Doping modification is one of the most effective ways to optimize the thermoelectric properties of Bi_(2)Te_(3)-based alloys.P-type Bi_(2−x)Sb_(x)Te_(3) thermoelectric materials have been successfully prepared by dire...Doping modification is one of the most effective ways to optimize the thermoelectric properties of Bi_(2)Te_(3)-based alloys.P-type Bi_(2−x)Sb_(x)Te_(3) thermoelectric materials have been successfully prepared by direct Sb doping method.It can be found that doping Sb into Bi_(2)Te_(3) lattice array for Bi-site replacement facilitates the generation of Sb′Te anti-site defects.This anti-site defects can increase the hole concentration and optimize electrical transport properties of Bi_(2−x)Sb_(x)Te_(3) alloys.In addition,the point defects induced by mass and stress fluctuations and the Sb impurities produced during the sintering process can enhance the multi-scale phonon scattering and reduce the lattice thermal conductivity.As a result,the Bi_(0.47)Sb_(1.63)Te_(3) sample has a maximum thermoelectric figure of merit ZT of 1.04 at 350 K.It is worth noting that the bipolar effect of Bi_(2)Te_(3)-based alloys can be weakened with the increase of Sb content.The Bi_(0.44)Sb_(1.66)Te_(3) sample has a maximum average ZT value(0.93)in the temperature range of 300–500 K,indicating that direct doping of Sb can broaden the temperature range corresponding to the optimal ZT value.This work provides an idea for developing high-performance near room temperature thermoelectric materials with a wide temperature range.展开更多
In this work,the TiO_(2)/Sb_(2)S_(3) nanorod arrays(NRAs)were synthesized through a two-stage hydrothermal route for photoelectrochemical(PEC)water splitting.The effect of annealing treatment in Ar ambience on the PEC...In this work,the TiO_(2)/Sb_(2)S_(3) nanorod arrays(NRAs)were synthesized through a two-stage hydrothermal route for photoelectrochemical(PEC)water splitting.The effect of annealing treatment in Ar ambience on the PEC activity of TiO_(2)/Sb_(2)S_(3) composite sample was investigated by electrochemical impedance analysis,including Nyquist and Mott-Schottky(M-S)plots.It was demonstrated that vacuum annealing could crystallize Sb_(2)S_(3) component and change its color from red to black,leading to an increment of photocurrent density from 1.9 A/m^(2) to 4.25 A/m^(2) at 0 V versus saturated calomel electrode(VSCE).The enhanced PEC performance was mainly attributed to the improved visible light absorption.Moreover,annealing treatment facilitated retarding the electron-hole recombination occurred at the solid/liquid interfaces.Our work might provide a novel strategy for enhancing the PEC performance of a semiconductor electrode.展开更多
Sb 2 O 3 nanoparticles were prepared via hydrolyze reaction of SbCl 3 in water - ethanol solution,and were char - acterized by XRD and TEM.In addition,the effect of reactive condition on particle size was also investi...Sb 2 O 3 nanoparticles were prepared via hydrolyze reaction of SbCl 3 in water - ethanol solution,and were char - acterized by XRD and TEM.In addition,the effect of reactive condition on particle size was also investigated systematically.When the sample modified by coupling agent was applied in formulation of plastic,the mechanical property and flame retardancy was better than micron sample.展开更多
基金supported by the Anhui Province Natural Science Foundation for Excellent Youth Scholars(2208085Y17)the University Synergy Innovation Program of Anhui Province(GXXT-2022-008+1 种基金GXXT-2021-022)the Anhui Key Lab of Metal Material and Processing Open Project.
文摘Doping modification is one of the most effective ways to optimize the thermoelectric properties of Bi_(2)Te_(3)-based alloys.P-type Bi_(2−x)Sb_(x)Te_(3) thermoelectric materials have been successfully prepared by direct Sb doping method.It can be found that doping Sb into Bi_(2)Te_(3) lattice array for Bi-site replacement facilitates the generation of Sb′Te anti-site defects.This anti-site defects can increase the hole concentration and optimize electrical transport properties of Bi_(2−x)Sb_(x)Te_(3) alloys.In addition,the point defects induced by mass and stress fluctuations and the Sb impurities produced during the sintering process can enhance the multi-scale phonon scattering and reduce the lattice thermal conductivity.As a result,the Bi_(0.47)Sb_(1.63)Te_(3) sample has a maximum thermoelectric figure of merit ZT of 1.04 at 350 K.It is worth noting that the bipolar effect of Bi_(2)Te_(3)-based alloys can be weakened with the increase of Sb content.The Bi_(0.44)Sb_(1.66)Te_(3) sample has a maximum average ZT value(0.93)in the temperature range of 300–500 K,indicating that direct doping of Sb can broaden the temperature range corresponding to the optimal ZT value.This work provides an idea for developing high-performance near room temperature thermoelectric materials with a wide temperature range.
基金supported by the Fundamental Research Funds for the Central Universities(No.2019ZDPY04).
文摘In this work,the TiO_(2)/Sb_(2)S_(3) nanorod arrays(NRAs)were synthesized through a two-stage hydrothermal route for photoelectrochemical(PEC)water splitting.The effect of annealing treatment in Ar ambience on the PEC activity of TiO_(2)/Sb_(2)S_(3) composite sample was investigated by electrochemical impedance analysis,including Nyquist and Mott-Schottky(M-S)plots.It was demonstrated that vacuum annealing could crystallize Sb_(2)S_(3) component and change its color from red to black,leading to an increment of photocurrent density from 1.9 A/m^(2) to 4.25 A/m^(2) at 0 V versus saturated calomel electrode(VSCE).The enhanced PEC performance was mainly attributed to the improved visible light absorption.Moreover,annealing treatment facilitated retarding the electron-hole recombination occurred at the solid/liquid interfaces.Our work might provide a novel strategy for enhancing the PEC performance of a semiconductor electrode.
文摘Sb 2 O 3 nanoparticles were prepared via hydrolyze reaction of SbCl 3 in water - ethanol solution,and were char - acterized by XRD and TEM.In addition,the effect of reactive condition on particle size was also investigated systematically.When the sample modified by coupling agent was applied in formulation of plastic,the mechanical property and flame retardancy was better than micron sample.