With the large-scale integration of renewable energy sources into the grid,distribution networks are increasingly challenged by issues related to renewable energy accommodation and the mainte-nance of power quality st...With the large-scale integration of renewable energy sources into the grid,distribution networks are increasingly challenged by issues related to renewable energy accommodation and the mainte-nance of power quality stability.To address the challenge that existing partitioning methods are inad-equate for the planning and operation needs of active distribution networks under frequently changing power flow conditions,a three-stage dynamic partitioning approach is proposed based on an im-proved sand cat swarm optimization(ISCSO)algorithm.Firstly,a comprehensive dynamic partitio-ning index is developed by integrating both structural and functional metrics,including modularity,voltage regulation capability,and regional renewable energy accommodation capacity.Secondly,to overcome the limitations of the conventional sand cat swarm optimization,namely its weak global ex-ploration ability and tendency to fall into local optima in the later optimization stages,chaotic map-ping is employed to initialize a uniformly distributed population.A nonlinear sensitivity mechanism is introduced to balance global exploration and local exploitation,alongside the design of a particle encoding and position updating scheme tailored for dynamic partitioning.Furthermore,a‘state re-tention-local adjustment-global reconstruction’partitioning structure is developed.To avoid unnec-essary partition changes under minor source-load fluctuations,the concept of overlapping nodes is introduced,enabling fine-tuned adjustments under such conditions.Finally,two experimental sce-narios are designed to validate the proposed method.Simulation results demonstrate strong electrical coupling performance and show that the method enhances voltage regulation and renewable energy integration capabilities across regions.展开更多
Skin cancer is one of the most dangerous cancer.Because of the high melanoma death rate,skin cancer is divided into non-melanoma and melanoma.The dermatologist finds it difficult to identify skin cancer from dermoscop...Skin cancer is one of the most dangerous cancer.Because of the high melanoma death rate,skin cancer is divided into non-melanoma and melanoma.The dermatologist finds it difficult to identify skin cancer from dermoscopy images of skin lesions.Sometimes,pathology and biopsy examinations are required for cancer diagnosis.Earlier studies have formulated computer-based systems for detecting skin cancer from skin lesion images.With recent advancements in hardware and software technologies,deep learning(DL)has developed as a potential technique for feature learning.Therefore,this study develops a new sand cat swarm optimization with a deep transfer learning method for skin cancer detection and classification(SCSODTL-SCC)technique.The major intention of the SCSODTL-SCC model lies in the recognition and classification of different types of skin cancer on dermoscopic images.Primarily,Dull razor approach-related hair removal and median filtering-based noise elimination are performed.Moreover,the U2Net segmentation approach is employed for detecting infected lesion regions in dermoscopic images.Furthermore,the NASNetLarge-based feature extractor with a hybrid deep belief network(DBN)model is used for classification.Finally,the classification performance can be improved by the SCSO algorithm for the hyperparameter tuning process,showing the novelty of the work.The simulation values of the SCSODTL-SCC model are scrutinized on the benchmark skin lesion dataset.The comparative results assured that the SCSODTL-SCC model had shown maximum skin cancer classification performance in different measures.展开更多
Feature selection(FS)is essential in machine learning(ML)and data mapping by its ability to preprocess high-dimensional data.By selecting a subset of relevant features,feature selection cuts down on the dimension of t...Feature selection(FS)is essential in machine learning(ML)and data mapping by its ability to preprocess high-dimensional data.By selecting a subset of relevant features,feature selection cuts down on the dimension of the data.It excludes irrelevant or surplus features,thus boosting the performance and efficiency of the model.Particle Swarm Optimization(PSO)boasts a streamlined algorithmic framework and exhibits rapid convergence traits.Compared with other algorithms,it incurs reduced computational expenses when tackling high-dimensional datasets.However,PSO faces challenges like inadequate convergence precision.Therefore,regarding FS problems,this paper presents a binary version enhanced PSO based on the Support Vector Machines(SVM)classifier.First,the Sand Cat Swarm Optimization(SCSO)is added to enhance the global search capability of PSO and improve the accuracy of the solution.Secondly,the Latin hypercube sampling strategy initializes populations more uniformly and helps to increase population diversity.The last is the roundup search strategy introducing the grey wolf hierarchy idea to help improve convergence speed.To verify the capability of Self-adaptive Cooperative Particle Swarm Optimization(SCPSO),the CEC2020 test suite and CEC2022 test suite are selected for experiments and applied to three engineering problems.Compared with the standard PSO algorithm,SCPSO converges faster,and the convergence accuracy is significantly improved.Moreover,SCPSO’s comprehensive performance far exceeds that of other algorithms.Six datasets from the University of California,Irvine(UCI)database were selected to evaluate SCPSO’s effectiveness in solving feature selection problems.The results indicate that SCPSO has significant potential for addressing these problems.展开更多
综合能源系统(integrated energy system,IES)参与电力现货市场交易时,由于市场供需关系的变化导致交易价格具有不确定性。因此,对综合能源系统运行边际成本进行精细化分析,研究充分利用综合能源系统灵活性资源参与市场的最优调度策略...综合能源系统(integrated energy system,IES)参与电力现货市场交易时,由于市场供需关系的变化导致交易价格具有不确定性。因此,对综合能源系统运行边际成本进行精细化分析,研究充分利用综合能源系统灵活性资源参与市场的最优调度策略。首先,分析了外部现货市场环境下市场价格不确定性典型场景处理方法,并研究了综合能源系统内部多种源荷可调资源及运行成本结构;其次,建立了在电力市场价格不确定性条件下考虑系统边际成本交易优化模型,并提出沙猫群优化算法进行求解。最后,通过对实际案例的仿真验证。结果表明:该策略不仅可以降低IES的运行成本,还能增强其对市场价格不确定性的适应能力,为综合能源系统在电力现货市场环境下的运行提供了新的思路和方法,有助于实现能源系统参与市场调度的经济性和可靠性双重优化。展开更多
基金Supported by the Technology Project of State Grid Corporation Headquarters(No.5100-202322029A-1-1-ZN)the 2024 Youth Science Foun-dation Project(No.62303006).
文摘With the large-scale integration of renewable energy sources into the grid,distribution networks are increasingly challenged by issues related to renewable energy accommodation and the mainte-nance of power quality stability.To address the challenge that existing partitioning methods are inad-equate for the planning and operation needs of active distribution networks under frequently changing power flow conditions,a three-stage dynamic partitioning approach is proposed based on an im-proved sand cat swarm optimization(ISCSO)algorithm.Firstly,a comprehensive dynamic partitio-ning index is developed by integrating both structural and functional metrics,including modularity,voltage regulation capability,and regional renewable energy accommodation capacity.Secondly,to overcome the limitations of the conventional sand cat swarm optimization,namely its weak global ex-ploration ability and tendency to fall into local optima in the later optimization stages,chaotic map-ping is employed to initialize a uniformly distributed population.A nonlinear sensitivity mechanism is introduced to balance global exploration and local exploitation,alongside the design of a particle encoding and position updating scheme tailored for dynamic partitioning.Furthermore,a‘state re-tention-local adjustment-global reconstruction’partitioning structure is developed.To avoid unnec-essary partition changes under minor source-load fluctuations,the concept of overlapping nodes is introduced,enabling fine-tuned adjustments under such conditions.Finally,two experimental sce-narios are designed to validate the proposed method.Simulation results demonstrate strong electrical coupling performance and show that the method enhances voltage regulation and renewable energy integration capabilities across regions.
基金supported by the Technology Development Program of MSS [No.S3033853]by the National University Development Project by the Ministry of Education in 2022.
文摘Skin cancer is one of the most dangerous cancer.Because of the high melanoma death rate,skin cancer is divided into non-melanoma and melanoma.The dermatologist finds it difficult to identify skin cancer from dermoscopy images of skin lesions.Sometimes,pathology and biopsy examinations are required for cancer diagnosis.Earlier studies have formulated computer-based systems for detecting skin cancer from skin lesion images.With recent advancements in hardware and software technologies,deep learning(DL)has developed as a potential technique for feature learning.Therefore,this study develops a new sand cat swarm optimization with a deep transfer learning method for skin cancer detection and classification(SCSODTL-SCC)technique.The major intention of the SCSODTL-SCC model lies in the recognition and classification of different types of skin cancer on dermoscopic images.Primarily,Dull razor approach-related hair removal and median filtering-based noise elimination are performed.Moreover,the U2Net segmentation approach is employed for detecting infected lesion regions in dermoscopic images.Furthermore,the NASNetLarge-based feature extractor with a hybrid deep belief network(DBN)model is used for classification.Finally,the classification performance can be improved by the SCSO algorithm for the hyperparameter tuning process,showing the novelty of the work.The simulation values of the SCSODTL-SCC model are scrutinized on the benchmark skin lesion dataset.The comparative results assured that the SCSODTL-SCC model had shown maximum skin cancer classification performance in different measures.
基金supported by the Fundamental Research Funds for the Central Universities of China(No.300102122105)the Natural Science Basic Research Plan in Shaanxi Province of China(2023-JC-YB-023).
文摘Feature selection(FS)is essential in machine learning(ML)and data mapping by its ability to preprocess high-dimensional data.By selecting a subset of relevant features,feature selection cuts down on the dimension of the data.It excludes irrelevant or surplus features,thus boosting the performance and efficiency of the model.Particle Swarm Optimization(PSO)boasts a streamlined algorithmic framework and exhibits rapid convergence traits.Compared with other algorithms,it incurs reduced computational expenses when tackling high-dimensional datasets.However,PSO faces challenges like inadequate convergence precision.Therefore,regarding FS problems,this paper presents a binary version enhanced PSO based on the Support Vector Machines(SVM)classifier.First,the Sand Cat Swarm Optimization(SCSO)is added to enhance the global search capability of PSO and improve the accuracy of the solution.Secondly,the Latin hypercube sampling strategy initializes populations more uniformly and helps to increase population diversity.The last is the roundup search strategy introducing the grey wolf hierarchy idea to help improve convergence speed.To verify the capability of Self-adaptive Cooperative Particle Swarm Optimization(SCPSO),the CEC2020 test suite and CEC2022 test suite are selected for experiments and applied to three engineering problems.Compared with the standard PSO algorithm,SCPSO converges faster,and the convergence accuracy is significantly improved.Moreover,SCPSO’s comprehensive performance far exceeds that of other algorithms.Six datasets from the University of California,Irvine(UCI)database were selected to evaluate SCPSO’s effectiveness in solving feature selection problems.The results indicate that SCPSO has significant potential for addressing these problems.
文摘综合能源系统(integrated energy system,IES)参与电力现货市场交易时,由于市场供需关系的变化导致交易价格具有不确定性。因此,对综合能源系统运行边际成本进行精细化分析,研究充分利用综合能源系统灵活性资源参与市场的最优调度策略。首先,分析了外部现货市场环境下市场价格不确定性典型场景处理方法,并研究了综合能源系统内部多种源荷可调资源及运行成本结构;其次,建立了在电力市场价格不确定性条件下考虑系统边际成本交易优化模型,并提出沙猫群优化算法进行求解。最后,通过对实际案例的仿真验证。结果表明:该策略不仅可以降低IES的运行成本,还能增强其对市场价格不确定性的适应能力,为综合能源系统在电力现货市场环境下的运行提供了新的思路和方法,有助于实现能源系统参与市场调度的经济性和可靠性双重优化。