In this work, a fast(0.5 h), green microwave-assisted synthesis of single crystalline Sb_2Se_3 nanowires was developed. For the first time we demonstrated a facile solvent-mediated process, whereby intriguing nanostru...In this work, a fast(0.5 h), green microwave-assisted synthesis of single crystalline Sb_2Se_3 nanowires was developed. For the first time we demonstrated a facile solvent-mediated process, whereby intriguing nanostructures including antimony selenide(Sb_2Se_3) nanowires and selenium(Se) microrods can be achieved by merely varying the volume ratio of ethylene glycol(EG) and H_2O free from expensive chemical and additional surfactant. The achieved uniform Sb_2Se_3 nanowire is single crystalline along [001]growth direction with a diameter of 100 nm and a length up to tens of micrometers. When evaluated as an anode of lithium-ion battery, Sb_2Se_3 nanowire can deliver a high reversible capacity of 650.2 m Ah g^(-1) at 100 mA g^(-1) and a capacity retention of 63.8% after long-term 1000 cycles at 1000 mA g^(-1), as well as superior rate capability(389.5 m Ah g^(-1) at 2000 mA g^(-1)). This easy solvent-mediated microwave synthesis approach exhibits its great universe and importance towards the fabrication of high-performance metal chalcogenide electrode materials for future low-cost, large-scale energy storage systems.展开更多
Photonic neural networks have garnered significant attention in recent years due to their ultra-high computational speed,broad bandwidth,and parallel processing capabilities.However,compared to conventional electronic...Photonic neural networks have garnered significant attention in recent years due to their ultra-high computational speed,broad bandwidth,and parallel processing capabilities.However,compared to conventional electronic nonlinear activa-tion function(NAF),progress on efficient and easily implementable optical nonlinear activation function(ONAF)was barely reported.To address this issue,we proposed a programmable,low-loss ONAF device based on a silicon micro-ring resonator capped with the Antimony selenide(Sb_(2)Se_(3))thin films,and with indium tin oxide(ITO)used as the microheater.Leveraging our self-developed phase-transformation kinetic and optical models,we successfully simulated the phase-transition behavior of Sb_(2)Se_(3)and three different ONAFs—ELU,ReLU,and radial basis function(RBF)were achieved according to discernible optical responses of proposed devices under different phase-change extents.Classification results from the Fashion MNIST dataset demonstrated that these ONAFs can be considered as appropriate substitutes for traditional NAF.This indicated the bright prospect of the proposed device for nonlinear activation function in future photonic neural networks.展开更多
The structural design of n-i-p in antimony selenide(Sb_(2)Se_(3))thin film solar cells can effectively improve the low carrier collection efficiency caused by the lower doping concentration of Sb_(2)Se_(3).However,the...The structural design of n-i-p in antimony selenide(Sb_(2)Se_(3))thin film solar cells can effectively improve the low carrier collection efficiency caused by the lower doping concentration of Sb_(2)Se_(3).However,the unideal carrier transport ability of the intrinsic light-absorbing layer remains a major limitation for its power conversion efficiency improvement.Herein,it is discovered that the carrier transport in Sb_(2)Se_(3)thin films strongly depends on the film thickness of the absorber layer in n-i-p structure.By exploring the carrier transport mechanism under different thicknesses of light-absorbing layers,a suitable absorber layer with thickness of 550 nm is demonstrated can effectively separate,transport,and extract photogenerated carriers in Sb_(2)Se_(3)solar cells.Finally,the vapor transport deposition processed Sb_(2)Se_(3)solar cells achieve the highest PCE of 7.62%with a short-circuit current density of 30.71 mA·cm^(-2).This finding provides a constructive guidance for the future researches on Sb_(2)Se_(3)thin film solar cells with n-i-p structure.展开更多
Antimony selenide(Sb_(2)Se_(3))is one of the perspective candidates for potassium-ion batteries due to its advanced virtues stem including featured high capacity,fertile reserves and the relative narrow band gap.Despi...Antimony selenide(Sb_(2)Se_(3))is one of the perspective candidates for potassium-ion batteries due to its advanced virtues stem including featured high capacity,fertile reserves and the relative narrow band gap.Despite the unique advantages,it is still plagued by the unstable interface compatibility and poor wider-temperature adaptability.The optimization of microstructure and the construction of inorganic-organic hybrids with a low desolvation barrier and rapid kinetics behaviors are efficient to address these issues.The Sb_(2)Se_(3)nanorods enclosed by the S-doped carbon layer(SC),further crosslinked by the poly(N-isopropylacrylamide)(PM)film(PM@Sb_(2)Se_(3)@SC),were artificially fabricated,and it displays the enrichment ion aggregated model as well as contacted ion pair state,the well-tailored cooperation environment of potassium bonds,assuring a homogeneous potassium deposition and an excellent widertemperature adaptability.The complicated experimental studies and theoretical calculations authenticate the synergistic effects of geometric conformation and compositional design for the tremendously enhanced potassium storage.Moreover,the full device over PM@Sb_(2)Se_(3)@SC anode and the potassium Prussian blue cathode manifests impressively durable cycling life and wider-temperature adaptability,verifying the glorious contribution from the finely manipulation in solvation structure and potassium bonds to enhancing the potassium storage behaviors.展开更多
Sb_(2)Se_(3) with unique one-dimensional(1D) crystal structure exhibits exceptional deformation tolerance,demonstrating great application potential in flexible devices.However,the power conversion efficiency(PCE) of f...Sb_(2)Se_(3) with unique one-dimensional(1D) crystal structure exhibits exceptional deformation tolerance,demonstrating great application potential in flexible devices.However,the power conversion efficiency(PCE) of flexible Sb_(2)Se_(3) photovoltaic devices is temporarily limited by the complicated intrinsic defects and the undesirable contact interfaces.Herein,a high-quality Sb_(2)Se_(3) absorber layer with large crystal grains and benign [hkl] growth orientation can be first prepared on a Mo foil substrate.Then NaF intermediate layer is introduced between Mo and Sb_(2)Se_(3),which can further optimize the growth of Sb_(2)Se_(3)thin film.Moreover,positive Na ion diffusion enables it to dramatically lower barrier height at the back contact interface and passivate harmful defects at both bulk and heterojunction.As a result,the champion substrate structured Mo-foil/Mo/NaF/Sb_(2)Se_(3)/CdS/ITO/Ag flexible thin-film solar cell delivers an obviously higher efficiency of 8.03% and a record open-circuit voltage(V_(OC)) of 0.492 V.This flexible Sb_(2)Se_(3) device also exhibits excellent stability and flexibility to stand large bending radius and multiple bending times,as well as superior weak light photo-response with derived efficiency of 12.60%.This work presents an effective strategy to enhance the flexible Sb_(2)Se_(3) device performance and expand its potential photovoltaic applications.展开更多
通过研究组分、掺杂和晶体生长条件对材料温差电性能的影响,采用熔炼—区熔法研制出较均匀的高性能赝三元 p 型温差电材料 Te:(Sb_2Te_3)_0.75(1-x)(Bi_2Te_3)_(0.25(1-x))(Sb_2Se_3)(?)生长出的晶锭的85%的部分,温差电优值 z=2.9~3.3&...通过研究组分、掺杂和晶体生长条件对材料温差电性能的影响,采用熔炼—区熔法研制出较均匀的高性能赝三元 p 型温差电材料 Te:(Sb_2Te_3)_0.75(1-x)(Bi_2Te_3)_(0.25(1-x))(Sb_2Se_3)(?)生长出的晶锭的85%的部分,温差电优值 z=2.9~3.3×10^(-3)/K。其性能高于目前国内的赝二元材料,达到了国外的较高水平,用这种材料制作的温差电致冷器件获得了很好的致冷效果。展开更多
Antimony doped tin oxide(ATO) thin films have been prepared by pulsed laser deposition(PLD) method.The intrinsic effect of Sb dopant,including the Sb content,transition degree between Sb(3+) and Sb(5+) and c...Antimony doped tin oxide(ATO) thin films have been prepared by pulsed laser deposition(PLD) method.The intrinsic effect of Sb dopant,including the Sb content,transition degree between Sb(3+) and Sb(5+) and crystallinity on the electrical and optical properties of the ATO thin films is mainly investigated.It is suggested that the transition degree of Sb(3+) towards Sb(5+)(Sb(5+)/Sb(3+) ratio) is determined by Sb content.When the Sb content is increased to 12 at%,the Sb(5+)/Sb(3+) ratio reaches the highest value of 2.05,corresponding to the resistivity of 2.70×10(-3) Ω·cm.Meanwhile,the Burstein-Moss effect caused by the increase of carrier concentration is observed and the band gap of the ATO thin films is broadened to 4.0 eV when the Sb content is increased to 12 at%,corresponding to the highest average optical transmittance of 92%.Comprehensively considering the combination of electrical and optical properties,the ATO thin films deposited with Sb content of 12 at%exhibit the best properties with the highest "figure of merit" of 3.85×10(-3) Ω(-1).Finally,an antimony selenide(Sb_2Se_3) heterojunction solar cell prototype with the ATO thin film as the anode has been prepared,and a power conversion efficiency of 0.83%has been achieved.展开更多
Photoelectrochemical(PEC) cells involved with semiconductor electrodes can simultaneously absorb solar energy and perform chemical reactions, which are considered as an attractive strategy to produce renewable and cle...Photoelectrochemical(PEC) cells involved with semiconductor electrodes can simultaneously absorb solar energy and perform chemical reactions, which are considered as an attractive strategy to produce renewable and clean hydrogen energy. Sb_(2)Se_(3) has been widely investigated in constructing PEC photocathodes benefitting of its low toxicity, suitable band gap, superior optoelectronic properties, and outstanding photocorrosion stability. We first present a brief overview of basic concepts and principles of PEC water splitting as well as a comparison between Sb_(2)Se_(3) and other numerous candidates. Then the material characteristics and preparation methods of Sb_(2)Se_(3) are introduced. The development of Sb_(2)Se_(3)-based photocathodes in PEC water splitting with various architectures and engineering efforts(i.e., absorber engineering, interfaces engineering, co-catalyst engineering and tandem engineering) to improve solar-to-hydrogen(STH) efficiency are highlighted. Finally, we debate the possible future directions to further explore the researching fields of Sb_(2)Se_(3)-based photocathodes with a strongly positive outlook in PEC processed solar hydrogen production.展开更多
The band alignment at the front interfaces is crucial for the performance of Sb_(2)Se_(3) solar cell with superstrate configuration.Herein,a Sn O_(2)/Ti O_(2) thin film,demonstrated beneficial for carrier transport in...The band alignment at the front interfaces is crucial for the performance of Sb_(2)Se_(3) solar cell with superstrate configuration.Herein,a Sn O_(2)/Ti O_(2) thin film,demonstrated beneficial for carrier transport in Sb_(2)Se_(3) device by the first-principle calculation and experiment,is proposed to reduce the parasitic absorption caused by CdS and optimize the band alignment of Sb_(2)Se_(3) solar cell.Thanks to the desirable transmittance of SnO_(2)/TiO_(2) layer,the Sb_(2)Se_(3) solar cell with SnO_(2)/TiO_(2)/(CdS-38 nm) electron transport layer performances better than (CdS-70 nm)/Sb_(2)Se_(3) solar cell.The optimized band alignment,the reduced interface defects and the decreased current leakage of Sb_(2)Se_(3) solar cell enable the short-circuit current density,fill factor,open-circuit voltage and efficiency of the Sb_(2)Se_(3) solar cell increase by 26.7%,112%,33.1%and 250%respectively when comparing with TiO_(2)/Sb_(2)Se_(3) solar cell without modification.Finally,an easily prepared Sn O_(2)/Ti O_(2)/CdS ETL is successfully applied on Sb_(2)Se_(3) solar cell by the first time and contributes to the best efficiency of 7.0%in this work,which is remarkable for Sb_(2)Se_(3) solar cells free of hole transporting materials and toxic CdCl_(2) treatment.This work is expected to provide a valuable reference for future ETL design and band alignment for Sb_(2)Se_(3) solar cell and other optoelectronic devices.展开更多
Antimony selenide(Sb_(2)Se_(3))is an emerging solar cell material.Here,we demonstrate that an organic small molecule of 4,4',4''-tris(carbazol-9-yl)-triphenylamine(TCTA)can efficiently passivate the anode ...Antimony selenide(Sb_(2)Se_(3))is an emerging solar cell material.Here,we demonstrate that an organic small molecule of 4,4',4''-tris(carbazol-9-yl)-triphenylamine(TCTA)can efficiently passivate the anode interface of the Sb_(2)Se_(3)solar cell.We fabricated the device by the vacuum thermal evaporation,and took ITO/TCTA(3.0 nm)/Sb_(2)Se_(3)(50 nm)/C60(5.0 nm)/Alq3(3.0 nm)/Al as the device architecture,where Alq3 is the tris(8-hydroxyquinolinato)aluminum.By introducing a TCTA layer,the open-circuit voltage is raised from 0.36 to 0.42 V,and the power conversion efficiency is significantly improved from 3.2%to 4.3%.The TCTA layer not only inhibits the chemical reaction between the ITO and Sb_(2)Se_(3)during the annealing process but it also blocks the electron diffusion from Sb_(2)Se_(3)to ITO anode.The enhanced performance is mainly attributed to the suppression of the charge recombination at the anode interface.展开更多
基金supported by the National Key Research and Development Program of China(2016YFA0202603)the National Basic Research Program of China(2013CB934103)+5 种基金the National Natural Science Foundation of China(51521001,51602239)the National Natural Science Fund for Distinguished Young Scholars(51425204)Yellow Crane Talent(Science&Technology)Program of Wuhan Citythe Fundamental Research Funds for the Central Universities(WUT:2016III001,2016III003,2016IVA090)the Programme of Introducing Talents of Discipline to Universities(B17034)support from the Lorraine Region(nowpart of Grand Est Region)Cooperation Research Lorraine/Hubei Program 2015/2017
文摘In this work, a fast(0.5 h), green microwave-assisted synthesis of single crystalline Sb_2Se_3 nanowires was developed. For the first time we demonstrated a facile solvent-mediated process, whereby intriguing nanostructures including antimony selenide(Sb_2Se_3) nanowires and selenium(Se) microrods can be achieved by merely varying the volume ratio of ethylene glycol(EG) and H_2O free from expensive chemical and additional surfactant. The achieved uniform Sb_2Se_3 nanowire is single crystalline along [001]growth direction with a diameter of 100 nm and a length up to tens of micrometers. When evaluated as an anode of lithium-ion battery, Sb_2Se_3 nanowire can deliver a high reversible capacity of 650.2 m Ah g^(-1) at 100 mA g^(-1) and a capacity retention of 63.8% after long-term 1000 cycles at 1000 mA g^(-1), as well as superior rate capability(389.5 m Ah g^(-1) at 2000 mA g^(-1)). This easy solvent-mediated microwave synthesis approach exhibits its great universe and importance towards the fabrication of high-performance metal chalcogenide electrode materials for future low-cost, large-scale energy storage systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.62104114,62404111)Natural Science Foundation of Jiangsu Province(Grant Nos.BK20240635,BZ2021031)+4 种基金Opening Project of Advanced Integrated Circuit Package and Testing Research Center of Jiangsu Province(Grant No.NTIKFJJ202303)Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.24KJB510025)Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(Grant Nos.NY223157,NY223156)Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY224140)Project funded by China Postdoctoral Science Foundation(Grant No.2023M732916).
文摘Photonic neural networks have garnered significant attention in recent years due to their ultra-high computational speed,broad bandwidth,and parallel processing capabilities.However,compared to conventional electronic nonlinear activa-tion function(NAF),progress on efficient and easily implementable optical nonlinear activation function(ONAF)was barely reported.To address this issue,we proposed a programmable,low-loss ONAF device based on a silicon micro-ring resonator capped with the Antimony selenide(Sb_(2)Se_(3))thin films,and with indium tin oxide(ITO)used as the microheater.Leveraging our self-developed phase-transformation kinetic and optical models,we successfully simulated the phase-transition behavior of Sb_(2)Se_(3)and three different ONAFs—ELU,ReLU,and radial basis function(RBF)were achieved according to discernible optical responses of proposed devices under different phase-change extents.Classification results from the Fashion MNIST dataset demonstrated that these ONAFs can be considered as appropriate substitutes for traditional NAF.This indicated the bright prospect of the proposed device for nonlinear activation function in future photonic neural networks.
基金supported by the National Natural Science Foundation of China(No.62305064)the Beijing Nova Program from Beijing Municipal Science&Technology Commission(No.Z211100002121072).
文摘The structural design of n-i-p in antimony selenide(Sb_(2)Se_(3))thin film solar cells can effectively improve the low carrier collection efficiency caused by the lower doping concentration of Sb_(2)Se_(3).However,the unideal carrier transport ability of the intrinsic light-absorbing layer remains a major limitation for its power conversion efficiency improvement.Herein,it is discovered that the carrier transport in Sb_(2)Se_(3)thin films strongly depends on the film thickness of the absorber layer in n-i-p structure.By exploring the carrier transport mechanism under different thicknesses of light-absorbing layers,a suitable absorber layer with thickness of 550 nm is demonstrated can effectively separate,transport,and extract photogenerated carriers in Sb_(2)Se_(3)solar cells.Finally,the vapor transport deposition processed Sb_(2)Se_(3)solar cells achieve the highest PCE of 7.62%with a short-circuit current density of 30.71 mA·cm^(-2).This finding provides a constructive guidance for the future researches on Sb_(2)Se_(3)thin film solar cells with n-i-p structure.
基金financially supported by the National Natural Science Foundation of China(No.22175103)Young Taishan Scholar project of Shandong province。
文摘Antimony selenide(Sb_(2)Se_(3))is one of the perspective candidates for potassium-ion batteries due to its advanced virtues stem including featured high capacity,fertile reserves and the relative narrow band gap.Despite the unique advantages,it is still plagued by the unstable interface compatibility and poor wider-temperature adaptability.The optimization of microstructure and the construction of inorganic-organic hybrids with a low desolvation barrier and rapid kinetics behaviors are efficient to address these issues.The Sb_(2)Se_(3)nanorods enclosed by the S-doped carbon layer(SC),further crosslinked by the poly(N-isopropylacrylamide)(PM)film(PM@Sb_(2)Se_(3)@SC),were artificially fabricated,and it displays the enrichment ion aggregated model as well as contacted ion pair state,the well-tailored cooperation environment of potassium bonds,assuring a homogeneous potassium deposition and an excellent widertemperature adaptability.The complicated experimental studies and theoretical calculations authenticate the synergistic effects of geometric conformation and compositional design for the tremendously enhanced potassium storage.Moreover,the full device over PM@Sb_(2)Se_(3)@SC anode and the potassium Prussian blue cathode manifests impressively durable cycling life and wider-temperature adaptability,verifying the glorious contribution from the finely manipulation in solvation structure and potassium bonds to enhancing the potassium storage behaviors.
基金supported by the National Natural Science Foundation of China(Grant Nos.62104156,62074102)the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2023A1515011256,2022A1515010979)China+1 种基金Science and Technology plan project of Shenzhen(Grant Nos.20220808165025003,20200812000347001)Chinasupported by the open foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials,State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures,Guangxi University(Grant No.2022GXYSOF13)。
文摘Sb_(2)Se_(3) with unique one-dimensional(1D) crystal structure exhibits exceptional deformation tolerance,demonstrating great application potential in flexible devices.However,the power conversion efficiency(PCE) of flexible Sb_(2)Se_(3) photovoltaic devices is temporarily limited by the complicated intrinsic defects and the undesirable contact interfaces.Herein,a high-quality Sb_(2)Se_(3) absorber layer with large crystal grains and benign [hkl] growth orientation can be first prepared on a Mo foil substrate.Then NaF intermediate layer is introduced between Mo and Sb_(2)Se_(3),which can further optimize the growth of Sb_(2)Se_(3)thin film.Moreover,positive Na ion diffusion enables it to dramatically lower barrier height at the back contact interface and passivate harmful defects at both bulk and heterojunction.As a result,the champion substrate structured Mo-foil/Mo/NaF/Sb_(2)Se_(3)/CdS/ITO/Ag flexible thin-film solar cell delivers an obviously higher efficiency of 8.03% and a record open-circuit voltage(V_(OC)) of 0.492 V.This flexible Sb_(2)Se_(3) device also exhibits excellent stability and flexibility to stand large bending radius and multiple bending times,as well as superior weak light photo-response with derived efficiency of 12.60%.This work presents an effective strategy to enhance the flexible Sb_(2)Se_(3) device performance and expand its potential photovoltaic applications.
文摘通过研究组分、掺杂和晶体生长条件对材料温差电性能的影响,采用熔炼—区熔法研制出较均匀的高性能赝三元 p 型温差电材料 Te:(Sb_2Te_3)_0.75(1-x)(Bi_2Te_3)_(0.25(1-x))(Sb_2Se_3)(?)生长出的晶锭的85%的部分,温差电优值 z=2.9~3.3×10^(-3)/K。其性能高于目前国内的赝二元材料,达到了国外的较高水平,用这种材料制作的温差电致冷器件获得了很好的致冷效果。
基金Funded by the International Science&Technology Cooperation Program of China(No.2011DFA52650)the"111"Project(No.B13035)+1 种基金the National Natural Science Foundation of China(No.51521001)the Fundamental Research Funds for the Central Universities
文摘Antimony doped tin oxide(ATO) thin films have been prepared by pulsed laser deposition(PLD) method.The intrinsic effect of Sb dopant,including the Sb content,transition degree between Sb(3+) and Sb(5+) and crystallinity on the electrical and optical properties of the ATO thin films is mainly investigated.It is suggested that the transition degree of Sb(3+) towards Sb(5+)(Sb(5+)/Sb(3+) ratio) is determined by Sb content.When the Sb content is increased to 12 at%,the Sb(5+)/Sb(3+) ratio reaches the highest value of 2.05,corresponding to the resistivity of 2.70×10(-3) Ω·cm.Meanwhile,the Burstein-Moss effect caused by the increase of carrier concentration is observed and the band gap of the ATO thin films is broadened to 4.0 eV when the Sb content is increased to 12 at%,corresponding to the highest average optical transmittance of 92%.Comprehensively considering the combination of electrical and optical properties,the ATO thin films deposited with Sb content of 12 at%exhibit the best properties with the highest "figure of merit" of 3.85×10(-3) Ω(-1).Finally,an antimony selenide(Sb_2Se_3) heterojunction solar cell prototype with the ATO thin film as the anode has been prepared,and a power conversion efficiency of 0.83%has been achieved.
基金supported by the National Natural Science Foundation of China(No.62074102)Natural Science Foundation of Guangdong Province(2020A1515010805)China+1 种基金the Key Project of Department of Education of Guangdong Province(No.2018KZDXM059)Chinathe Science and Technology plan project of Shenzhen(20200812000347001,JCYJ20190808153409238)China。
文摘Photoelectrochemical(PEC) cells involved with semiconductor electrodes can simultaneously absorb solar energy and perform chemical reactions, which are considered as an attractive strategy to produce renewable and clean hydrogen energy. Sb_(2)Se_(3) has been widely investigated in constructing PEC photocathodes benefitting of its low toxicity, suitable band gap, superior optoelectronic properties, and outstanding photocorrosion stability. We first present a brief overview of basic concepts and principles of PEC water splitting as well as a comparison between Sb_(2)Se_(3) and other numerous candidates. Then the material characteristics and preparation methods of Sb_(2)Se_(3) are introduced. The development of Sb_(2)Se_(3)-based photocathodes in PEC water splitting with various architectures and engineering efforts(i.e., absorber engineering, interfaces engineering, co-catalyst engineering and tandem engineering) to improve solar-to-hydrogen(STH) efficiency are highlighted. Finally, we debate the possible future directions to further explore the researching fields of Sb_(2)Se_(3)-based photocathodes with a strongly positive outlook in PEC processed solar hydrogen production.
基金supported by the National Key R&D Program of China(2019YFB1503500)the National Natural Science Foundation of China(U1902218,11774187)the Postgraduate Education Innovation Project of Tianjin,China(2021YJSB002)。
文摘The band alignment at the front interfaces is crucial for the performance of Sb_(2)Se_(3) solar cell with superstrate configuration.Herein,a Sn O_(2)/Ti O_(2) thin film,demonstrated beneficial for carrier transport in Sb_(2)Se_(3) device by the first-principle calculation and experiment,is proposed to reduce the parasitic absorption caused by CdS and optimize the band alignment of Sb_(2)Se_(3) solar cell.Thanks to the desirable transmittance of SnO_(2)/TiO_(2) layer,the Sb_(2)Se_(3) solar cell with SnO_(2)/TiO_(2)/(CdS-38 nm) electron transport layer performances better than (CdS-70 nm)/Sb_(2)Se_(3) solar cell.The optimized band alignment,the reduced interface defects and the decreased current leakage of Sb_(2)Se_(3) solar cell enable the short-circuit current density,fill factor,open-circuit voltage and efficiency of the Sb_(2)Se_(3) solar cell increase by 26.7%,112%,33.1%and 250%respectively when comparing with TiO_(2)/Sb_(2)Se_(3) solar cell without modification.Finally,an easily prepared Sn O_(2)/Ti O_(2)/CdS ETL is successfully applied on Sb_(2)Se_(3) solar cell by the first time and contributes to the best efficiency of 7.0%in this work,which is remarkable for Sb_(2)Se_(3) solar cells free of hole transporting materials and toxic CdCl_(2) treatment.This work is expected to provide a valuable reference for future ETL design and band alignment for Sb_(2)Se_(3) solar cell and other optoelectronic devices.
基金This work was supported by the High Level Talents Project Fund of Hainan Basic and Applied Research Program(NATURAL SCIENCE)(Grant No.2019RC118).
文摘Antimony selenide(Sb_(2)Se_(3))is an emerging solar cell material.Here,we demonstrate that an organic small molecule of 4,4',4''-tris(carbazol-9-yl)-triphenylamine(TCTA)can efficiently passivate the anode interface of the Sb_(2)Se_(3)solar cell.We fabricated the device by the vacuum thermal evaporation,and took ITO/TCTA(3.0 nm)/Sb_(2)Se_(3)(50 nm)/C60(5.0 nm)/Alq3(3.0 nm)/Al as the device architecture,where Alq3 is the tris(8-hydroxyquinolinato)aluminum.By introducing a TCTA layer,the open-circuit voltage is raised from 0.36 to 0.42 V,and the power conversion efficiency is significantly improved from 3.2%to 4.3%.The TCTA layer not only inhibits the chemical reaction between the ITO and Sb_(2)Se_(3)during the annealing process but it also blocks the electron diffusion from Sb_(2)Se_(3)to ITO anode.The enhanced performance is mainly attributed to the suppression of the charge recombination at the anode interface.