A new authentication algorithm for grid identity trusted computing unlimited by hardware is presented;the trusted root is made as an image data.The grid entity is trusted in the soft platform when its feature of image...A new authentication algorithm for grid identity trusted computing unlimited by hardware is presented;the trusted root is made as an image data.The grid entity is trusted in the soft platform when its feature of image root is entirely matched with that from the other entities' feature database in a scale space process.To recognize and detect the stable image root feature,the non-homogeneous linear expandable scale space is proposed.Focusing on relations between the scale parameter of the inhomogeneous Gaussian function terms and the space evolution of thermal diffusion homogeneous equations,three space evolution operators are constructed to exact and mark the feature from image root.Analysis and verification are carried on the new scale space,operators and the core of making decisions for grid entities certifications.展开更多
This paper proposes a model for image restoration by combining the wavelet shrinkage and inverse scale space (ISS) method. The ISS is applied to the wavelet representation to modify the retained wavelet coefficients...This paper proposes a model for image restoration by combining the wavelet shrinkage and inverse scale space (ISS) method. The ISS is applied to the wavelet representation to modify the retained wavelet coefficients, and the coefficients smaller than the threshold are set to zero. The curvature term of the ISS can remove the edge artifacts and preserve sharp edges. For the multiscale interpretation of the ISS and the multiscale property of the wavelet representation, small details are preserved. This paper illustrates that the wavelet ISS model can be deduced from the wavelet based on a total variation minimization problem. A stopping criterion is obtained from this minimization in the sense of the Bregman distance in the wavelet domain. Numerical examples show the improvement for the image denoising with the proposed method in the sense of the signal to noise ratio and with fewer details remained in the residue.展开更多
Inspired by the coarse-to-fine visual perception process of human vision system,a new approach based on Gaussian multi-scale space for defect detection of industrial products was proposed.By selecting different scale ...Inspired by the coarse-to-fine visual perception process of human vision system,a new approach based on Gaussian multi-scale space for defect detection of industrial products was proposed.By selecting different scale parameters of the Gaussian kernel,the multi-scale representation of the original image data could be obtained and used to constitute the multi- variate image,in which each channel could represent a perceptual observation of the original image from different scales.The Multivariate Image Analysis (MIA) techniques were used to extract defect features information.The MIA combined Principal Component Analysis (PCA) to obtain the principal component scores of the multivariate test image.The Q-statistic image, derived from the residuals after the extraction of the first principal component score and noise,could be used to efficiently reveal the surface defects with an appropriate threshold value decided by training images.Experimental results show that the proposed method performs better than the gray histogram-based method.It has less sensitivity to the inhomogeneous of illumination,and has more robustness and reliability of defect detection with lower pseudo reject rate.展开更多
In some applications,there are signals with piecewise structure to be recovered.In this paper,we propose a piecewise_ISS(P_ISS)method which aims to preserve the piecewise sparse structure(or the small-scaled entries)o...In some applications,there are signals with piecewise structure to be recovered.In this paper,we propose a piecewise_ISS(P_ISS)method which aims to preserve the piecewise sparse structure(or the small-scaled entries)of piecewise signals.In order to avoid selecting redundant false small-scaled elements,we also implement the piecewise_ISS algorithm in parallel and distributed manners equipped with a deletion rule.Numerical experiments indicate that compared with alSS,the P_ISS algorithm is more effective and robust for piecewise sparse recovery.展开更多
We propose a framework of hand articulation detection from a monocular depth image using curvature scale space(CSS) descriptors. We extract the hand contour from an input depth image, and obtain the fingertips and fin...We propose a framework of hand articulation detection from a monocular depth image using curvature scale space(CSS) descriptors. We extract the hand contour from an input depth image, and obtain the fingertips and finger-valleys of the contour using the local extrema of a modified CSS map of the contour. Then we recover the undetected fingertips according to the local change of depths of points in the interior of the contour. Compared with traditional appearance-based approaches using either angle detectors or convex hull detectors, the modified CSS descriptor extracts the fingertips and finger-valleys more precisely since it is more robust to noisy or corrupted data;moreover, the local extrema of depths recover the fingertips of bending fingers well while traditional appearance-based approaches hardly work without matching models of hands. Experimental results show that our method captures the hand articulations more precisely compared with three state-of-the-art appearance-based approaches.展开更多
The Noether symmetry and the conserved quantity on time scales in event space are studied in this paper. Firstly, the Lagrangian of parameter forms on time scales in event space are established. The Euler-Lagrange equ...The Noether symmetry and the conserved quantity on time scales in event space are studied in this paper. Firstly, the Lagrangian of parameter forms on time scales in event space are established. The Euler-Lagrange equations and the second EulerLagrange equations of variational calculus on time scales in event space are established. Secondly, based upon the invariance of the Hamilton action on time scales in event space under the infinitesimal transformations of a group, the Noether symmetry and the conserved quantity on time scales in event space are established.Finally, an example is given to illustrate the method and results.展开更多
This paper mainly focuses on the issues about generic multi-scale object perception for detection or recognition. A novel computational model in visually-feature space is presented for scene & object representatio...This paper mainly focuses on the issues about generic multi-scale object perception for detection or recognition. A novel computational model in visually-feature space is presented for scene & object representation to purse the underlying textural manifold statistically in nonparametric manner. The associative method approximately makes perceptual hierarchy in human-vision biologically coherency in specific quad-tree-pyramid structure, and the appropriate scale-value of different objects can automatically be selected by evaluating from well-defined scale function without any priori knowledge. The sufficient experiments truly demonstrate the effectiveness of scale determination in textural manifold with object localization rapidly.展开更多
The closure of a turbulence field is a longstanding fundamental problem, while most closure models are introduced in spectral space. Inspired by Chou's quasi-normal closure method in spectral space, we propose an ana...The closure of a turbulence field is a longstanding fundamental problem, while most closure models are introduced in spectral space. Inspired by Chou's quasi-normal closure method in spectral space, we propose an analytical closure model for isotropic turbulence based on the extended scale similarity theory of the velocity structure function in physical space. The assumptions and certain approximations are justified with direct numerical simulation. The asymptotic scaling properties are reproduced by this new closure method, in comparison to the classical Batchelor model.展开更多
In this paper, we have studied the perfect fluid distribution in the scale invariant theory of gravitation, when the space-time described by Einstein-Rosen metric with a time dependent gauge function. The cosmological...In this paper, we have studied the perfect fluid distribution in the scale invariant theory of gravitation, when the space-time described by Einstein-Rosen metric with a time dependent gauge function. The cosmological equations for this space-time with gauge function are solved and some physical properties of the model are studied.展开更多
The discrete material, which belongs to the category of soft materials, is one of the most prevalent forms of matter in nature and engineering fields. These materials often exhibit abundant and complex mechanical prop...The discrete material, which belongs to the category of soft materials, is one of the most prevalent forms of matter in nature and engineering fields. These materials often exhibit abundant and complex mechanical properties which are still far from being perfectly understood. From the view of multi-scale framework concentrated on the 'bridge' role in the macro-micro relation, this review mainly introduces some theoretical investigations of mechanical behaviors in discrete materials, including the continuum constitutive model based on the macroscopic phenomenological approach and coupled micro-macro approach, the statistical analysis of some microscopic physical quantities involved contacted forces between particles and its transmission within the whole system, and the statistical analysis for some microscopic processes in aeolian landform systems involving the grain-bed impact, the transportation and sedimentation of wind-blown sand flux, et al. Finally, some further worthwhile challenges in these fields are suggested.展开更多
We compare the space-time correlations calculated from direct numerical simulation (DNS) and large-eddy simulation (LES) of turbulent channel flows. It is found from the comparisons that the LES with an eddy-visco...We compare the space-time correlations calculated from direct numerical simulation (DNS) and large-eddy simulation (LES) of turbulent channel flows. It is found from the comparisons that the LES with an eddy-viscosity subgrid scale (SGS) model over-predicts the space-time corre- lations than the DNS. The overpredictions are further quantified by the integral scales of directional correlations and convection velocities. A physical argument for the overpre- diction is provided that the eddy-viscosity SGS model alone does not includes the backscatter effects although it correctly represents the energy dissipations of SGS motions. This argument is confirmed by the recently developed elliptic model for space-time correlations in turbulent shear flows. It suggests that enstrophy is crucial to the LES prediction of spacetime correlations. The random forcing models and stochastic SGS models are proposed to overcome the overpredictions on space-time correlations.展开更多
The degree of spatial similarity plays an important role in map generalization, yet there has been no quantitative research into it. To fill this gap, this study first defines map scale change and spatial similarity d...The degree of spatial similarity plays an important role in map generalization, yet there has been no quantitative research into it. To fill this gap, this study first defines map scale change and spatial similarity degree/relation in multi-scale map spaces and then proposes a model for calculating the degree of spatial similarity between a point cloud at one scale and its gener- alized counterpart at another scale. After validation, the new model features 16 points with map scale change as the x coordinate and the degree of spatial similarity as the y coordinate. Finally, using an application for curve fitting, the model achieves an empirical formula that can calculate the degree of spatial similarity using map scale change as the sole independent variable, and vice versa. This formula can be used to automate algorithms for point feature generalization and to determine when to terminate them during the generalization.展开更多
A sectional curve feature extraction algorithm based on multi-scale analysis is proposed for reverse engineering. The algorithm consists of two parts: feature segmentation and feature classification. In the first part...A sectional curve feature extraction algorithm based on multi-scale analysis is proposed for reverse engineering. The algorithm consists of two parts: feature segmentation and feature classification. In the first part,curvature scale space is applied to multi-scale analysis and original feature detection. To obtain the primary and secondary curve primitives,feature fusion is realized by multi-scale feature detection information transmission. In the second part: projection height function is presented based on the area of quadrilateral,which improved criterions of sectional curve feature classification. Results of synthetic curves and practical scanned sectional curves are given to illustrate the efficiency of the proposed algorithm on feature extraction. The consistence between feature extraction based on multi-scale curvature analysis and curve primitives is verified.展开更多
In order to analyze the effect of wavelength-dependent radiation-induced attenuation (RIA) on the mean trans- mission wavelength in optical fiber and the scale factor of interferometric fiber optic gyroscopes (IFOG...In order to analyze the effect of wavelength-dependent radiation-induced attenuation (RIA) on the mean trans- mission wavelength in optical fiber and the scale factor of interferometric fiber optic gyroscopes (IFOGs), three types of polarization-maintaining (PM) fibers are tested by using a 60Co γ-radiation source. The observed different mean wave- length shift (MWS) behaviors for different fibers are interpreted by color-center theory involving dose rate-dependent absorption bands in ultraviolet and visible ranges and total dose-dependent near-infrared absorption bands. To evaluate the mean wavelength variation in a fiber coil and the induced scale factor change for space-borne IFOGs under low radiation doses in a space environment, the influence of dose rate on the mean wavelength is investigated by testing four germanium (Ge) doped fibers and two germanium-phosphorus (Ge-P) codoped fibers irradiated at different dose rates. Experimental results indicate that the Ge-doped fibers show the least mean wavelength shift during irradiation and their mean wavelength of optical signal transmission in fibers will shift to a shorter wavelength in a low-dose-rate radiation environment. Finally, the change in the scale factor of IFOG resulting from the mean wavelength shift is estimated and tested, and it is found that the significant radiation-induced scale factor variation must be considered during the design of space-borne IFOGs.展开更多
针对齿轮故障诊断中采集到的振动信号常伴有噪声干扰且故障特征难以提取的问题,以傅里叶-贝塞尔级数展开(Fourier-Bessel series expansion,FBSE)为基础,提出了一种将FBSE和基于能量的尺度空间经验小波变换(energy scale space empirica...针对齿轮故障诊断中采集到的振动信号常伴有噪声干扰且故障特征难以提取的问题,以傅里叶-贝塞尔级数展开(Fourier-Bessel series expansion,FBSE)为基础,提出了一种将FBSE和基于能量的尺度空间经验小波变换(energy scale space empirical wavelet transform,ESEWT)相结合的齿轮振动信号降噪方法,即FBSE-ESEWT。首先,将采集到的齿轮振动信号利用FBSE技术获得其频谱,以替代传统的傅里叶谱,接着凭借能量尺度空间划分法对获取的FBSE频谱进行自适应分割和筛选,以精确定位有效频带的边界点。随后通过构建小波滤波器组得到信号分量并进行重构,以减小噪声和冗余信息干扰;然后,为捕捉到更全面的特征信息将处理后的信号进行广义S变换得到时频图,输入2D卷积神经网络进行故障诊断验证算法可行性。通过对Simulink仿真信号和实际采集信号进行实验,结果表明,相对于原始经验小波变换(EWT)、经验模态分解(EMD)等方法,FBSE-ESEWT具有更好的降噪效果,信噪比提高了13.96 dB,诊断准确率高达98.03%。展开更多
In the present work, Scale Relativity (SR) is applied to a particle in a simple harmonic oscillator (SHO) potential. This is done by utilizing a novel mathematical connection between SR approach to quantum mechanics a...In the present work, Scale Relativity (SR) is applied to a particle in a simple harmonic oscillator (SHO) potential. This is done by utilizing a novel mathematical connection between SR approach to quantum mechanics and the well-known Riccati equation. Then, computer programs were written using the standard MATLAB 7 code to numerically simulate the behavior of the quantum particle utilizing the solutions of the fractal equations of motion obtained from SR method. Comparison of the results with the conventional quantum mechanics probability density is shown to be in very precise agreement. This agreement was improved further for some cases by utilizing the idea of thermalization of the initial particle state and by optimizing the parameters used in the numerical simulations such as the time step and number of coordinate divisions. It is concluded from the present work that SR method can be used as a basis for description the quantum behavior without reference to conventional formulation of quantum mechanics. Hence, it can also be concluded that the fractal nature of space-time implied by SR, is at the origin of the quantum behavior observed in these problems. The novel mathematical connection between SR and the Riccati equation, which was previously used in quantum mechanics without reference to SR, needs further investigation in future work.展开更多
A set of microphysics equations is scaled based on the convective length and velocity scales. Comparisons are made among the dynamical transport and various microphysical processes. From the scaling analysis, it becom...A set of microphysics equations is scaled based on the convective length and velocity scales. Comparisons are made among the dynamical transport and various microphysical processes. From the scaling analysis, it becomes apparent which parameterized microphysical processes present off-scaled influences in the integration of the set of microphysics equations. The variabilities of the parameterized microphysical processes are also studied using the approach of a controlled parameter space. Given macroscopic dynamic and thermodynamic conditions in different regions of convective storms, it is possible to analyze and compare vertical profiles of these processes. Bulk diabatic heating profiles for a cumulus convective updraft and downdraft are also derived from this analysis. From the two different angles, the scale analysis and the controlled-parameter space approach can both provide an insight into and an understanding of microphysics parameterizations.展开更多
With the wide use of color in many areas, the interest on the color perception and processing has been growing rapidly. An important topic in color image processing is the development of efficient tools capable of fil...With the wide use of color in many areas, the interest on the color perception and processing has been growing rapidly. An important topic in color image processing is the development of efficient tools capable of filtering images without blurring them and without changing their original chromatic contents. In this paper, a new technique reducing noise of color image is developed. A class of color-scale morphological operations is introduced, which extend mathematical morphology to color image processing, representing a color image as a vector function. The correlation between color components is utilized to perform noise removal. Color-scale morphological niters with multiple structuring elements (CSMF-MSEs) are proposed. Their properties are discussed and proved. Experimental results show that CSMF-MSEs are suitable and powerful to eliminate noise and preserve edges in color image because of efficient utilization of inherent correlation between color components, and they perform better than vector展开更多
The microstructure and stress-rupture property of the large-scale complex single crystal(SX) casting DD10 were investigated in high-rate solidification process. It is found that the primary dendrite arm spacing(PDA...The microstructure and stress-rupture property of the large-scale complex single crystal(SX) casting DD10 were investigated in high-rate solidification process. It is found that the primary dendrite arm spacing(PDAS) does not increase monotonically with the height increase. When across the platform, the temperature gradient increases due to the effect of platform, and the corresponding PDAS decreases. The distribution of eutectic volume fraction in large-scale complex SX casting is affected by PDAS, solid back diffusion, and the development of high order dendrites. The eutectic volume fraction contained in the sample taken below the platform decreases with the height increase. While the eutectic volume fraction contained in the sample taken upper the platform increases gradually with the height increase. After heat treatment,most of the γ/γ' eutectics are eliminated and the components are distributed uniformly. The similar stress rupture properties of the samples at different heights in the same direction are obtained.展开更多
基金Foundation item: Supported by the National Natural Science Foundation (61070151,60903203,61103246)the Natural Science Foundation of Fujian Province (2010J01353)+1 种基金the Xiamen University of Technology Scientific Research Foundation (YKJ11024R)Xiamen Scientific Research Foundation (3502Z20123037)
文摘A new authentication algorithm for grid identity trusted computing unlimited by hardware is presented;the trusted root is made as an image data.The grid entity is trusted in the soft platform when its feature of image root is entirely matched with that from the other entities' feature database in a scale space process.To recognize and detect the stable image root feature,the non-homogeneous linear expandable scale space is proposed.Focusing on relations between the scale parameter of the inhomogeneous Gaussian function terms and the space evolution of thermal diffusion homogeneous equations,three space evolution operators are constructed to exact and mark the feature from image root.Analysis and verification are carried on the new scale space,operators and the core of making decisions for grid entities certifications.
基金supported by the National Natural Science Foundation of China (61101208)
文摘This paper proposes a model for image restoration by combining the wavelet shrinkage and inverse scale space (ISS) method. The ISS is applied to the wavelet representation to modify the retained wavelet coefficients, and the coefficients smaller than the threshold are set to zero. The curvature term of the ISS can remove the edge artifacts and preserve sharp edges. For the multiscale interpretation of the ISS and the multiscale property of the wavelet representation, small details are preserved. This paper illustrates that the wavelet ISS model can be deduced from the wavelet based on a total variation minimization problem. A stopping criterion is obtained from this minimization in the sense of the Bregman distance in the wavelet domain. Numerical examples show the improvement for the image denoising with the proposed method in the sense of the signal to noise ratio and with fewer details remained in the residue.
基金supported in part by the Natural Science Foundation of China (NSFC) (Grant No:50875240).
文摘Inspired by the coarse-to-fine visual perception process of human vision system,a new approach based on Gaussian multi-scale space for defect detection of industrial products was proposed.By selecting different scale parameters of the Gaussian kernel,the multi-scale representation of the original image data could be obtained and used to constitute the multi- variate image,in which each channel could represent a perceptual observation of the original image from different scales.The Multivariate Image Analysis (MIA) techniques were used to extract defect features information.The MIA combined Principal Component Analysis (PCA) to obtain the principal component scores of the multivariate test image.The Q-statistic image, derived from the residuals after the extraction of the first principal component score and noise,could be used to efficiently reveal the surface defects with an appropriate threshold value decided by training images.Experimental results show that the proposed method performs better than the gray histogram-based method.It has less sensitivity to the inhomogeneous of illumination,and has more robustness and reliability of defect detection with lower pseudo reject rate.
基金National Natural Science Foundation of China(Nos.11871137,11471066,11290143)the Fundamental Research of Civil Aircraft(No.MJ-F-2012-04)。
文摘In some applications,there are signals with piecewise structure to be recovered.In this paper,we propose a piecewise_ISS(P_ISS)method which aims to preserve the piecewise sparse structure(or the small-scaled entries)of piecewise signals.In order to avoid selecting redundant false small-scaled elements,we also implement the piecewise_ISS algorithm in parallel and distributed manners equipped with a deletion rule.Numerical experiments indicate that compared with alSS,the P_ISS algorithm is more effective and robust for piecewise sparse recovery.
基金supported by the National Natural Science Foundation of China(Nos.6122700461370120+5 种基金6139051061300065and 61402024)Beijing Municipal Natural Science Foundation,China(No.4142010)Beijing Municipal Commission of Education,China(No.km201410005013)the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality,China
文摘We propose a framework of hand articulation detection from a monocular depth image using curvature scale space(CSS) descriptors. We extract the hand contour from an input depth image, and obtain the fingertips and finger-valleys of the contour using the local extrema of a modified CSS map of the contour. Then we recover the undetected fingertips according to the local change of depths of points in the interior of the contour. Compared with traditional appearance-based approaches using either angle detectors or convex hull detectors, the modified CSS descriptor extracts the fingertips and finger-valleys more precisely since it is more robust to noisy or corrupted data;moreover, the local extrema of depths recover the fingertips of bending fingers well while traditional appearance-based approaches hardly work without matching models of hands. Experimental results show that our method captures the hand articulations more precisely compared with three state-of-the-art appearance-based approaches.
基金Supported by the National Natural Science Foundation of China(11572212 and 11272227)the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province(KYZZ15_0349)the Innovation Program of USTS(SKCX15_061)
文摘The Noether symmetry and the conserved quantity on time scales in event space are studied in this paper. Firstly, the Lagrangian of parameter forms on time scales in event space are established. The Euler-Lagrange equations and the second EulerLagrange equations of variational calculus on time scales in event space are established. Secondly, based upon the invariance of the Hamilton action on time scales in event space under the infinitesimal transformations of a group, the Noether symmetry and the conserved quantity on time scales in event space are established.Finally, an example is given to illustrate the method and results.
文摘This paper mainly focuses on the issues about generic multi-scale object perception for detection or recognition. A novel computational model in visually-feature space is presented for scene & object representation to purse the underlying textural manifold statistically in nonparametric manner. The associative method approximately makes perceptual hierarchy in human-vision biologically coherency in specific quad-tree-pyramid structure, and the appropriate scale-value of different objects can automatically be selected by evaluating from well-defined scale function without any priori knowledge. The sufficient experiments truly demonstrate the effectiveness of scale determination in textural manifold with object localization rapidly.
文摘The closure of a turbulence field is a longstanding fundamental problem, while most closure models are introduced in spectral space. Inspired by Chou's quasi-normal closure method in spectral space, we propose an analytical closure model for isotropic turbulence based on the extended scale similarity theory of the velocity structure function in physical space. The assumptions and certain approximations are justified with direct numerical simulation. The asymptotic scaling properties are reproduced by this new closure method, in comparison to the classical Batchelor model.
文摘In this paper, we have studied the perfect fluid distribution in the scale invariant theory of gravitation, when the space-time described by Einstein-Rosen metric with a time dependent gauge function. The cosmological equations for this space-time with gauge function are solved and some physical properties of the model are studied.
基金Project supported by the Ministry of Science and Technology of China (No. 2009CB421304)National Natural Science Foundation of China (Nos. 10872082 and 11002064)Ministry of Education, Science and Technology Research Project(No. 308022)
文摘The discrete material, which belongs to the category of soft materials, is one of the most prevalent forms of matter in nature and engineering fields. These materials often exhibit abundant and complex mechanical properties which are still far from being perfectly understood. From the view of multi-scale framework concentrated on the 'bridge' role in the macro-micro relation, this review mainly introduces some theoretical investigations of mechanical behaviors in discrete materials, including the continuum constitutive model based on the macroscopic phenomenological approach and coupled micro-macro approach, the statistical analysis of some microscopic physical quantities involved contacted forces between particles and its transmission within the whole system, and the statistical analysis for some microscopic processes in aeolian landform systems involving the grain-bed impact, the transportation and sedimentation of wind-blown sand flux, et al. Finally, some further worthwhile challenges in these fields are suggested.
基金supported by the National Basic Research Program of China (973 Program) (2007CB814800)the National Natural Science Foundation of China (10325211 and 10628206)
文摘We compare the space-time correlations calculated from direct numerical simulation (DNS) and large-eddy simulation (LES) of turbulent channel flows. It is found from the comparisons that the LES with an eddy-viscosity subgrid scale (SGS) model over-predicts the space-time corre- lations than the DNS. The overpredictions are further quantified by the integral scales of directional correlations and convection velocities. A physical argument for the overpre- diction is provided that the eddy-viscosity SGS model alone does not includes the backscatter effects although it correctly represents the energy dissipations of SGS motions. This argument is confirmed by the recently developed elliptic model for space-time correlations in turbulent shear flows. It suggests that enstrophy is crucial to the LES prediction of spacetime correlations. The random forcing models and stochastic SGS models are proposed to overcome the overpredictions on space-time correlations.
基金funded by the Natural Science Foundation Committee,China(41364001,41371435)
文摘The degree of spatial similarity plays an important role in map generalization, yet there has been no quantitative research into it. To fill this gap, this study first defines map scale change and spatial similarity degree/relation in multi-scale map spaces and then proposes a model for calculating the degree of spatial similarity between a point cloud at one scale and its gener- alized counterpart at another scale. After validation, the new model features 16 points with map scale change as the x coordinate and the degree of spatial similarity as the y coordinate. Finally, using an application for curve fitting, the model achieves an empirical formula that can calculate the degree of spatial similarity using map scale change as the sole independent variable, and vice versa. This formula can be used to automate algorithms for point feature generalization and to determine when to terminate them during the generalization.
基金Supported by the Natural Science Foundation of China (50175063)
文摘A sectional curve feature extraction algorithm based on multi-scale analysis is proposed for reverse engineering. The algorithm consists of two parts: feature segmentation and feature classification. In the first part,curvature scale space is applied to multi-scale analysis and original feature detection. To obtain the primary and secondary curve primitives,feature fusion is realized by multi-scale feature detection information transmission. In the second part: projection height function is presented based on the area of quadrilateral,which improved criterions of sectional curve feature classification. Results of synthetic curves and practical scanned sectional curves are given to illustrate the efficiency of the proposed algorithm on feature extraction. The consistence between feature extraction based on multi-scale curvature analysis and curve primitives is verified.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61007040)
文摘In order to analyze the effect of wavelength-dependent radiation-induced attenuation (RIA) on the mean trans- mission wavelength in optical fiber and the scale factor of interferometric fiber optic gyroscopes (IFOGs), three types of polarization-maintaining (PM) fibers are tested by using a 60Co γ-radiation source. The observed different mean wave- length shift (MWS) behaviors for different fibers are interpreted by color-center theory involving dose rate-dependent absorption bands in ultraviolet and visible ranges and total dose-dependent near-infrared absorption bands. To evaluate the mean wavelength variation in a fiber coil and the induced scale factor change for space-borne IFOGs under low radiation doses in a space environment, the influence of dose rate on the mean wavelength is investigated by testing four germanium (Ge) doped fibers and two germanium-phosphorus (Ge-P) codoped fibers irradiated at different dose rates. Experimental results indicate that the Ge-doped fibers show the least mean wavelength shift during irradiation and their mean wavelength of optical signal transmission in fibers will shift to a shorter wavelength in a low-dose-rate radiation environment. Finally, the change in the scale factor of IFOG resulting from the mean wavelength shift is estimated and tested, and it is found that the significant radiation-induced scale factor variation must be considered during the design of space-borne IFOGs.
文摘针对齿轮故障诊断中采集到的振动信号常伴有噪声干扰且故障特征难以提取的问题,以傅里叶-贝塞尔级数展开(Fourier-Bessel series expansion,FBSE)为基础,提出了一种将FBSE和基于能量的尺度空间经验小波变换(energy scale space empirical wavelet transform,ESEWT)相结合的齿轮振动信号降噪方法,即FBSE-ESEWT。首先,将采集到的齿轮振动信号利用FBSE技术获得其频谱,以替代传统的傅里叶谱,接着凭借能量尺度空间划分法对获取的FBSE频谱进行自适应分割和筛选,以精确定位有效频带的边界点。随后通过构建小波滤波器组得到信号分量并进行重构,以减小噪声和冗余信息干扰;然后,为捕捉到更全面的特征信息将处理后的信号进行广义S变换得到时频图,输入2D卷积神经网络进行故障诊断验证算法可行性。通过对Simulink仿真信号和实际采集信号进行实验,结果表明,相对于原始经验小波变换(EWT)、经验模态分解(EMD)等方法,FBSE-ESEWT具有更好的降噪效果,信噪比提高了13.96 dB,诊断准确率高达98.03%。
文摘In the present work, Scale Relativity (SR) is applied to a particle in a simple harmonic oscillator (SHO) potential. This is done by utilizing a novel mathematical connection between SR approach to quantum mechanics and the well-known Riccati equation. Then, computer programs were written using the standard MATLAB 7 code to numerically simulate the behavior of the quantum particle utilizing the solutions of the fractal equations of motion obtained from SR method. Comparison of the results with the conventional quantum mechanics probability density is shown to be in very precise agreement. This agreement was improved further for some cases by utilizing the idea of thermalization of the initial particle state and by optimizing the parameters used in the numerical simulations such as the time step and number of coordinate divisions. It is concluded from the present work that SR method can be used as a basis for description the quantum behavior without reference to conventional formulation of quantum mechanics. Hence, it can also be concluded that the fractal nature of space-time implied by SR, is at the origin of the quantum behavior observed in these problems. The novel mathematical connection between SR and the Riccati equation, which was previously used in quantum mechanics without reference to SR, needs further investigation in future work.
基金Acknowledgments. Thanks to Dr. Alexander MacDonald of NOAA/FSL for his support throughout this study, and to Professors William Cotton. Roger Pielke. Wayne Schubert of Colorado State University, and to Dr. Fanyou Kong of University of Oklahoma and Mr. Hu
文摘A set of microphysics equations is scaled based on the convective length and velocity scales. Comparisons are made among the dynamical transport and various microphysical processes. From the scaling analysis, it becomes apparent which parameterized microphysical processes present off-scaled influences in the integration of the set of microphysics equations. The variabilities of the parameterized microphysical processes are also studied using the approach of a controlled parameter space. Given macroscopic dynamic and thermodynamic conditions in different regions of convective storms, it is possible to analyze and compare vertical profiles of these processes. Bulk diabatic heating profiles for a cumulus convective updraft and downdraft are also derived from this analysis. From the two different angles, the scale analysis and the controlled-parameter space approach can both provide an insight into and an understanding of microphysics parameterizations.
基金Supported by the Natural Science Foundation of China,No.69775004
文摘With the wide use of color in many areas, the interest on the color perception and processing has been growing rapidly. An important topic in color image processing is the development of efficient tools capable of filtering images without blurring them and without changing their original chromatic contents. In this paper, a new technique reducing noise of color image is developed. A class of color-scale morphological operations is introduced, which extend mathematical morphology to color image processing, representing a color image as a vector function. The correlation between color components is utilized to perform noise removal. Color-scale morphological niters with multiple structuring elements (CSMF-MSEs) are proposed. Their properties are discussed and proved. Experimental results show that CSMF-MSEs are suitable and powerful to eliminate noise and preserve edges in color image because of efficient utilization of inherent correlation between color components, and they perform better than vector
基金supported financially by the National Key Research and Development Program of China(No.2016YFB0701403)the National Natural Science Foundation of China(Nos.51631008 and 51401216)
文摘The microstructure and stress-rupture property of the large-scale complex single crystal(SX) casting DD10 were investigated in high-rate solidification process. It is found that the primary dendrite arm spacing(PDAS) does not increase monotonically with the height increase. When across the platform, the temperature gradient increases due to the effect of platform, and the corresponding PDAS decreases. The distribution of eutectic volume fraction in large-scale complex SX casting is affected by PDAS, solid back diffusion, and the development of high order dendrites. The eutectic volume fraction contained in the sample taken below the platform decreases with the height increase. While the eutectic volume fraction contained in the sample taken upper the platform increases gradually with the height increase. After heat treatment,most of the γ/γ' eutectics are eliminated and the components are distributed uniformly. The similar stress rupture properties of the samples at different heights in the same direction are obtained.