in a ... High pressure die casting(HPDC) is a kind of near net shape manufacturing method. However, air entrapment in HPDC parts has serious effects upon the casting quality. In order to reduce the air entrapment defects in a AlSi10 MnMg alloy thin-wall longitudinal load-bearing beam produced by HPDC, different gating systems were designed and simulated by software Flow-3D to evaluate the entrapped air. Simulation results showed that when the beam is produced by the original designed gating system with a middle ingate, there exist obvious air entrapments in the critical area; the volume of air entrapment was reduced by replacing the middle ingate to an overflow well, and the filling of molten metal became more stable. When the middle ingate was removed for further improvement, the volume of air entrapment was decreased drastically. The parts with glossy surface and good microstructure have been successfully produced by using the final optimized gating system based on simulation results. 展开更多
关键词 AlSi10MnMg high pressure DIE CASTING GATING system OPTIMIZATION numerical simulation
在线阅读 下载PDF
The Flow Simulation and Experimental Study of Low-Specific-Speed High-Speed Complex Centrifugal Impellers* 被引量:28
8
作者 崔宝玲 朱祖超 +1 位作者 张剑慈 陈鹰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第4期435-441,共7页
Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model, three-dimensional turbulent flow in four low-specific-speed centrifugal impellers are simulated numerically and analyzed. The relativ... Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model, three-dimensional turbulent flow in four low-specific-speed centrifugal impellers are simulated numerically and analyzed. The relative velocity distribution, pressure distribution and static pressure rise at the design point are obtained for the regular impeller with only long blades and three complex impellers with long, mid or short blades. It is found that the back flow region between long-blade pressure side and mid-blade suction side is diminished and is pushed to pressure side of short blades near the outlet of impeller at suction side by the introduction of mid, short blades, and the size of back flow becomes smaller in a multi-blade complex impeller. And the pressure rises uniformly from inlet to outlet in all the impellers. The simulated results show that the complex impeller with long, mid and short blades can improve the velocity distribution and reduce the back flow in the impeller channel. The experimental results show that the back flow in the impeller has an important influence on the performance of pump and a more-blade complex impeller with long, mid and short blades can effectively solve low flow rate instability of the low-specific-speed centrifugal pump. 展开更多
关键词 centrifugal pump low-specific-speed complex impeller flow simulation high speed experimentalstudy
在线阅读 下载PDF
High density gas state at water/graphite interface studied by molecular dynamics simulation 被引量:10
9
作者 王春雷 李朝霞 +3 位作者 李敬源 修鹏 胡钧 方海平 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第7期2646-2654,共9页
In this paper molecular dynamics simulations are performed to study the accumulation behaviour of N2 and H2 at water/graphite interface under ambient temperature and pressure. It finds that both N2 and H2 molecules ca... In this paper molecular dynamics simulations are performed to study the accumulation behaviour of N2 and H2 at water/graphite interface under ambient temperature and pressure. It finds that both N2 and H2 molecules can accumulate at the interface and form one of two states according to the ratio of gas molecules number to square of graphite surface from our simulation results: gas films (pancake-like) for a larger ratio and nanobubbles for a smaller ratio. In addition, we discuss the stabilities of nanobubbles at different environment temperatures. Surprisingly, it is found that the density of both kinds of gas states can be greatly increased, even comparable with that of the liquid N2 and liquid H2. The present results are expected to be helpful for the understanding of the stable existence of gas film (pancake-like) and nanobubbles. 展开更多
关键词 nanobubbles and gas film hydrophobic interface molecular dynamics simulations high density
原文传递
Numerical Simulation of High Temperature Air Combustion Flames Properties 被引量:4
10
作者 YANG Wei-hong JIANG Shao-jiang +1 位作者 HSIAO Tse-chiang YANG Li-xing 《Journal of Central South University》 SCIE EI CAS 2000年第3期156-158,共3页
High temperature air combustion (HTAC) is an attractive technology of saving energy and controlling environment. The mathematical models of turbulent jet flame under the highly preheated air combustion condition are c... High temperature air combustion (HTAC) is an attractive technology of saving energy and controlling environment. The mathematical models of turbulent jet flame under the highly preheated air combustion condition are conducted in the paper. The mixture fraction/probability density function model is employed. The results show that the maximum flame temperature is decreased, the temperature in the HTAC furnace is more uniform than that in the conventional furnace, and the NO x emission is low. The numerical results are partially validated by some experimental measurements. 展开更多
关键词 high temperature AIR COMBUSTION NUMERICAL simulation FLAME low oxgen
在线阅读 下载PDF
Numerical simulation and control of welding distortion for double floor structure of high speed train 被引量:5
11
作者 Wen-Chao Dong Shan-Ping Lu +3 位作者 Hao Lu Dian-Zhong Li Li-Jian Rong Yi-Yi Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第6期849-859,共11页
The welding heat source models and the plastic tension zone sizes of a typical weld joint involved in the double floor structure of high speed train under different welding parameters were calculated by a thermal-elas... The welding heat source models and the plastic tension zone sizes of a typical weld joint involved in the double floor structure of high speed train under different welding parameters were calculated by a thermal-elastic-plastic FEM analysis based on SYSWELD code.Then,the welding distortion of floor structure was predicted using a linear elastic FEM and shrinkage method based on Weld Planner software.The effects of welding sequence,clamping configuration and reverse deformation on welding distortion of floor structure were examined numerically.The results indicate that the established elastic FEM model for floor structure is reliable for predicting the distribution of welding distortion in view of the good agreement between the calculated results and the measured distortion for real double floor structure.Compared with the welding sequence,the clamping configuration and the reverse deformation have a significant influence on the welding distortion of floor structure.In the case of30 mm reverse deformation,the maximum deformation can be reduced about 70%in comparison to an actual welding process. 展开更多
关键词 Welding distortion Double floor welded structure high speed train Numerical simulation
在线阅读 下载PDF
Device simulation of lead-free CH_3NH_3SnI_3 perovskite solar cells with high efficiency 被引量:5
12
作者 杜会静 王韦超 朱键卓 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第10期554-561,共8页
The lead-free perovskite solar cells(PSCs) have drawn a great deal of research interest due to the Pb toxicity of the lead halide perovskite.CHNHSnIis a viable alternative to CHNHPbX,because it has a narrower band gap... The lead-free perovskite solar cells(PSCs) have drawn a great deal of research interest due to the Pb toxicity of the lead halide perovskite.CHNHSnIis a viable alternative to CHNHPbX,because it has a narrower band gap of 1.3 eV and a wider visible absorption spectrum than the lead halide perovskite.The progress of fabricating tin iodide PSCs with good stability has stimulated the studies of these CHNHSnIbased cells greatly.In the paper,we study the influences of various parameters on the solar cell performance through theoretical analysis and device simulation.It is found in the simulation that the solar cell performance can be improved to some extent by adjusting the doping concentration of the perovskite absorption layer and the electron affinity of the buffer and HTM,while the reduction of the defect density of the perovskite absorption layer significantly improves the cell performance.By further optimizing the parameters of the doping concentration(1.3 × 10cm~3) and the defect density(1 × 10cm~3) of perovskite absorption layer,and the electron affinity of buffer(4.0 eV) and HTM(2.6 eV),we finally obtain some encouraging results of the Jof 31.59 mA/cm~2,Vof 0.92 V,FF of 79.99%,and PCE of 23.36%.The results show that the lead-free CHNHSnIPSC is a potential environmentally friendly solar cell with high efficiency.Improving the Snstability and reducing the defect density of CHNHSnIare key issues for the future research,which can be solved by improving the fabrication and encapsulation process of the cell. 展开更多
关键词 CH_3NH_3SnI_3 perovskite solar cells device simulation high efficiency
原文传递
Detached-eddy simulation of flow around high-speed train on a bridge under cross winds 被引量:3
13
作者 陈敬文 高广军 朱春丽 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第10期2735-2746,共12页
In order to describe an investigation of the flow around high-speed train on a bridge under cross winds using detached-eddy simulation(DES), a 1/8th scale model of a three-car high-speed train and a typical bridge mod... In order to describe an investigation of the flow around high-speed train on a bridge under cross winds using detached-eddy simulation(DES), a 1/8th scale model of a three-car high-speed train and a typical bridge model are employed, Numerical wind tunnel technology based on computational fluid dynamics(CFD) is used, and the CFD models are set as stationary models. The Reynolds number of the flow, based on the inflow velocity and the height of the vehicle, is 1.9×10~6. The computations are conducted under three cases, train on the windward track on the bridge(WWC), train on the leeward track on the bridge(LWC) and train on the flat ground(FGC). Commercial software FLUENT is used and the mesh sensitivity research is carried out by three different grids: coarse, medium and fine. Results show that compared with FGC case, the side force coefficients of the head cars for the WWC and LWC cases increases by 14% and 29%, respectively; the coefficients of middle cars for the WWC and LWC increase by 32% and 10%, respectively; and that of the tail car increases by 45% for the WWC whereas decreases by 2% for the LWC case. The most notable thing is that the side force and the rolling moment of the head car are greater for the LWC, while the side force and the rolling moment of the middle car and the tail car are greater for the WWC. Comparing the velocity profiles at different locations, the flow is significantly influenced by the bridge-train system when the air is close to it. For the three cases(WWC, LWC and FGC), the pressure on the windward side of train is mostly positive while that of the leeward side is negative. The discrepancy of train's aerodynamic force is due to the different surface area of positive pressure and negative pressure zone. Many vortices are born on the leeward edge of the roofs. Theses vortices develop downstream, detach and dissipate into the wake region. The eddies develop irregularly, leading to a noticeably turbulent flow at leeward side of train. 展开更多
关键词 detached-eddy simulation high speed train BRIDGE cross wind flow structure train aerodynamics
在线阅读 下载PDF
Numerical Simulation of Warm Forming Behavior of High Strength Aluminum Alloy 7075 被引量:3
14
作者 Wang Hui Yan Dawei +1 位作者 Liang Yangmin Xie Guoyin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第5期620-625,共6页
Numerical analysis is critically important to understanding the complex deformation mechanics that occur during sheet forming processes.It has been widely used in simulation of sheet metal forming processes at room te... Numerical analysis is critically important to understanding the complex deformation mechanics that occur during sheet forming processes.It has been widely used in simulation of sheet metal forming processes at room temperature in the automotive industry.However,material at elevated temperature behaves more differently than at room temperature and specific material parameters and models need to be developed for the simulation of warm forming.Based on the experimental investigation of material behavior of high strength aluminum alloy 7075(AA7075),constitutive equations with strain rate sensitivity at 140,180 and 220 ℃ are developed.Anisotropic yield criterion Barlat 89 is used in the simulation.Warm forming of limit dome height tests and limit drawing ratio tests of AA7075 at 140,180 and 220℃are performed.Forming limit diagrams developed from experiment at several elevated temperatures in the previous study are used to predict the failure in the simulation results.Punch force and displacement predicted from simulation are compared with the experimental data.Simulation results agree with experimental results,so the developed material model can be used to accurately predict material behavior during isothermal warm forming of the AA7075-T6 alloy. 展开更多
关键词 high strength aluminum alloy warm forming numerical simulation material model
在线阅读 下载PDF
A new numerical simulation model for high pressure squeezing moulding 被引量:3
15
作者 Li Hua Wu Junjiao +1 位作者 Huang Tianyou Makino Hiroyasu 《China Foundry》 SCIE CAS 2011年第1期25-29,共5页
High pressure squeeze is the most popular moulding process applied in modern moulding machines.Because of the unique characters of moulding sand and nonlinearity of squeezing process,the mechanical model is of key imp... High pressure squeeze is the most popular moulding process applied in modern moulding machines.Because of the unique characters of moulding sand and nonlinearity of squeezing process,the mechanical model is of key importance for computer simulation.Drucker-Prager/Cap is a typical soil mechanical theory model and it was used to simulate the squeezing process in this study,while ABAQUS software is used to simulate dynamic stress/strain evolution during the process.The simulation agrees well with the experimental results.We conclude that Drucker-Prager/Cap is an appropriate model for the squeezing compaction of moulding sand,and that the associated nonlinearity can be solved well with ABAQUS software. 展开更多
关键词 high pressure squeeze Drucker-Prager/Cap ABAQUS numerical simulation green sand moulding
在线阅读 下载PDF
Numerical simulation of a high-speed landslidein Chenjiaba, Beichuan, China 被引量:4
16
作者 HUANG Tao DING Ming-tao +2 位作者 SHE Tao TIAN Shu-jun YANG Jiang-tao 《Journal of Mountain Science》 SCIE CSCD 2017年第11期2137-2149,共13页
High-speed landslide is a catastrophic geological disaster in the mountainous area of southwest China. To predict the movement process of landslide reactivation in Chenjiaba town, Beichuan county, Sichuan province, Ch... High-speed landslide is a catastrophic geological disaster in the mountainous area of southwest China. To predict the movement process of landslide reactivation in Chenjiaba town, Beichuan county, Sichuan province, China, we simulated the movement process of two landslide failures in Chenjiaba via rapid mass movement simulation and unmanned aerial vehicle images(UAV), and obtained the movement characteristic parameters of the landslides. According to a back analysis, the most remarkable fitting rheological parameters were friction coefficient(μ=0.18) and turbulence(). The parameter of landslide pressure was applied as the zoning index of landslide hazard to obtain the influence zone and hazard zoning map of the Chenjiaba landslide. Results show that the Duba River was blocked quickly with a landslide accumulation at the maximum height of 44.14 mwhen the Chenjiaba deposits lost stability. The hazard zoning map indicated that the landslide hazard degree is positively correlated with the slope.This landslide assessment is a quantitative hazard assessment method based on a landslide movement process and is suitable for high-speed landslide. Such method can provide a scientific basis for urban construction and planning in the landslide hazard area to avoid hazards effectively. 展开更多
关键词 MASS MOVEMENT simulation high speedlandslide NUMERICAL simulation HAZARD assessment Chenjiaba LANDSLIDE LANDSLIDE pressure
原文传递
The Flow Simulation and Experimental Study of Low-Specific-Speed High-Speed Complex Centrifugal Impellers 被引量:4
17
作者 崔宝玲 朱祖超 +1 位作者 张剑慈 陈鹰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第4X期435-441,共7页
关键词 CENTRIFUGAL pump low-specific-speed COMPLEX IMPELLER flow simulation high SPEED experimental study
在线阅读 下载PDF
Structure optimization and flow field simulation of plate type high speed on-off valve 被引量:8
18
作者 WANG Xiao-jing LI Wen-jie +1 位作者 LI Chun-hui PENG Yi-wen 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第5期1557-1571,共15页
There is a relatively complex flow state inside the high speed on-off valve,which often produces low pressure area and oil reflux in the high-speed opening and closing process of the spool,causing cavitation and vorte... There is a relatively complex flow state inside the high speed on-off valve,which often produces low pressure area and oil reflux in the high-speed opening and closing process of the spool,causing cavitation and vortex and other phenomena.These phenomena will affect the stability of the internal flow field of the plate valve and the flow characteristics of the high speed on-off valve.Aiming at the problems of small flow rate and instability of internal flow field,a new spool structure was designed.The flow field models of two-hole and three-hole plate spools with different openings were established,and software ANSYS Workbench was chosen to mesh the model.The standard k−εturbulence model was selected for numerical simulation using FLUENT software.The pressure distribution and velocity distribution under the same pressure and different opening degree were obtained.The structure and parameters of the optimization model were also obtained.The stability analysis of flow field under different pressure was carried out.The results demonstrate that the three-hole spool has a similar flow field change with the two-hole spool,but it does not create a low pressure zone,and the three-hole spool can work stably at 2 MPa or less.This method improves the appearance of low pressure area and oil backflow in the process of high speed opening and closing of spool.The stability of flow field and the flow rate of high speed switch valve are improved.Finally,the products designed in this paper are compared with existing hydraulic valve products.The results show that the three-hole plate type high speed on-off valve designed in this paper maintains the stability of the internal flow field under the condition of 200 Hz and large opening degree,and realizes the increase of flow rate. 展开更多
关键词 high speed on-off valve flow field simulation pressure and flow characteristics
在线阅读 下载PDF
Construction Simulation and Real-Time Control for High Arch Dam 被引量:6
19
作者 钟登华 任炳昱 吴康新 《Transactions of Tianjin University》 EI CAS 2008年第4期248-253,共6页
A method of combining dynamic simulation with real-time control was proposed to fit the randomness and uncertainty in the high arch dam construction process. The mathematical logic model of high arch dam construction ... A method of combining dynamic simulation with real-time control was proposed to fit the randomness and uncertainty in the high arch dam construction process. The mathematical logic model of high arch dam construction process was established. By combining dynamic construction simulation with schedule analysis, the process of construction schedule forecasting and analysis based on dynamic simulation was studied. The process of real-time schedule control was constructed and some measures for dynamic adjustment and control of construction schedule were provided. A system developed with the method is utilized in a being constructed hydroelectric project located at the Yellow River in northwest China, which can make the pouring plan of the dam in the next stage (a month, quarter or year) to guide the practical construction. The application result shows that the system provides an effective technical support for the construction and management of the dam. 展开更多
关键词 high arch dam construction dynamic simulation schedule forecasting real-time control
在线阅读 下载PDF
NUMERICAL SIMULATION OF EXTRUSION OF COMPOSITE POWDERS PREPARED BY HIGH ENERGY MILLING 被引量:2
20
作者 X.Q.Li W.P.Chen +3 位作者 W.Xia Q.L.Zhu Y.Y.Li E.D.Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第1期51-54,共4页
Based on the characteristic of high energy milling and the micromechanics of composite material, a plastic constitutive equation is implemented for milled composite powders. To check the equation, the extrusion of Ti/... Based on the characteristic of high energy milling and the micromechanics of composite material, a plastic constitutive equation is implemented for milled composite powders. To check the equation, the extrusion of Ti/Al composite powders prepared by high energy milling was simulated. It was from the numerical analysis that the predicted extrusion pressure mounted up with milling time and extrusion ratio increasing, which was perfect agreement with experimental results. 展开更多
关键词 high energy milling composite powder plastic constitutive equation EXTRUSION numerical simulation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部