The combustion modes in two different scramjet combustors with the mass flow rates of 1.8 kg/s and 3.6 kg/s are experimentally investigated to explore the scaling effects on supersonic combustion with a Mach number 2....The combustion modes in two different scramjet combustors with the mass flow rates of 1.8 kg/s and 3.6 kg/s are experimentally investigated to explore the scaling effects on supersonic combustion with a Mach number 2.0 inflow.It is found that the scramjet combustor with a larger scale can broaden the flame rich blowout limit.As the Equivalence Ratio(ER)increases,the combustion in the small-scale combustor maintains in the cavity-stabilized mode,and the flamebase moves downstream along the cavity shear layer;however,the combustion in the large-scale combustor gradually transfers from the cavity-stabilized mode to the jet-wake-stabilized mode.The differences in the cavity residence time,the ignition delay time and the Damkohler number caused by different scales of the scramjet combustor are likely to account for the scaling effects on the combustion modes.展开更多
Validation is one of the most important processes used to evaluate whether remotely sensed products can accurately reflect land surface configuration. Leaf Area Index( LAI) is a key parameter that represents vegetatio...Validation is one of the most important processes used to evaluate whether remotely sensed products can accurately reflect land surface configuration. Leaf Area Index( LAI) is a key parameter that represents vegetation canopy structures and growth conditions. Accurate evaluation of LAI products is the basis for applying them to land surface models. In this study,validation methods of coarse resolution MODIS and GLASS LAI products for heterogeneous pixels are established on the basis of the scaling effect and the scaling transformation. Considering spatial heterogeneity and growth difference,we transformed LAI from field measurements into a 1 km resolution scale with the aid of middle resolution images. We used average LAI and apparent LAI separately to validate the algorithms and products of MODIS and GLASS LAI. Two study areas,Hebi City and the Yingke Oasis,were selected for validation. Both MODIS and GLASS LAI products underestimate the true LAI in crop area. However,this result cannot be completely attributed to their algorithms. Instead,the primary reason is the heterogeneity and nonuniformity of the coarse pixels.Underestimation is evident in the Yingke Oasis,where heterogeneity is significant. Given that GLASS LAI product is the fusion of multiple LAI products,the mean value of this product is closer to the real situation,but the dynamic range is narrower than that of MODIS LAI product.展开更多
The paper deals with miniature actuators and scaling effect, which occurs in using of these actuators. Scaling effect describes how much decreased performance in miniaturized actuator is. Scaling effect law helps to m...The paper deals with miniature actuators and scaling effect, which occurs in using of these actuators. Scaling effect describes how much decreased performance in miniaturized actuator is. Scaling effect law helps to make perfect decision for right type of actuator. This analysis should be as the first strategic step for actuator selection. Research in area of in-pipe machine shows that scaling effect in both used actuator types (electromagnetic and piezoelectric) is the same. Passive forces cannot be neglected, because of their values, which are comparable with active forces in system. There is a potential risk, that designed system will have bigger passive forces than active forces and system cannot fulfill requirements. Energy sources selection has also important role in system design with respecting the energy requirements of selected actuator. Consequently, energy balance is also important viewpoint for actuator selection.展开更多
In response to the lack of objective evaluation criteria for interpreting the spatial scales of historical streets,as well as the problem of fragmented and complex textures,this research proposes an analysis method fo...In response to the lack of objective evaluation criteria for interpreting the spatial scales of historical streets,as well as the problem of fragmented and complex textures,this research proposes an analysis method for assessing the spatial scaling effects using the Ping Ge type map.Drawing on the Ping Ge cartographic methods from the Qing Dynasty(1644-1911),it connects ancient measurement systems with objective evaluation criteria based on object relations and utilizes surveying maps from the Republic of China(1912-1949)to clarify temporal attributes of texture.The study employs a typical case study to demonstrate the feasibility of using the Ping Ge type map in interpreting historical streets.By creating the Ping Ge type map of the East-West Street in Quanzhou Ancient City and utilizing form diagrams,it reveals patterns such as scale multiplications within respective plots,transformations in linear sequences of streets,and increases or decreases in plot series scales.The case analysis indicates that the Ping Ge type map effectively uncover the spatial scaling characteristics of historical street layouts in China and can transform them into design resources that preserve the inner order of cities,thereby promoting spatial scaling awareness in the planning and design of regional architectural clusters.展开更多
The leaf area index(LAI) is a critical biophysical variable that describes canopy geometric structures and growth conditions.It is also an important input parameter for climate,energy and carbon cycle models.The scali...The leaf area index(LAI) is a critical biophysical variable that describes canopy geometric structures and growth conditions.It is also an important input parameter for climate,energy and carbon cycle models.The scaling effect of the LAI has always been of concern.Considering the effects of the clumping indices on the BRDF models of discrete canopies,an effective LAI is defined.The effective LAI has the same function of describing the leaf density as does the traditional LAI.Therefore,our study was based on the effective LAI.The spatial scaling effect of discrete canopies significantly differed from that of continuous canopies.Based on the directional second-derivative method of effective LAI retrieval,the mechanism responsible for the spatial scaling effect of the discrete-canopy LAI is discussed and a scaling transformation formula for the effective LAI is suggested in this paper.Theoretical analysis shows that the mean values of effective LAIs retrieved from high-resolution pixels were always equal to or larger than the effective LAIs retrieved from corresponding coarse-resolution pixels.Both the conclusions and the scaling transformation formula were validated with airborne hyperspectral remote sensing imagery obtained in Huailai County,Zhangjiakou,Hebei Province,China.The scaling transformation formula agreed well with the effective LAI retrieved from hyperspectral remote sensing imagery.展开更多
The topographic factor(LS factor),derived from the multiplication of the slope length(L)and slope steepness(S)factors,is a vital parameter in soil erosion models.Generated from the digital elevation model(DEM),the LS ...The topographic factor(LS factor),derived from the multiplication of the slope length(L)and slope steepness(S)factors,is a vital parameter in soil erosion models.Generated from the digital elevation model(DEM),the LS factor always varies with the changing DEM resolution,i.e.,the LS factor scale effect.Previous studies have found the phenomenon of the LS factor scale effect,but the underlying causes of this phenomenon has not been well explored.Therefore,how the DEM resolution affects the LS factor and how the scale effect of the L and S factors influence the LS factor scale effect remains unclear.To address these problems,we collected 20 watersheds from the Guangdong Province with different topographic reliefs,and compared the corresponding L,S and LS factors at 10-m and 30-m resolution DEMs.Our results indicate that the S factor,heavily influenced by slope underestimation in coarse-resolution DEMs,makes a difference in the LS factor scale effect.In addition,the LS factor scale effect becomes less significant with increasing reliefs,suggesting the possibility of using 30-m DEM for LS calculation in rugged terrains.Our findings on the underlying mechanisms of the LS factor scale effect help to identify the uncertainty in the LS factor estimation,thereby enhancing the accuracy of soil erosion assessment,particularly in regions with different topographic characteristics and contribute to more effective soil conservation strategies and decision-making.展开更多
Research on scale effects on flows over weirs has been conducted on a limited basis, primarily focusing on flows upstream of a single-type weir, such as ogee, broad-crested, and sharp-crested (linear and non-linear) w...Research on scale effects on flows over weirs has been conducted on a limited basis, primarily focusing on flows upstream of a single-type weir, such as ogee, broad-crested, and sharp-crested (linear and non-linear) weirs. However, the scale effects downstream of these single-type weirs have not been thoroughly investigated. This study examined the scale effects on flows over a combined weir system consisting of an ogee weir and a sharp-crested weir, both upstream and downstream, utilizing physical modeling at a 1:33.33 scale based on Froude similarity and three-dimensional (3D) computational fluid dynamics (CFD) modeling. The sharp-crested weir in this study was represented by two sluice gates that remain closed and submerged during flood events. The experimental data confirmed that the equivalent discharge coefficients of the combined weir system behaved similarly to those of a sharp-crested weir across various H/P (where H is the total head, and P is the weir height) values. However, scale effects on the discharge rating curve due to surface tension and viscosity could only be minimized when H/P > 0.4, Re > 26 959, and We > 240 (where Re and We are the Reynolds and Weber numbers, respectively), provided that the water depth exceeded 0.042 m above the crest. Additionally, Re greater than 4 × 104 was necessary to minimize scale effects caused by viscosity in flows in the spillway channel and stilling basin (with baffle blocks). The limiting criteria aligned closely with existing literature. This study offers valuable insights for practical applications in hydraulic engineering in the future.展开更多
The joint roughness coefficient(JRC) is one of the key parameters for evaluating the shear strength of rock joints.Because of the scale effect in the JRC,reliable JRC values are of great importance for most rock engin...The joint roughness coefficient(JRC) is one of the key parameters for evaluating the shear strength of rock joints.Because of the scale effect in the JRC,reliable JRC values are of great importance for most rock engineering projects.During the collection process of JRC samples,the redundancy or insufficiency of representative rock joint surface topography(RJST) information in serial length JRC samples is the essential reason that affects the reliability of the scale effect results.Therefore,this paper proposes an adaptive sampling method,in which we use the entropy consistency measure Q(a) to evaluate the consistency of the joint morphology information contained in adjacent JRC samples.Then the sampling interval is automatically adjusted according to the threshold Q(at) of the entropy consistency measure to ensure that the degree of change of RJST information between JRC samples is the same,and ultimately makes the representative RJST information in the collected JRC samples more balanced.The application results of actual cases show that the proposed method can obtain the scale effect in the JRC efficiently and reliably.展开更多
Joint surface roughness is comprised of two components:large-scale(waviness,first-order)and smallscale(unevenness,second-order).To investigate the scale effect of two-order roughness,a surface area method is used to s...Joint surface roughness is comprised of two components:large-scale(waviness,first-order)and smallscale(unevenness,second-order).To investigate the scale effect of two-order roughness,a surface area method is used to separate the waviness and unevenness from the whole joint surface of each size.The results show that as the joint size increases,the first-order roughness exhibits a decrease,whereas the second-order roughness remains constant.This indicates that the roughness scale effect is primarily attributed to the waviness.Then,the influence of two-order roughness on the scale effect of joint shear strength is examined through a series of laboratory tests.The test results reveal a negative scale effect on the peak friction angle,which exhibits a strong correlation with the first-order roughness.The decrease in the peak friction angle with normal stress can be attributed primarily to the degradation of second-order roughness,which shows a negative exponential trend.Finally,an empirical model for estimating the peak friction angle of rock joints at different scales is proposed based on two-order roughness.The prediction accuracy of this model is validated by comparing the existing criteria.展开更多
Geological strength index(GSI)has been widely used as an input parameter in predicting the strength and deformation properties of rock masses.This study derived a series of equations to satisfy the original GSI lines ...Geological strength index(GSI)has been widely used as an input parameter in predicting the strength and deformation properties of rock masses.This study derived a series of equations to satisfy the original GSI lines on the basic GSI chart.Two axes ranging from 0 to 100 were employed for surface conditions of the discontinuities and the structure of rock mass,which are independent of the input parameters.The derived equations can analyze GSI values ranging from 0 to 100 within±5%error.The engineering dimensions(EDs)such as the slope height,tunnel width,and foundation width were used together with representative elementary volume(REV)in jointed rock mass to define scale factor(sf)from 0.2 to 1 in evaluating the rock mass structure including joint pattern.The transformation of GSI into a scaledependent parameter based on engineering scale addresses a crucial requirement in various engineering applications.The improvements proposed in this study were applied to a real slope which was close to the time of failure.The results of stability assessments show that the new proposals have sufficient capability to define rock mass quality considering EDs.展开更多
The scale effect on shear strength of rock joints is well-documented.However,whether scale effects are negative,positive,or even exist or not is still controversial.Joint roughness significantly influences the shear s...The scale effect on shear strength of rock joints is well-documented.However,whether scale effects are negative,positive,or even exist or not is still controversial.Joint roughness significantly influences the shear strength of rock joints.Compared to the shear tests,using the joint roughness coefficient(JRC)and its roughness parameters offers a more convenient method for describing the scale effect on shear strength.However,it is crucial to understand that the scale effect mechanisms of JRC are distinct from those of shear strength.Therefore,this paper aims to clarify these distinct mechanisms.By digitally extracting roughness parameters from granite samples,it is found that the scale effect of roughness parameters mainly comes from the sampling methods and the geometric characteristics of parameters.Furthermore,a full data sampling method considering heterogeneity is proposed to obtain more representative roughness parameters.To reveal the scale effect mechanisms of shear strength,Gaussian filtering is firstly used to separate the waviness and unevenness components of roughness,facilitating a deeper understanding of the geometric characteristics of roughness.It is suggested that the wavelength of the waviness component can reflect the scale effect on shear strength.Secondly,numerical simulations of ideal artificial joint models are conducted to validate that the wavelength of the waviness component serves as the dividing point between positive and negative scale effects.The mechanical mechanisms of positive and negative scale effects are also interpreted.Finally,these mechanisms successfully elucidate the occurrence patterns of the scale effect on natural joint profiles.展开更多
To analyze the effect of single grain deformation behaviors on microforming process, a crystal plasticity model was developed considering grains at free surface layer as single grains. Based on the rate-dependent crys...To analyze the effect of single grain deformation behaviors on microforming process, a crystal plasticity model was developed considering grains at free surface layer as single grains. Based on the rate-dependent crystal plasticity theory, the analysis of the scale effect mechanism on upsetting deformation of micro rods was performed with respect to specimen dimension, original grain orientation and its distribution. The results show that flow stress decreases significantly with the scaling down of the specimen. The distribution of the grain orientation has an evident effect on flow stress of the micro specimen, and the effect becomes smaller with the progress of plastic deformation. For the anisotropy of single grains, inhomogeneous deformation occurs at the surface layer, which leads to the increase of surface roughness, especially for small specimens. The effect of grain anisotropy on the surface topography can be decreased by the transition grains. The simulation results are validated by upsetting deformation experiments. This indicates that the developed model is suitable for the analysis of microforming processes with characteristics, such as scale dependency, scatter of flow stress and inhomogeneous deformation.展开更多
Regarding the scale effects on propeller's noncavitation hydrodynamics and hydroacoustics, three similar 7bladed highly-skewed propellers in the wake flow are addressed with diameters of 250, 500 and 1 000 mm, respec...Regarding the scale effects on propeller's noncavitation hydrodynamics and hydroacoustics, three similar 7bladed highly-skewed propellers in the wake flow are addressed with diameters of 250, 500 and 1 000 mm, respectively. The discrete line-spectrum noise and its standardized spectrum level scaling law, together with the total sound pressure level are analyzed. The non-cavitation noise predictions are completed by both the frequency domain method and the time domain method. As a fluctuated noise source, the time-dependent fluctuated pressure and normal velocity distribution on propeller blades are obtained by the unsteady Reynolds-averaged Navier-Stokes ( URANS ) simulation. Results show that the pressure coefficient distribution of three propellers on the 0.7R section is nearly superposed under the same advance ratio. The periodic thrust fluctuation of three propellers can exactly reflect the tonal components of the axial passing frequency (APF) and the blade passing frequency (BPF), and the fluctuation enhancement from the small to the middle propeller at the BPF is greater than that from the middle to the big one. By the two noise prediction methods, the increment of the total sound pressure level from the small to the big propeller differs by 2.49 dB. Following the standardized scaling law, the spectrum curves of the middle and big propellers are nearly the same while significantly differing from the small one. The increment of both the line-spectrum level and the total sound pressure increases with the increase in diameter. It is suggested that the model scale of the propeller should be as large as possible in engineering to reduce the prediction error of the empirical scalin~ law and weaken the scale effects.展开更多
An electrostatic micromotor is compared with a conventional electromagnetic mieromotor, and the scaling effect of driving forces is analysed according to their different operation principles. Characteristic dimension ...An electrostatic micromotor is compared with a conventional electromagnetic mieromotor, and the scaling effect of driving forces is analysed according to their different operation principles. Characteristic dimension L represents the linear scale of micromotors. Electromagnetic driving force is proportional to high-order power of characteristic dimension L whereas electrostatic driving force is not. So, in micro domain, the effect of electrostatic force is larger than that of electromagnetic force, which makes electrostatic micromotor more competitive against electromagnetic alternative in MEMS. In assessing the performance of a micromotor, the power per unit volume and efficiency are the two most important criteria. Hence, the two kinds of micromotors are further compared from these two aspects. The results indicate that electrostatic a micromotor has higher power per unit volume and efficiency, moreover, its structure is simple, it can be made sufficiently small. For those advantages of electrostatic micromotors, they can be used in optical devices, aerospace equipment and medical instruments.展开更多
Specific Catchment Area (SCA) is defined as the upstream catchment area of a unit contour. As one of the key terrain parameters, it is widely used in the modeling of hydrology, soil erosion and ecological environmen...Specific Catchment Area (SCA) is defined as the upstream catchment area of a unit contour. As one of the key terrain parameters, it is widely used in the modeling of hydrology, soil erosion and ecological environment. However, SCA value changes significantly at different DEM resolutions, which inevitably affect terrain analysis results. SCA can be described as the ratio of Catchment Area (CA) and DEM grid length. In this paper, the scale effect of CA is firstly investigated. With Jiuyuangou Gully, a watershed about 70 km2 in northern Shaanxi Province of China, as the test area, it is found that the impacts of DEM scale on CA are different in spatial distribution. CA value in upslope location becomes bigger with the decrease of the DEM resolution. When the location is close to downstream areas the impact of DEM scale on CA is gradually weakening. The scale effect of CA can be concluded as a mathematic trend of exponential decline. Then, a downscaling model of SCA is put forward by introducing the scale factor and the location factor. The scaling model can realize the conversion of SCA value from a coarse DEM resolution to a finer one at pixel level. Experiment results show that the downscaled SCA was well revised, and consistent with SCA at the target resolution with respect to the statistical indexes, histogram and spatial distribution. With the advantages of no empirical parameters, the scaling model could be considered as a simple and objective model for SCA scaling in a rugged drainage area.展开更多
The bleed hole diameter,depth,and boundary layer thickness are key design parameters of a supersonic bleed system.The evolution trend of single-hole bleed flow coefficient with the ratio of boundary layer thickness to...The bleed hole diameter,depth,and boundary layer thickness are key design parameters of a supersonic bleed system.The evolution trend of single-hole bleed flow coefficient with the ratio of boundary layer thickness to bleed hole diameter and the ratio of bleed hole depth to diameter is investigated by numerical simulations under choking and non-choking conditions.The results show that the subsonic leading edge of the circular hole and the subsonic part of the boundary layer are the main factors causing lateral flow of the bleed hole.The effect of diameter on bleed mass flow rate is due to the viscous effect which reduces the effective diameter.The larger the ratio of displacement thickness to bleed hole diameter,the more obvious the viscous effect is.The depth affects bleed flow rate by changing the opening and closing states of the separation zone.When a certain depth is reached,the development of the boundary layer reduces the effective captured stream tube and thus reduces the bleed mass flow rate.The main objective of the study is to obtain the physical mechanism of the bleed hole size parameters affecting the bleed mass flow rate,and to provide theoretical guidance for the selection of the size of bleed holes in the design of a porous arrays bleed system in hypersonic inlets.展开更多
Spatial scale is a fundamental problem in Geography. Scale effect caused by fractal characteristic of coastline becomes a common focus of coastal zone managers and researchers. In this study, based on DEM and remote s...Spatial scale is a fundamental problem in Geography. Scale effect caused by fractal characteristic of coastline becomes a common focus of coastal zone managers and researchers. In this study, based on DEM and remote sensing images, multi-scale continental coastlines of China were extracted and the fractal characteristic was analyzed. The results are shown as follows. (1) The continental coastline of China fits the fractal model, and the fractal dimension is 1.195. (2) The scale significant differences according to uplift effects with fractal dimensions of coastline have and subsidence segments along the continental coastlines of China. (3) The fractal dimension of coastline has significant spatial heterogeneity according to the coastline types. The fractal dimension of sandy coastline located in Luanhe River plain is 1.109. The dimension of muddy coastline located in northern Jiangsu Plain is 1.059, while that of rocky coastline along southeastern Fujian is 1.293. (4) The length of rocky coastline is affected by scale more than that of muddy and sandy coastline. Since coastline is the conjunction of sea, land and air surface, the study of coastline scale effect is one of the scientific bases for the researches on air-sea-land interaction in multi-scales.展开更多
Spectral index methodology has been widely used in Leaf Area Index(LAI) retrieval at different spatial scales. There are differences in the spectral response of different remote sensors and thus spectral scale effect ...Spectral index methodology has been widely used in Leaf Area Index(LAI) retrieval at different spatial scales. There are differences in the spectral response of different remote sensors and thus spectral scale effect generated during the use of spectral indices to retrieve LAI. In this study, PROSPECT, leaf optical properties model and Scattering by Arbitrarily Inclined Layers(SAIL) model, were used to simulate canopy spectral reflectance with a bandwidth of 5 nm and a Gaussian spectral response function was employed to simulate the spectral data at six bandwidths ranging from 10 to 35 nm. Additionally, for bandwidths from 5 to 35 nm, the correlation between the spectral index and LAI, and the sensitivities of the spectral index to changes in LAI and bandwidth were analyzed. Finally, the reflectance data at six bandwidths ranging from 40 to 65 nm were used to verify the spectral scale effect generated during the use of the spectral index to retrieve LAI. Results indicate that Vegetation Index of the Universal Pattern Decomposition(VIUPD) had the highest accuracy during LAI retrieval. Followed by Normalized Difference Vegetation Index(NDVI), Modified Simple Ratio Indices(MSRI) and Triangle Vegetation Index(TVI), although the coefficient of determination R^2 was higher than 0.96, the retrieved LAI values were less than the actual value and thus lacked validity. Other spectral indices were significantly affected by the spectral scale effect with poor retrieval results. In this study, VIUPD, which exhibited a relatively good correlation and sensitivity to LAI, was less affected by the spectral scale effect and had a relatively good retrieval capability. This conclusion supports a purported feature independent of the sensor of this model and also confirms the great potential of VIUPD for retrieval of physicochemical parameters of vegetation using multi-source remote sensing data.展开更多
In order to precisely predict the hazard degree of goaf(HDG), the RS-TOPSIS model was built based on the results of expert investigation. To evaluate the HDG in the underground mine, five structure size factors, i.e. ...In order to precisely predict the hazard degree of goaf(HDG), the RS-TOPSIS model was built based on the results of expert investigation. To evaluate the HDG in the underground mine, five structure size factors, i.e. goaf span, exposed area, goaf height, goaf depth, and pillar width, were selected as the evaluation indexes. And based on rough dependability in rough set(RS)theory, the weights of evaluation indexes were identified by calculating rough dependability between evaluation indexes and evaluation results. Fourty goafs in some mines of western China, whose indexes parameters were measured by cavity monitoring system(CMS), were taken as evaluation objects. In addition, the characteristic parameters of five grades' typical goafs were built according to the interval limits value of single index evaluation. Then, using the technique for order preference by similarity to ideal solution(TOPSIS), five-category classification of HDG was realized based on closeness degree, and the HDG was also identified.Results show that the five-category identification of mine goafs could be realized by RS-TOPSIS method, based on the structure-scale-effect. The classification results are consistent with those of numerical simulation based on stress and displacement,while the coincidence rate is up to 92.5%. Furthermore, the results are more conservative to safety evaluation than numerical simulation, thus demonstrating that the proposed method is more easier, reasonable and more definite for HDG identification.展开更多
During the last three decades, the introduction of new construction materials (e.g. RCC (Roller Compacted Concrete), strengthened gabions) has increased the interest for stepped channels and spillways. However stepped...During the last three decades, the introduction of new construction materials (e.g. RCC (Roller Compacted Concrete), strengthened gabions) has increased the interest for stepped channels and spillways. However stepped chute hydraulics is not simple, because of different flow regimes and importantly because of very-strong interactions between entrained air and turbu- lence. In this study, new air-water flow measurements were conducted in two large-size stepped chute facilities with two step heights in each facility to study experimental distortion caused by scale effects and the soundness of result extrapolation to pro- totypes. Experimental data included distributions of air concentration, air-water flow velocity, bubble frequency, bubble chord length and air-water flow turbulence intensity. For a Froude similitude, the results implied that scale effects were observed in both facilities, although the geometric scaling ratio was only Lr=2 in each case. The selection of the criterion for scale effects is a critical issue. For example, major differences (i.e. scale effects) were observed in terms of bubble chord sizes and turbulence levels al- though little scale effects were seen in terms of void fraction and velocity distributions. Overall the findings emphasize that physical modelling of stepped chutes based upon a Froude similitude is more sensitive to scale effects than classical smooth-invert chute studies, and this is consistent with basic dimensional analysis developed herein.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11925207,11902353 and 91741205)the Foundation of Innovation-oriented Province Construction of Hunan(No.2019RS2028)。
文摘The combustion modes in two different scramjet combustors with the mass flow rates of 1.8 kg/s and 3.6 kg/s are experimentally investigated to explore the scaling effects on supersonic combustion with a Mach number 2.0 inflow.It is found that the scramjet combustor with a larger scale can broaden the flame rich blowout limit.As the Equivalence Ratio(ER)increases,the combustion in the small-scale combustor maintains in the cavity-stabilized mode,and the flamebase moves downstream along the cavity shear layer;however,the combustion in the large-scale combustor gradually transfers from the cavity-stabilized mode to the jet-wake-stabilized mode.The differences in the cavity residence time,the ignition delay time and the Damkohler number caused by different scales of the scramjet combustor are likely to account for the scaling effects on the combustion modes.
基金National High Technology Research and Development Program of China(863 Program)(No.2009AA122103,2012AA12A304)National Natural Science Foundation of China(No.91025006,91325105,41271346)National Basic Research Program of China(973 Program)(No.2013CB733402)
文摘Validation is one of the most important processes used to evaluate whether remotely sensed products can accurately reflect land surface configuration. Leaf Area Index( LAI) is a key parameter that represents vegetation canopy structures and growth conditions. Accurate evaluation of LAI products is the basis for applying them to land surface models. In this study,validation methods of coarse resolution MODIS and GLASS LAI products for heterogeneous pixels are established on the basis of the scaling effect and the scaling transformation. Considering spatial heterogeneity and growth difference,we transformed LAI from field measurements into a 1 km resolution scale with the aid of middle resolution images. We used average LAI and apparent LAI separately to validate the algorithms and products of MODIS and GLASS LAI. Two study areas,Hebi City and the Yingke Oasis,were selected for validation. Both MODIS and GLASS LAI products underestimate the true LAI in crop area. However,this result cannot be completely attributed to their algorithms. Instead,the primary reason is the heterogeneity and nonuniformity of the coarse pixels.Underestimation is evident in the Yingke Oasis,where heterogeneity is significant. Given that GLASS LAI product is the fusion of multiple LAI products,the mean value of this product is closer to the real situation,but the dynamic range is narrower than that of MODIS LAI product.
文摘The paper deals with miniature actuators and scaling effect, which occurs in using of these actuators. Scaling effect describes how much decreased performance in miniaturized actuator is. Scaling effect law helps to make perfect decision for right type of actuator. This analysis should be as the first strategic step for actuator selection. Research in area of in-pipe machine shows that scaling effect in both used actuator types (electromagnetic and piezoelectric) is the same. Passive forces cannot be neglected, because of their values, which are comparable with active forces in system. There is a potential risk, that designed system will have bigger passive forces than active forces and system cannot fulfill requirements. Energy sources selection has also important role in system design with respecting the energy requirements of selected actuator. Consequently, energy balance is also important viewpoint for actuator selection.
基金funded by the National Natural Science Foundation of China(NSFC)Key Program(Grant No.52038007)。
文摘In response to the lack of objective evaluation criteria for interpreting the spatial scales of historical streets,as well as the problem of fragmented and complex textures,this research proposes an analysis method for assessing the spatial scaling effects using the Ping Ge type map.Drawing on the Ping Ge cartographic methods from the Qing Dynasty(1644-1911),it connects ancient measurement systems with objective evaluation criteria based on object relations and utilizes surveying maps from the Republic of China(1912-1949)to clarify temporal attributes of texture.The study employs a typical case study to demonstrate the feasibility of using the Ping Ge type map in interpreting historical streets.By creating the Ping Ge type map of the East-West Street in Quanzhou Ancient City and utilizing form diagrams,it reveals patterns such as scale multiplications within respective plots,transformations in linear sequences of streets,and increases or decreases in plot series scales.The case analysis indicates that the Ping Ge type map effectively uncover the spatial scaling characteristics of historical street layouts in China and can transform them into design resources that preserve the inner order of cities,thereby promoting spatial scaling awareness in the planning and design of regional architectural clusters.
基金supported by the National Natural Science Foundation of China(Grant Nos.91025006,40871186,40730525)National Basic Research Program of China(Grant No.2007CB714402)National High Technology Research and Development Program of China(Grant Nos.2009AA12Z143,2009AA122103)
文摘The leaf area index(LAI) is a critical biophysical variable that describes canopy geometric structures and growth conditions.It is also an important input parameter for climate,energy and carbon cycle models.The scaling effect of the LAI has always been of concern.Considering the effects of the clumping indices on the BRDF models of discrete canopies,an effective LAI is defined.The effective LAI has the same function of describing the leaf density as does the traditional LAI.Therefore,our study was based on the effective LAI.The spatial scaling effect of discrete canopies significantly differed from that of continuous canopies.Based on the directional second-derivative method of effective LAI retrieval,the mechanism responsible for the spatial scaling effect of the discrete-canopy LAI is discussed and a scaling transformation formula for the effective LAI is suggested in this paper.Theoretical analysis shows that the mean values of effective LAIs retrieved from high-resolution pixels were always equal to or larger than the effective LAIs retrieved from corresponding coarse-resolution pixels.Both the conclusions and the scaling transformation formula were validated with airborne hyperspectral remote sensing imagery obtained in Huailai County,Zhangjiakou,Hebei Province,China.The scaling transformation formula agreed well with the effective LAI retrieved from hyperspectral remote sensing imagery.
基金funded by the Guangdong Major Project of Basic and Applied Basic Research(2021B0301030007)the Supplemental Funds for Major Scientific Research Projects of Beijing Normal University,Zhuhai(ZHPT2023013)+1 种基金the National Natural Science Foundation of China(42301387)the Science and Technology Program of Guangdong(No.2024B1212070012)。
文摘The topographic factor(LS factor),derived from the multiplication of the slope length(L)and slope steepness(S)factors,is a vital parameter in soil erosion models.Generated from the digital elevation model(DEM),the LS factor always varies with the changing DEM resolution,i.e.,the LS factor scale effect.Previous studies have found the phenomenon of the LS factor scale effect,but the underlying causes of this phenomenon has not been well explored.Therefore,how the DEM resolution affects the LS factor and how the scale effect of the L and S factors influence the LS factor scale effect remains unclear.To address these problems,we collected 20 watersheds from the Guangdong Province with different topographic reliefs,and compared the corresponding L,S and LS factors at 10-m and 30-m resolution DEMs.Our results indicate that the S factor,heavily influenced by slope underestimation in coarse-resolution DEMs,makes a difference in the LS factor scale effect.In addition,the LS factor scale effect becomes less significant with increasing reliefs,suggesting the possibility of using 30-m DEM for LS calculation in rugged terrains.Our findings on the underlying mechanisms of the LS factor scale effect help to identify the uncertainty in the LS factor estimation,thereby enhancing the accuracy of soil erosion assessment,particularly in regions with different topographic characteristics and contribute to more effective soil conservation strategies and decision-making.
基金supported by the Ministry of Public Works and Housing of Indonesia and Parahyangan Catholic University(Grant No.II/PD/2023-07/02-SJ).
文摘Research on scale effects on flows over weirs has been conducted on a limited basis, primarily focusing on flows upstream of a single-type weir, such as ogee, broad-crested, and sharp-crested (linear and non-linear) weirs. However, the scale effects downstream of these single-type weirs have not been thoroughly investigated. This study examined the scale effects on flows over a combined weir system consisting of an ogee weir and a sharp-crested weir, both upstream and downstream, utilizing physical modeling at a 1:33.33 scale based on Froude similarity and three-dimensional (3D) computational fluid dynamics (CFD) modeling. The sharp-crested weir in this study was represented by two sluice gates that remain closed and submerged during flood events. The experimental data confirmed that the equivalent discharge coefficients of the combined weir system behaved similarly to those of a sharp-crested weir across various H/P (where H is the total head, and P is the weir height) values. However, scale effects on the discharge rating curve due to surface tension and viscosity could only be minimized when H/P > 0.4, Re > 26 959, and We > 240 (where Re and We are the Reynolds and Weber numbers, respectively), provided that the water depth exceeded 0.042 m above the crest. Additionally, Re greater than 4 × 104 was necessary to minimize scale effects caused by viscosity in flows in the spillway channel and stilling basin (with baffle blocks). The limiting criteria aligned closely with existing literature. This study offers valuable insights for practical applications in hydraulic engineering in the future.
基金supported by the National Natural Science Foundation of China(No.42207175)。
文摘The joint roughness coefficient(JRC) is one of the key parameters for evaluating the shear strength of rock joints.Because of the scale effect in the JRC,reliable JRC values are of great importance for most rock engineering projects.During the collection process of JRC samples,the redundancy or insufficiency of representative rock joint surface topography(RJST) information in serial length JRC samples is the essential reason that affects the reliability of the scale effect results.Therefore,this paper proposes an adaptive sampling method,in which we use the entropy consistency measure Q(a) to evaluate the consistency of the joint morphology information contained in adjacent JRC samples.Then the sampling interval is automatically adjusted according to the threshold Q(at) of the entropy consistency measure to ensure that the degree of change of RJST information between JRC samples is the same,and ultimately makes the representative RJST information in the collected JRC samples more balanced.The application results of actual cases show that the proposed method can obtain the scale effect in the JRC efficiently and reliably.
基金supported by the National Natural Science Foundation of China(Grant Nos.42272333 and 42377154)the Ningbo Natural Science Foundation(Grant No.2023J085).
文摘Joint surface roughness is comprised of two components:large-scale(waviness,first-order)and smallscale(unevenness,second-order).To investigate the scale effect of two-order roughness,a surface area method is used to separate the waviness and unevenness from the whole joint surface of each size.The results show that as the joint size increases,the first-order roughness exhibits a decrease,whereas the second-order roughness remains constant.This indicates that the roughness scale effect is primarily attributed to the waviness.Then,the influence of two-order roughness on the scale effect of joint shear strength is examined through a series of laboratory tests.The test results reveal a negative scale effect on the peak friction angle,which exhibits a strong correlation with the first-order roughness.The decrease in the peak friction angle with normal stress can be attributed primarily to the degradation of second-order roughness,which shows a negative exponential trend.Finally,an empirical model for estimating the peak friction angle of rock joints at different scales is proposed based on two-order roughness.The prediction accuracy of this model is validated by comparing the existing criteria.
文摘Geological strength index(GSI)has been widely used as an input parameter in predicting the strength and deformation properties of rock masses.This study derived a series of equations to satisfy the original GSI lines on the basic GSI chart.Two axes ranging from 0 to 100 were employed for surface conditions of the discontinuities and the structure of rock mass,which are independent of the input parameters.The derived equations can analyze GSI values ranging from 0 to 100 within±5%error.The engineering dimensions(EDs)such as the slope height,tunnel width,and foundation width were used together with representative elementary volume(REV)in jointed rock mass to define scale factor(sf)from 0.2 to 1 in evaluating the rock mass structure including joint pattern.The transformation of GSI into a scaledependent parameter based on engineering scale addresses a crucial requirement in various engineering applications.The improvements proposed in this study were applied to a real slope which was close to the time of failure.The results of stability assessments show that the new proposals have sufficient capability to define rock mass quality considering EDs.
基金funded by the National Natural Science Foundation Projects(Grant Nos.41772287 and 42277132)the Key R&D Project of Zhejiang Province(Grant No.2021C03159).
文摘The scale effect on shear strength of rock joints is well-documented.However,whether scale effects are negative,positive,or even exist or not is still controversial.Joint roughness significantly influences the shear strength of rock joints.Compared to the shear tests,using the joint roughness coefficient(JRC)and its roughness parameters offers a more convenient method for describing the scale effect on shear strength.However,it is crucial to understand that the scale effect mechanisms of JRC are distinct from those of shear strength.Therefore,this paper aims to clarify these distinct mechanisms.By digitally extracting roughness parameters from granite samples,it is found that the scale effect of roughness parameters mainly comes from the sampling methods and the geometric characteristics of parameters.Furthermore,a full data sampling method considering heterogeneity is proposed to obtain more representative roughness parameters.To reveal the scale effect mechanisms of shear strength,Gaussian filtering is firstly used to separate the waviness and unevenness components of roughness,facilitating a deeper understanding of the geometric characteristics of roughness.It is suggested that the wavelength of the waviness component can reflect the scale effect on shear strength.Secondly,numerical simulations of ideal artificial joint models are conducted to validate that the wavelength of the waviness component serves as the dividing point between positive and negative scale effects.The mechanical mechanisms of positive and negative scale effects are also interpreted.Finally,these mechanisms successfully elucidate the occurrence patterns of the scale effect on natural joint profiles.
基金Project (50835002) supported by the National Natural Science Foundation of ChinaProject (QC08C55) supported by the Natural Science Foundation of Heilongjiang Province, China Project (200802131031) supported by the PhD. Programs Foundation of Ministry of Education of China for Young Scholars
文摘To analyze the effect of single grain deformation behaviors on microforming process, a crystal plasticity model was developed considering grains at free surface layer as single grains. Based on the rate-dependent crystal plasticity theory, the analysis of the scale effect mechanism on upsetting deformation of micro rods was performed with respect to specimen dimension, original grain orientation and its distribution. The results show that flow stress decreases significantly with the scaling down of the specimen. The distribution of the grain orientation has an evident effect on flow stress of the micro specimen, and the effect becomes smaller with the progress of plastic deformation. For the anisotropy of single grains, inhomogeneous deformation occurs at the surface layer, which leads to the increase of surface roughness, especially for small specimens. The effect of grain anisotropy on the surface topography can be decreased by the transition grains. The simulation results are validated by upsetting deformation experiments. This indicates that the developed model is suitable for the analysis of microforming processes with characteristics, such as scale dependency, scatter of flow stress and inhomogeneous deformation.
基金The National Natural Science Foundation of China(No.51009144)
文摘Regarding the scale effects on propeller's noncavitation hydrodynamics and hydroacoustics, three similar 7bladed highly-skewed propellers in the wake flow are addressed with diameters of 250, 500 and 1 000 mm, respectively. The discrete line-spectrum noise and its standardized spectrum level scaling law, together with the total sound pressure level are analyzed. The non-cavitation noise predictions are completed by both the frequency domain method and the time domain method. As a fluctuated noise source, the time-dependent fluctuated pressure and normal velocity distribution on propeller blades are obtained by the unsteady Reynolds-averaged Navier-Stokes ( URANS ) simulation. Results show that the pressure coefficient distribution of three propellers on the 0.7R section is nearly superposed under the same advance ratio. The periodic thrust fluctuation of three propellers can exactly reflect the tonal components of the axial passing frequency (APF) and the blade passing frequency (BPF), and the fluctuation enhancement from the small to the middle propeller at the BPF is greater than that from the middle to the big one. By the two noise prediction methods, the increment of the total sound pressure level from the small to the big propeller differs by 2.49 dB. Following the standardized scaling law, the spectrum curves of the middle and big propellers are nearly the same while significantly differing from the small one. The increment of both the line-spectrum level and the total sound pressure increases with the increase in diameter. It is suggested that the model scale of the propeller should be as large as possible in engineering to reduce the prediction error of the empirical scalin~ law and weaken the scale effects.
文摘An electrostatic micromotor is compared with a conventional electromagnetic mieromotor, and the scaling effect of driving forces is analysed according to their different operation principles. Characteristic dimension L represents the linear scale of micromotors. Electromagnetic driving force is proportional to high-order power of characteristic dimension L whereas electrostatic driving force is not. So, in micro domain, the effect of electrostatic force is larger than that of electromagnetic force, which makes electrostatic micromotor more competitive against electromagnetic alternative in MEMS. In assessing the performance of a micromotor, the power per unit volume and efficiency are the two most important criteria. Hence, the two kinds of micromotors are further compared from these two aspects. The results indicate that electrostatic a micromotor has higher power per unit volume and efficiency, moreover, its structure is simple, it can be made sufficiently small. For those advantages of electrostatic micromotors, they can be used in optical devices, aerospace equipment and medical instruments.
基金Key Project of National Natural Science Foundation of China No.40930531 National Youth Science Foun-dation of China No.40901185 Specialized Research Fund for the Doctoral Program of Higher Education No.20093207120008
文摘Specific Catchment Area (SCA) is defined as the upstream catchment area of a unit contour. As one of the key terrain parameters, it is widely used in the modeling of hydrology, soil erosion and ecological environment. However, SCA value changes significantly at different DEM resolutions, which inevitably affect terrain analysis results. SCA can be described as the ratio of Catchment Area (CA) and DEM grid length. In this paper, the scale effect of CA is firstly investigated. With Jiuyuangou Gully, a watershed about 70 km2 in northern Shaanxi Province of China, as the test area, it is found that the impacts of DEM scale on CA are different in spatial distribution. CA value in upslope location becomes bigger with the decrease of the DEM resolution. When the location is close to downstream areas the impact of DEM scale on CA is gradually weakening. The scale effect of CA can be concluded as a mathematic trend of exponential decline. Then, a downscaling model of SCA is put forward by introducing the scale factor and the location factor. The scaling model can realize the conversion of SCA value from a coarse DEM resolution to a finer one at pixel level. Experiment results show that the downscaled SCA was well revised, and consistent with SCA at the target resolution with respect to the statistical indexes, histogram and spatial distribution. With the advantages of no empirical parameters, the scaling model could be considered as a simple and objective model for SCA scaling in a rugged drainage area.
基金supported by the National Natural Science Foundation of China(No.11472304)the Graduate Innovation Grant of Hunan Province(No.CX2017B006),China。
文摘The bleed hole diameter,depth,and boundary layer thickness are key design parameters of a supersonic bleed system.The evolution trend of single-hole bleed flow coefficient with the ratio of boundary layer thickness to bleed hole diameter and the ratio of bleed hole depth to diameter is investigated by numerical simulations under choking and non-choking conditions.The results show that the subsonic leading edge of the circular hole and the subsonic part of the boundary layer are the main factors causing lateral flow of the bleed hole.The effect of diameter on bleed mass flow rate is due to the viscous effect which reduces the effective diameter.The larger the ratio of displacement thickness to bleed hole diameter,the more obvious the viscous effect is.The depth affects bleed flow rate by changing the opening and closing states of the separation zone.When a certain depth is reached,the development of the boundary layer reduces the effective captured stream tube and thus reduces the bleed mass flow rate.The main objective of the study is to obtain the physical mechanism of the bleed hole size parameters affecting the bleed mass flow rate,and to provide theoretical guidance for the selection of the size of bleed holes in the design of a porous arrays bleed system in hypersonic inlets.
基金Chinese Academy of Sciences Program, No.KZCX1-YW-12-04 National Natural Science Foundation of China, No.40571129+1 种基金 Natural Science Foundation of Jiangsu Province, No.BK2009627 National High Technology Research and Development Program of China (863 Program), No.2011BAH23B04
文摘Spatial scale is a fundamental problem in Geography. Scale effect caused by fractal characteristic of coastline becomes a common focus of coastal zone managers and researchers. In this study, based on DEM and remote sensing images, multi-scale continental coastlines of China were extracted and the fractal characteristic was analyzed. The results are shown as follows. (1) The continental coastline of China fits the fractal model, and the fractal dimension is 1.195. (2) The scale significant differences according to uplift effects with fractal dimensions of coastline have and subsidence segments along the continental coastlines of China. (3) The fractal dimension of coastline has significant spatial heterogeneity according to the coastline types. The fractal dimension of sandy coastline located in Luanhe River plain is 1.109. The dimension of muddy coastline located in northern Jiangsu Plain is 1.059, while that of rocky coastline along southeastern Fujian is 1.293. (4) The length of rocky coastline is affected by scale more than that of muddy and sandy coastline. Since coastline is the conjunction of sea, land and air surface, the study of coastline scale effect is one of the scientific bases for the researches on air-sea-land interaction in multi-scales.
基金National Natural Science Foundation of China(No.41401002)Jilin Province Science Foundation for Youths(No.20160520077JH)
文摘Spectral index methodology has been widely used in Leaf Area Index(LAI) retrieval at different spatial scales. There are differences in the spectral response of different remote sensors and thus spectral scale effect generated during the use of spectral indices to retrieve LAI. In this study, PROSPECT, leaf optical properties model and Scattering by Arbitrarily Inclined Layers(SAIL) model, were used to simulate canopy spectral reflectance with a bandwidth of 5 nm and a Gaussian spectral response function was employed to simulate the spectral data at six bandwidths ranging from 10 to 35 nm. Additionally, for bandwidths from 5 to 35 nm, the correlation between the spectral index and LAI, and the sensitivities of the spectral index to changes in LAI and bandwidth were analyzed. Finally, the reflectance data at six bandwidths ranging from 40 to 65 nm were used to verify the spectral scale effect generated during the use of the spectral index to retrieve LAI. Results indicate that Vegetation Index of the Universal Pattern Decomposition(VIUPD) had the highest accuracy during LAI retrieval. Followed by Normalized Difference Vegetation Index(NDVI), Modified Simple Ratio Indices(MSRI) and Triangle Vegetation Index(TVI), although the coefficient of determination R^2 was higher than 0.96, the retrieved LAI values were less than the actual value and thus lacked validity. Other spectral indices were significantly affected by the spectral scale effect with poor retrieval results. In this study, VIUPD, which exhibited a relatively good correlation and sensitivity to LAI, was less affected by the spectral scale effect and had a relatively good retrieval capability. This conclusion supports a purported feature independent of the sensor of this model and also confirms the great potential of VIUPD for retrieval of physicochemical parameters of vegetation using multi-source remote sensing data.
基金Project(51074178)supported by the National Natural Science Foundation of ChinaProject(2011ssxt274)supported by the Graduated Students’ Research and Innovation Foundation of Central South University of China+1 种基金Project(2011QNZT087)supported by the Graduated Students’ Free Exploration Foundation of Central South University of ChinaProject(1343-76140000011)supported by Scholarship Award for Excellent Doctoral Student granted by Ministry of Education,China
文摘In order to precisely predict the hazard degree of goaf(HDG), the RS-TOPSIS model was built based on the results of expert investigation. To evaluate the HDG in the underground mine, five structure size factors, i.e. goaf span, exposed area, goaf height, goaf depth, and pillar width, were selected as the evaluation indexes. And based on rough dependability in rough set(RS)theory, the weights of evaluation indexes were identified by calculating rough dependability between evaluation indexes and evaluation results. Fourty goafs in some mines of western China, whose indexes parameters were measured by cavity monitoring system(CMS), were taken as evaluation objects. In addition, the characteristic parameters of five grades' typical goafs were built according to the interval limits value of single index evaluation. Then, using the technique for order preference by similarity to ideal solution(TOPSIS), five-category classification of HDG was realized based on closeness degree, and the HDG was also identified.Results show that the five-category identification of mine goafs could be realized by RS-TOPSIS method, based on the structure-scale-effect. The classification results are consistent with those of numerical simulation based on stress and displacement,while the coincidence rate is up to 92.5%. Furthermore, the results are more conservative to safety evaluation than numerical simulation, thus demonstrating that the proposed method is more easier, reasonable and more definite for HDG identification.
基金Project supported by the National Council for Science and Tech-nology of Mexico (CONACYT)
文摘During the last three decades, the introduction of new construction materials (e.g. RCC (Roller Compacted Concrete), strengthened gabions) has increased the interest for stepped channels and spillways. However stepped chute hydraulics is not simple, because of different flow regimes and importantly because of very-strong interactions between entrained air and turbu- lence. In this study, new air-water flow measurements were conducted in two large-size stepped chute facilities with two step heights in each facility to study experimental distortion caused by scale effects and the soundness of result extrapolation to pro- totypes. Experimental data included distributions of air concentration, air-water flow velocity, bubble frequency, bubble chord length and air-water flow turbulence intensity. For a Froude similitude, the results implied that scale effects were observed in both facilities, although the geometric scaling ratio was only Lr=2 in each case. The selection of the criterion for scale effects is a critical issue. For example, major differences (i.e. scale effects) were observed in terms of bubble chord sizes and turbulence levels al- though little scale effects were seen in terms of void fraction and velocity distributions. Overall the findings emphasize that physical modelling of stepped chutes based upon a Froude similitude is more sensitive to scale effects than classical smooth-invert chute studies, and this is consistent with basic dimensional analysis developed herein.