期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Fast Analysis of Multi-Layered Anisotropic Electromagnetic Propagation Based on Z-Transform Finite-Difference Time-Domain Method with Scale-Compressed Technique
1
作者 Yuxian Zhang Yilin Kang +2 位作者 Xiaoli Feng Lixia Yang Zhixiang Huang 《Electromagnetic Science》 2025年第2期75-89,共15页
In this work,we develop a novel computational method,referred to as SCT-Z-FDTD,which integrates the Z-transform finite-difference time-domain algorithm with a scale-compressed technique incorporating wave vectors.The ... In this work,we develop a novel computational method,referred to as SCT-Z-FDTD,which integrates the Z-transform finite-difference time-domain algorithm with a scale-compressed technique incorporating wave vectors.The proposed approach fa-cilitates accurate modeling of electromagnetic wave propagation through multi-layered anisotropic media,enabling precise evalua-tion of reflection and refraction coefficients over short time intervals.On first place,considering constitutive relationship between electromagnetic fields(E,H)and fluxes(D,B),Z-transform is employed to the anisotropic Maxwell’s curl equations for completing discrete-time form,and then the transverse wave vectors are exploited along a single direction to design the electromagnetic numerical differential process.After that,with the analysis corresponding flow chart,the plane waves are employed with different modes such as transverse electromagnetic,transverse electric,and transverse magnetic to detect the specific propagation.To further verify lower memory and higher efficiency,we select various multi-layered examples with anisotropies for executing the proposed method.Compared with the popular commercial software COMSOL,those data from multi-layered computation are quite consistent with the approximate trend the 2nd-order error convergence. 展开更多
关键词 Z-TRANSFORM FINITE-DIFFERENCE TIME-DOMAIN (Z-FDTD) scale-compressed TECHNIQUE (SCT) Multi-layered electro-magnetic computation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部