This paper presents a modeling method for a non-uniformly sampled system bused on support vector regression ( SVR ). First, a lifted discrete-time state-space model for a non-uniformly sampled system is derived by u...This paper presents a modeling method for a non-uniformly sampled system bused on support vector regression ( SVR ). First, a lifted discrete-time state-space model for a non-uniformly sampled system is derived by using the lifting technique to reduce the modeling difficulty caused by multirate sampling. Then, the system is divided into several parallel subsystems and their input-output model is presented to satisfy the SVR model. Finally, an on-line SVR technique is utilized to establish the models of all subsystems to deal with uncertainty. Furthermore, the presented method is applied in a multichannel electrohydraulic force servo synchronous loading system to predict the system outputs over the control sample interval and the prediction mean absolute percentage error reaches 0. 092%. The results demonstrate that the presented method has a high modeling precision and the subsystems have the same level of prediction error.展开更多
In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are co...In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are considered for identification. In the case of state measurement, an identification algorithm based on the singular value decomposition(SVD) is developed to estimate the model parameter matrices by using the least-squares fitting. In the case of output measurement only, another identification algorithm is given by combining the SVD approach with a hierarchical identification strategy. An example is used to demonstrate the effectiveness of the proposed identification method.展开更多
Continuous control protocols are extensively utilized in traditional MASs,in which information needs to be transmitted among agents consecutively,therefore resulting in excessive consumption of limited resources.To de...Continuous control protocols are extensively utilized in traditional MASs,in which information needs to be transmitted among agents consecutively,therefore resulting in excessive consumption of limited resources.To decrease the control cost,based on ISC,several LFC problems are investigated for second-order MASs without and with time delay,respectively.Firstly,an intermittent sampled controller is designed,and a sufficient and necessary condition is derived,under which state errors between the leader and all the followers approach zero asymptotically.Considering that time delay is inevitable,a new protocol is proposed to deal with the time-delay situation.The error system’s stability is analyzed using the Schur stability theorem,and sufficient and necessary conditions for LFC are obtained,which are closely associated with the coupling gain,the system parameters,and the network structure.Furthermore,for the case where the current position and velocity information are not available,a distributed protocol is designed that depends only on the sampled position information.The sufficient and necessary conditions for LFC are also given.The results show that second-order MASs can achieve the LFC if and only if the system parameters satisfy the inequalities proposed in the paper.Finally,the correctness of the obtained results is verified by numerical simulations.展开更多
Dear Editor,This letter is concerned with stability analysis and stabilization design for sampled-data based load frequency control(LFC) systems via a data-driven method. By describing the dynamic behavior of LFC syst...Dear Editor,This letter is concerned with stability analysis and stabilization design for sampled-data based load frequency control(LFC) systems via a data-driven method. By describing the dynamic behavior of LFC systems based on a data-based representation, a stability criterion is derived to obtain the admissible maximum sampling interval(MSI) for a given controller and a design condition of the PI-type controller is further developed to meet the required MSI. Finally, the effectiveness of the proposed methods is verified by a case study.展开更多
Based on the multi-model principle, the fuzzy identification for nonlinear systems with multirate sampled data is studied.Firstly, the nonlinear system with multirate sampled data can be shown as the nonlinear weighte...Based on the multi-model principle, the fuzzy identification for nonlinear systems with multirate sampled data is studied.Firstly, the nonlinear system with multirate sampled data can be shown as the nonlinear weighted combination of some linear models at multiple local working points. On this basis, the fuzzy model of the multirate sampled nonlinear system is built. The premise structure of the fuzzy model is confirmed by using fuzzy competitive learning, and the conclusion parameters of the fuzzy model are estimated by the random gradient descent algorithm. The convergence of the proposed identification algorithm is given by using the martingale theorem and lemmas. The fuzzy model of the PH neutralization process of acid-base titration for hair quality detection is constructed to demonstrate the effectiveness of the proposed method.展开更多
This paper is concerned with the problem of robust H-infinity filtering on uncertain systems under sampled measurements, both continuous disturbance and discrete disturbance are considered in the systems. The paramete...This paper is concerned with the problem of robust H-infinity filtering on uncertain systems under sampled measurements, both continuous disturbance and discrete disturbance are considered in the systems. The parameter uncertainty is assumed to be time-varying norm-bounded. The aim is to design an asymptotically stable filter, using the locally sampled measurements, which ensures both the robust asymptotic stability and a prescribed level of H-infinity performance for the filtering error dynamics for all admissible uncertainties. The derivation process is simplified by introducing auxiliary systems and the sufficient condition for the existence of such a filter is proposed. During the study, the main results were expressed as LMIs by employing various matrix techniques. Using LMI toolbox of Matlab software, it is very convenient to obtain the appropriate filter. Finally, a numerical example shows that the method is effective and feasible.展开更多
The identification of nonlinear systems with multiple sampled rates is a difficult task.The motivation of our paper is to study the parameter estimation problem of Hammerstein systems with dead-zone characteristics by...The identification of nonlinear systems with multiple sampled rates is a difficult task.The motivation of our paper is to study the parameter estimation problem of Hammerstein systems with dead-zone characteristics by using the dual-rate sampled data.Firstly,the auxiliary model identification principle is used to estimate the unmeasurable variables,and the recursive estimation algorithm is proposed to identify the parameters of the static nonlinear model with the dead-zone function and the parameters of the dynamic linear system model.Then,the convergence of the proposed identification algorithm is analyzed by using the martingale convergence theorem.It is proved theoretically that the estimated parameters can converge to the real values under the condition of continuous excitation.Finally,the validity of the proposed algorithm is proved by the identification of the dual-rate sampled nonlinear systems.展开更多
In this paper, consensus problems of heterogeneous multi-agent systems based on sampled data with a small sampling delay are considered. First, a consensus protocol based on sampled data with a small sampling delay fo...In this paper, consensus problems of heterogeneous multi-agent systems based on sampled data with a small sampling delay are considered. First, a consensus protocol based on sampled data with a small sampling delay for heterogeneous multi-agent systems is proposed. Then, the algebra graph theory, the matrix method, the stability theory of linear systems, and some other techniques are employed to derive the necessary and sufficient conditions guaranteeing heterogeneous multi-agent systems to asymptotically achieve the stationary consensus. Finally, simulations are performed to demonstrate the correctness of the theoretical results.展开更多
In this paper we provide a unified framework for consensus tracking of leader-follower multi-agent systems with measurement noises based on sampled data with a general sampling delay. First, a stochastic bounded conse...In this paper we provide a unified framework for consensus tracking of leader-follower multi-agent systems with measurement noises based on sampled data with a general sampling delay. First, a stochastic bounded consensus tracking protocol based on sampled data with a general sampling delay is presented by employing the delay decomposition technique. Then, necessary and sufficient conditions are derived for guaranteeing leader-follower multi-agent systems with measurement noises and a time-varying reference state to achieve mean square bounded consensus tracking. The obtained results cover no sampling delay, a small sampling delay and a large sampling delay as three special cases. Last, simulations are provided to demonstrate the effectiveness of the theoretical results.展开更多
This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus...This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles.展开更多
This paper presented a tutorial exposition of H ∞ sampled data control, emphasizing the H ∞ discretization which converts the H ∞ sampled data system to an equivalent finite dimensional H ∞ ...This paper presented a tutorial exposition of H ∞ sampled data control, emphasizing the H ∞ discretization which converts the H ∞ sampled data system to an equivalent finite dimensional H ∞ discrete time system. The discretization process involves two steps. First, the original problem is changed into an equivalent infinite dimensional discrete time problem by lifting techniques. Then, further simplification is taken to reduce the problem to an equivalent finite dimensional discrete problem which can be solved by the existing techniques such as state space approach or two riccati method.展开更多
In this paper, the consensus problem with position sampled data for second-order multi-agent systems is investigated.The interaction topology among the agents is depicted by a directed graph. The full-order and reduce...In this paper, the consensus problem with position sampled data for second-order multi-agent systems is investigated.The interaction topology among the agents is depicted by a directed graph. The full-order and reduced-order observers with position sampled data are proposed, by which two kinds of sampled data-based consensus protocols are constructed. With the provided sampled protocols, the consensus convergence analysis of a continuous-time multi-agent system is equivalently transformed into that of a discrete-time system. Then, by using matrix theory and a sampled control analysis method, some sufficient and necessary consensus conditions based on the coupling parameters, spectrum of the Laplacian matrix and sampling period are obtained. While the sampling period tends to zero, our established necessary and sufficient conditions are degenerated to the continuous-time protocol case, which are consistent with the existing result for the continuous-time case. Finally, the effectiveness of our established results is illustrated by a simple simulation example.展开更多
The problem of robust controller design with covariance constraint for uncertain sampled data feedback control systems was considered in this paper. The goal of this problem is to design controllers such that the clo...The problem of robust controller design with covariance constraint for uncertain sampled data feedback control systems was considered in this paper. The goal of this problem is to design controllers such that the closed loop system meets the prespecified covariance constraint. This problem can be reduced to a controller design problem for an equivalent uncertain discrete time system. Sufficient conditions were given for the existence of the desired controllers. The analytical expression of the set of desired controllers was also presented. An illustrative example was given to show the applicability of the proposed design procedure.展开更多
This paper was concerned with the problem of robust sampled data state estimation for uncertain continuous time systems. A sampled data estimation covariance is given by taking intersample behaviour into account. T...This paper was concerned with the problem of robust sampled data state estimation for uncertain continuous time systems. A sampled data estimation covariance is given by taking intersample behaviour into account. The primary purpose of this paper is to design robust discrete time Kalman filters such that the sampled data estimation covariance is not more than a prespecified value, and therefore the error variances achieve the desired constraints. It is shown that the addressed problem can be converted into a similar problem for a fictitious discrete time system. The existence conditions and the explicit expression of desired filters were both derived. Finally, a simple example was presented to demonstrate the effectiveness of the proposed design procedure.展开更多
The problem of deadbeat covariance controller design for sampled data feedback systems is considered. The purpose of considering this problem is to design linear discrete controllers such that the state covariance of...The problem of deadbeat covariance controller design for sampled data feedback systems is considered. The purpose of considering this problem is to design linear discrete controllers such that the state covariance of the closed loop system achieves its steady state value which is equal to a prespecified positive definite matrix during finite beats. This problem is reduced to the similar one for equivalent discrete time systems by taking intersample behaviour into account. Both the existence conditions and the explicit expression of the desired controllers are given.展开更多
Multirate digital control system is a periodically time-variant (PTV) system in its essence. It bas many' super capability', such as obtaining arbitrarily-large gain- margin, simultaneous stabilization, strong...Multirate digital control system is a periodically time-variant (PTV) system in its essence. It bas many' super capability', such as obtaining arbitrarily-large gain- margin, simultaneous stabilization, strong stabilization, decentralized control, etc. Utilizing freedom aroused from the multirate sampling of system output, this paper assigns poles of the closedloop system robustly, and so improves the resistance of the system to perturbation.展开更多
For a sampled-data control system with nonuniform sampling, the sampling interval sequence, which is continuously distributed in a given interval, is described as a multiple independent and identically distributed (i....For a sampled-data control system with nonuniform sampling, the sampling interval sequence, which is continuously distributed in a given interval, is described as a multiple independent and identically distributed (i.i.d.) process. With this process, the closed-loop system is transformed into an asynchronous dynamical impulsive model with input delays. Sufficient conditions for the closed-loop mean-square exponential stability are presented in terms of linear matrix inequalities (LMIs), in which the relation between the nonuniform sampling and the mean-square exponential stability of the closed-loop system is explicitly established. Based on the stability conditions, the controller design method is given, which is further formulated as a convex optimization problem with LMI constraints. Numerical examples and experiment results are given to show the effectiveness and the advantages of the theoretical results.展开更多
This study introduces the type-I heavy-tailed Burr XII(TIHTBXII)distribution,a highly flexible and robust statistical model designed to address the limitations of conventional distributions in analyzing data character...This study introduces the type-I heavy-tailed Burr XII(TIHTBXII)distribution,a highly flexible and robust statistical model designed to address the limitations of conventional distributions in analyzing data characterized by skewness,heavy tails,and diverse hazard behaviors.We meticulously develop the TIHTBXII’s mathematical foundations,including its probability density function(PDF),cumulative distribution function(CDF),and essential statistical properties,crucial for theoretical understanding and practical application.A comprehensive Monte Carlo simulation evaluates four parameter estimation methods:maximum likelihood(MLE),maximum product spacing(MPS),least squares(LS),and weighted least squares(WLS).The simulation results consistently show that as sample sizes increase,the Bias and RMSE of all estimators decrease,with WLS and LS often demonstrating superior and more stable performance.Beyond theoretical development,we present a practical application of the TIHTBXII distribution in constructing a group acceptance sampling plan(GASP)for truncated life tests.This application highlights how the TIHTBXII model can optimize quality control decisions by minimizing the average sample number(ASN)while effectively managing consumer and producer risks.Empirical validation using real-world datasets,including“Active Repair Duration,”“Groundwater Contaminant Measurements,”and“Dominica COVID-19 Mortality,”further demonstrates the TIHTBXII’s superior fit compared to existing models.Our findings confirm the TIHTBXII distribution as a powerful and reliable alternative for accurately modeling complex data in fields such as reliability engineering and quality assessment,leading to more informed and robust decision-making.展开更多
Significant investment in nanocarrier drug delivery systems(Nano-DDSs)has yielded only a limited number of successfully marketed nanomedicines,highlighting a low rate of clinical translation.A primary contributing fac...Significant investment in nanocarrier drug delivery systems(Nano-DDSs)has yielded only a limited number of successfully marketed nanomedicines,highlighting a low rate of clinical translation.A primary contributing factor is the lack of foundational understanding of in vivo processes.Comprehensive knowledge of the pharmacokinetics of Nano-DDSs is essential for developing more efficacious nanomedicines and accurately evaluating their safety and associated risks.However,the complexity of Nano-DDSs has impeded thorough and systematic pharmacokinetic studies.Key components of pharmacokinetic investigations on Nano-DDSs include the analysis of the released drug,the encapsulated drug,and the nanomaterial,which present a higher level of complexity compared to traditional small-molecule drugs.Establishing an appropriate approach for monitoring the pharmacokinetics of Nano-DDSs is crucial for facilitating the clinical translation of nanomedicines.This review provides an overview of advanced bioanalytical methodologies employed in studying the pharmacokinetics of anticancer organic Nano-DDSs over the past five years.We hope that this review will enhance the understanding of the pharmacokinetics of Nano-DDSs and support the advancement of nanomedicines.展开更多
In the era of big data,data-driven technologies are increasingly leveraged by industry to facilitate autonomous learning and intelligent decision-making.However,the challenge of“small samples in big data”emerges whe...In the era of big data,data-driven technologies are increasingly leveraged by industry to facilitate autonomous learning and intelligent decision-making.However,the challenge of“small samples in big data”emerges when datasets lack the comprehensive information necessary for addressing complex scenarios,which hampers adaptability.Thus,enhancing data completeness is essential.Knowledge-guided virtual sample generation transforms domain knowledge into extensive virtual datasets,thereby reducing dependence on limited real samples and enabling zero-sample fault diagnosis.This study used building air conditioning systems as a case study.We innovatively used the large language model(LLM)to acquire domain knowledge for sample generation,significantly lowering knowledge acquisition costs and establishing a generalized framework for knowledge acquisition in engineering applications.This acquired knowledge guided the design of diffusion boundaries in mega-trend diffusion(MTD),while the Monte Carlo method was used to sample within the diffusion function to create information-rich virtual samples.Additionally,a noise-adding technique was introduced to enhance the information entropy of these samples,thereby improving the robustness of neural networks trained with them.Experimental results showed that training the diagnostic model exclusively with virtual samples achieved an accuracy of 72.80%,significantly surpassing traditional small-sample supervised learning in terms of generalization.This underscores the quality and completeness of the generated virtual samples.展开更多
文摘This paper presents a modeling method for a non-uniformly sampled system bused on support vector regression ( SVR ). First, a lifted discrete-time state-space model for a non-uniformly sampled system is derived by using the lifting technique to reduce the modeling difficulty caused by multirate sampling. Then, the system is divided into several parallel subsystems and their input-output model is presented to satisfy the SVR model. Finally, an on-line SVR technique is utilized to establish the models of all subsystems to deal with uncertainty. Furthermore, the presented method is applied in a multichannel electrohydraulic force servo synchronous loading system to predict the system outputs over the control sample interval and the prediction mean absolute percentage error reaches 0. 092%. The results demonstrate that the presented method has a high modeling precision and the subsystems have the same level of prediction error.
基金Supported in part by the National Thousand Talents Program of Chinathe National Natural Science Foundation of China(61473054)the Fundamental Research Funds for the Central Universities of China
文摘In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are considered for identification. In the case of state measurement, an identification algorithm based on the singular value decomposition(SVD) is developed to estimate the model parameter matrices by using the least-squares fitting. In the case of output measurement only, another identification algorithm is given by combining the SVD approach with a hierarchical identification strategy. An example is used to demonstrate the effectiveness of the proposed identification method.
基金supported by the National Natural Science Foundation of China under Grants 62476138 and 42375016.
文摘Continuous control protocols are extensively utilized in traditional MASs,in which information needs to be transmitted among agents consecutively,therefore resulting in excessive consumption of limited resources.To decrease the control cost,based on ISC,several LFC problems are investigated for second-order MASs without and with time delay,respectively.Firstly,an intermittent sampled controller is designed,and a sufficient and necessary condition is derived,under which state errors between the leader and all the followers approach zero asymptotically.Considering that time delay is inevitable,a new protocol is proposed to deal with the time-delay situation.The error system’s stability is analyzed using the Schur stability theorem,and sufficient and necessary conditions for LFC are obtained,which are closely associated with the coupling gain,the system parameters,and the network structure.Furthermore,for the case where the current position and velocity information are not available,a distributed protocol is designed that depends only on the sampled position information.The sufficient and necessary conditions for LFC are also given.The results show that second-order MASs can achieve the LFC if and only if the system parameters satisfy the inequalities proposed in the paper.Finally,the correctness of the obtained results is verified by numerical simulations.
基金supported in part by the National Natural Science Foundation of China(62373337,62373333)the 111 Project(B17040)State Key Laboratory of Advanced Electromagnetic Technology(2024KF002)
文摘Dear Editor,This letter is concerned with stability analysis and stabilization design for sampled-data based load frequency control(LFC) systems via a data-driven method. By describing the dynamic behavior of LFC systems based on a data-based representation, a stability criterion is derived to obtain the admissible maximum sampling interval(MSI) for a given controller and a design condition of the PI-type controller is further developed to meet the required MSI. Finally, the effectiveness of the proposed methods is verified by a case study.
基金supported by the National Natural Science Foundation of China(61863034)。
文摘Based on the multi-model principle, the fuzzy identification for nonlinear systems with multirate sampled data is studied.Firstly, the nonlinear system with multirate sampled data can be shown as the nonlinear weighted combination of some linear models at multiple local working points. On this basis, the fuzzy model of the multirate sampled nonlinear system is built. The premise structure of the fuzzy model is confirmed by using fuzzy competitive learning, and the conclusion parameters of the fuzzy model are estimated by the random gradient descent algorithm. The convergence of the proposed identification algorithm is given by using the martingale theorem and lemmas. The fuzzy model of the PH neutralization process of acid-base titration for hair quality detection is constructed to demonstrate the effectiveness of the proposed method.
基金This work was supported by the National Natural Science Foundation of China (No.60274009) and the National Program (863) of High TechnologyDevelopment(No.2004AA412030).
文摘This paper is concerned with the problem of robust H-infinity filtering on uncertain systems under sampled measurements, both continuous disturbance and discrete disturbance are considered in the systems. The parameter uncertainty is assumed to be time-varying norm-bounded. The aim is to design an asymptotically stable filter, using the locally sampled measurements, which ensures both the robust asymptotic stability and a prescribed level of H-infinity performance for the filtering error dynamics for all admissible uncertainties. The derivation process is simplified by introducing auxiliary systems and the sufficient condition for the existence of such a filter is proposed. During the study, the main results were expressed as LMIs by employing various matrix techniques. Using LMI toolbox of Matlab software, it is very convenient to obtain the appropriate filter. Finally, a numerical example shows that the method is effective and feasible.
基金supported by the National Natural Science Foundation of China(61863034)
文摘The identification of nonlinear systems with multiple sampled rates is a difficult task.The motivation of our paper is to study the parameter estimation problem of Hammerstein systems with dead-zone characteristics by using the dual-rate sampled data.Firstly,the auxiliary model identification principle is used to estimate the unmeasurable variables,and the recursive estimation algorithm is proposed to identify the parameters of the static nonlinear model with the dead-zone function and the parameters of the dynamic linear system model.Then,the convergence of the proposed identification algorithm is analyzed by using the martingale convergence theorem.It is proved theoretically that the estimated parameters can converge to the real values under the condition of continuous excitation.Finally,the validity of the proposed algorithm is proved by the identification of the dual-rate sampled nonlinear systems.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61203147,61374047,61203126,and 61104092)the Humanities and Social Sciences Youth Funds of the Ministry of Education,China(Grant No.12YJCZH218)
文摘In this paper, consensus problems of heterogeneous multi-agent systems based on sampled data with a small sampling delay are considered. First, a consensus protocol based on sampled data with a small sampling delay for heterogeneous multi-agent systems is proposed. Then, the algebra graph theory, the matrix method, the stability theory of linear systems, and some other techniques are employed to derive the necessary and sufficient conditions guaranteeing heterogeneous multi-agent systems to asymptotically achieve the stationary consensus. Finally, simulations are performed to demonstrate the correctness of the theoretical results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61203147,60973095,60804013,and 61104092)the Fundamental Research Funds for the Central Universities,China(Grant Nos.JUSRP111A44,JUSRP21011,and JUSRP11233)+1 种基金the Foundation of State Key Laboratory of Digital Manufacturing Equipment and Technology,HUST,China(Grant No.DMETKF2010008)the Humanities and Social Sciences Youth Funds of the Ministry of Education,China(Grant No.12YJCZH218)
文摘In this paper we provide a unified framework for consensus tracking of leader-follower multi-agent systems with measurement noises based on sampled data with a general sampling delay. First, a stochastic bounded consensus tracking protocol based on sampled data with a general sampling delay is presented by employing the delay decomposition technique. Then, necessary and sufficient conditions are derived for guaranteeing leader-follower multi-agent systems with measurement noises and a time-varying reference state to achieve mean square bounded consensus tracking. The obtained results cover no sampling delay, a small sampling delay and a large sampling delay as three special cases. Last, simulations are provided to demonstrate the effectiveness of the theoretical results.
文摘This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles.
文摘This paper presented a tutorial exposition of H ∞ sampled data control, emphasizing the H ∞ discretization which converts the H ∞ sampled data system to an equivalent finite dimensional H ∞ discrete time system. The discretization process involves two steps. First, the original problem is changed into an equivalent infinite dimensional discrete time problem by lifting techniques. Then, further simplification is taken to reduce the problem to an equivalent finite dimensional discrete problem which can be solved by the existing techniques such as state space approach or two riccati method.
基金supported by the Natural Science Foundation of Zhejiang Province,China(Grant No.LY13F030005)the National Natural Science Foundation of China(Grant No.61501331)
文摘In this paper, the consensus problem with position sampled data for second-order multi-agent systems is investigated.The interaction topology among the agents is depicted by a directed graph. The full-order and reduced-order observers with position sampled data are proposed, by which two kinds of sampled data-based consensus protocols are constructed. With the provided sampled protocols, the consensus convergence analysis of a continuous-time multi-agent system is equivalently transformed into that of a discrete-time system. Then, by using matrix theory and a sampled control analysis method, some sufficient and necessary consensus conditions based on the coupling parameters, spectrum of the Laplacian matrix and sampling period are obtained. While the sampling period tends to zero, our established necessary and sufficient conditions are degenerated to the continuous-time protocol case, which are consistent with the existing result for the continuous-time case. Finally, the effectiveness of our established results is illustrated by a simple simulation example.
文摘The problem of robust controller design with covariance constraint for uncertain sampled data feedback control systems was considered in this paper. The goal of this problem is to design controllers such that the closed loop system meets the prespecified covariance constraint. This problem can be reduced to a controller design problem for an equivalent uncertain discrete time system. Sufficient conditions were given for the existence of the desired controllers. The analytical expression of the set of desired controllers was also presented. An illustrative example was given to show the applicability of the proposed design procedure.
文摘This paper was concerned with the problem of robust sampled data state estimation for uncertain continuous time systems. A sampled data estimation covariance is given by taking intersample behaviour into account. The primary purpose of this paper is to design robust discrete time Kalman filters such that the sampled data estimation covariance is not more than a prespecified value, and therefore the error variances achieve the desired constraints. It is shown that the addressed problem can be converted into a similar problem for a fictitious discrete time system. The existence conditions and the explicit expression of desired filters were both derived. Finally, a simple example was presented to demonstrate the effectiveness of the proposed design procedure.
文摘The problem of deadbeat covariance controller design for sampled data feedback systems is considered. The purpose of considering this problem is to design linear discrete controllers such that the state covariance of the closed loop system achieves its steady state value which is equal to a prespecified positive definite matrix during finite beats. This problem is reduced to the similar one for equivalent discrete time systems by taking intersample behaviour into account. Both the existence conditions and the explicit expression of the desired controllers are given.
基金Supported by the National Natural Science Foundation of China(No. 69774024 )
文摘Multirate digital control system is a periodically time-variant (PTV) system in its essence. It bas many' super capability', such as obtaining arbitrarily-large gain- margin, simultaneous stabilization, strong stabilization, decentralized control, etc. Utilizing freedom aroused from the multirate sampling of system output, this paper assigns poles of the closedloop system robustly, and so improves the resistance of the system to perturbation.
基金supported by National Natural Science Foundation of China (Nos.61104105,U0735003 and 60974047)Natural Science Foundation of Guangdong Province of China (No.9451009001002702)
文摘For a sampled-data control system with nonuniform sampling, the sampling interval sequence, which is continuously distributed in a given interval, is described as a multiple independent and identically distributed (i.i.d.) process. With this process, the closed-loop system is transformed into an asynchronous dynamical impulsive model with input delays. Sufficient conditions for the closed-loop mean-square exponential stability are presented in terms of linear matrix inequalities (LMIs), in which the relation between the nonuniform sampling and the mean-square exponential stability of the closed-loop system is explicitly established. Based on the stability conditions, the controller design method is given, which is further formulated as a convex optimization problem with LMI constraints. Numerical examples and experiment results are given to show the effectiveness and the advantages of the theoretical results.
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(Grant Number IMSIU-DDRSP2501).
文摘This study introduces the type-I heavy-tailed Burr XII(TIHTBXII)distribution,a highly flexible and robust statistical model designed to address the limitations of conventional distributions in analyzing data characterized by skewness,heavy tails,and diverse hazard behaviors.We meticulously develop the TIHTBXII’s mathematical foundations,including its probability density function(PDF),cumulative distribution function(CDF),and essential statistical properties,crucial for theoretical understanding and practical application.A comprehensive Monte Carlo simulation evaluates four parameter estimation methods:maximum likelihood(MLE),maximum product spacing(MPS),least squares(LS),and weighted least squares(WLS).The simulation results consistently show that as sample sizes increase,the Bias and RMSE of all estimators decrease,with WLS and LS often demonstrating superior and more stable performance.Beyond theoretical development,we present a practical application of the TIHTBXII distribution in constructing a group acceptance sampling plan(GASP)for truncated life tests.This application highlights how the TIHTBXII model can optimize quality control decisions by minimizing the average sample number(ASN)while effectively managing consumer and producer risks.Empirical validation using real-world datasets,including“Active Repair Duration,”“Groundwater Contaminant Measurements,”and“Dominica COVID-19 Mortality,”further demonstrates the TIHTBXII’s superior fit compared to existing models.Our findings confirm the TIHTBXII distribution as a powerful and reliable alternative for accurately modeling complex data in fields such as reliability engineering and quality assessment,leading to more informed and robust decision-making.
基金supported by the National Natural Science Foundation of China(Grant Nos.:82304443,82030107,and 82373944).
文摘Significant investment in nanocarrier drug delivery systems(Nano-DDSs)has yielded only a limited number of successfully marketed nanomedicines,highlighting a low rate of clinical translation.A primary contributing factor is the lack of foundational understanding of in vivo processes.Comprehensive knowledge of the pharmacokinetics of Nano-DDSs is essential for developing more efficacious nanomedicines and accurately evaluating their safety and associated risks.However,the complexity of Nano-DDSs has impeded thorough and systematic pharmacokinetic studies.Key components of pharmacokinetic investigations on Nano-DDSs include the analysis of the released drug,the encapsulated drug,and the nanomaterial,which present a higher level of complexity compared to traditional small-molecule drugs.Establishing an appropriate approach for monitoring the pharmacokinetics of Nano-DDSs is crucial for facilitating the clinical translation of nanomedicines.This review provides an overview of advanced bioanalytical methodologies employed in studying the pharmacokinetics of anticancer organic Nano-DDSs over the past five years.We hope that this review will enhance the understanding of the pharmacokinetics of Nano-DDSs and support the advancement of nanomedicines.
基金supported by the National Natural Science Foundation of China(No.62306281)the Natural Science Foundation of Zhejiang Province(Nos.LQ23E060006 and LTGG24E050005)the Key Research Plan of Jiaxing City(No.2024BZ20016).
文摘In the era of big data,data-driven technologies are increasingly leveraged by industry to facilitate autonomous learning and intelligent decision-making.However,the challenge of“small samples in big data”emerges when datasets lack the comprehensive information necessary for addressing complex scenarios,which hampers adaptability.Thus,enhancing data completeness is essential.Knowledge-guided virtual sample generation transforms domain knowledge into extensive virtual datasets,thereby reducing dependence on limited real samples and enabling zero-sample fault diagnosis.This study used building air conditioning systems as a case study.We innovatively used the large language model(LLM)to acquire domain knowledge for sample generation,significantly lowering knowledge acquisition costs and establishing a generalized framework for knowledge acquisition in engineering applications.This acquired knowledge guided the design of diffusion boundaries in mega-trend diffusion(MTD),while the Monte Carlo method was used to sample within the diffusion function to create information-rich virtual samples.Additionally,a noise-adding technique was introduced to enhance the information entropy of these samples,thereby improving the robustness of neural networks trained with them.Experimental results showed that training the diagnostic model exclusively with virtual samples achieved an accuracy of 72.80%,significantly surpassing traditional small-sample supervised learning in terms of generalization.This underscores the quality and completeness of the generated virtual samples.