The effect of Sr on modification and refinement of the Mg 2 Si phase in an AZ61-0.7Si magnesium alloy has been investigated and analyzed.The results indicate that Sr can effectively modify and refine the Chinese-scrip...The effect of Sr on modification and refinement of the Mg 2 Si phase in an AZ61-0.7Si magnesium alloy has been investigated and analyzed.The results indicate that Sr can effectively modify and refine the Chinese-script shaped Mg2Si phase in the AZ61-0.7Si alloy.By adding 0.06wt.%-0.12wt.%Sr to AZ61-0.7Si alloy,the Mg2Si phase in the alloy can be changed from the initial coarse Chinese-script shape to fine granule and/or irregular polygonal shapes.Accordingly,the Sr-containing AZ61-0.7Si alloy exhibits higher tensile and creep properties than the AZ61-0.7Si alloy without Sr modification.The mechanism on modification and refinement of the Mg2Si phase in Sr-containing AZ61-0.7Si alloy is possibly related to the following two aspects:(1)adding Sr may form the Al4Sr phase which can serve as the heterogeneous nucleus for the Mg2Si particles and/or(2)adding Sr may lower the onset crystallizing temperature and increase the undercooling level.展开更多
Isotope plays an important role in both tracing and dating in earth science, especially 87Rb-86 Sr system. With the development of earth science, whole-rock analysis can't sufficiently meet the requirements for scien...Isotope plays an important role in both tracing and dating in earth science, especially 87Rb-86 Sr system. With the development of earth science, whole-rock analysis can't sufficiently meet the requirements for scientific research and the micro-analysis becomes more and more significant. Laser ablation multi-collector inductively-coupled plasma mass-spectrometry(LA-MC-ICP-MS) has been extensively applied in micro-zone analysis due to its low sample-consumption, high accuracy, in situ and low requirements on matrix, but it is still difficult to accurately measure Sr isotope compositions especially for the samples with high Rb/Sr ratios and low Sr contents as it is restricted by severe quality discrimination and various types of mass spectrum interferences. Consequently, thermal ionization mass-spectrometry(TIMS), as the most accurate and precise method to analyze isotopic ratios, is still the most popular method of analyzing Sr ratios, especially for the samples with low Sr contents. This paper makes a systematic review on the high-precision Sr isotope analyses of low-Sr geological samples, including the micro-sampling technique, ultra-low procedural blank chemical method and TIMS measurement technique. The combination of ultra-low procedural blank and TIMS can be used to perform high-precision micro-analysis of the samples with ng magnitude, which will be undoubtedly an important direction for Rb-Sr geochronology, geochemistry and environmental studies.展开更多
The effects of various Mg-Sr master alloys(conventional as-cast,rapidly-solidified,rolled and solutionized) on microstructural refinement of ZK60 magnesium alloy were investigated.The results indicate that the refinem...The effects of various Mg-Sr master alloys(conventional as-cast,rapidly-solidified,rolled and solutionized) on microstructural refinement of ZK60 magnesium alloy were investigated.The results indicate that the refinement efficiency of various Mg-Sr master alloys in ZK60 alloy is different.The rolled Mg-Srmaster alloy is found to have relatively higher refinement efficiency than the conventional as-cast,solutionized and rapidly-solidified Mg-Sr master alloys.After being treated with the rolled Mg-Sr master alloy,the ZK60 alloy obtains the minimum average grain size of 33μm.The difference of various Mg-Sr master alloys in refinement efficiency might be related to the initial microstructure change of various Mg-Sr master alloys.展开更多
It is a practically significant issue to refine and modify industrial Al-Si casting alloy to improve its properties.In the present study,a novel refiner Al-3Ti-4.35La alloy,prepared by a melt-reaction method,was used,...It is a practically significant issue to refine and modify industrial Al-Si casting alloy to improve its properties.In the present study,a novel refiner Al-3Ti-4.35La alloy,prepared by a melt-reaction method,was used,combined with Sr to refine the as-cast A356 alloy.Their effects on the as-cast microstructures and mechanical properties of A356 alloy were investigated.The results indicate that the combined addition of Al-3Ti-4.35La intermediate alloy and Sr can improve the microstructure and enhance the mechanical properties of A356 alloy.After adding 0.3wt.%Al-3Ti-4.35La and 0.03wt.%Sr to the as-cast A356 alloy,the average grain size ofα-Al decreases from 693.47μm to 264.13μm(a decrease of 61.91%),the secondary dendrite arm spacing(SDAS)is decreased by 47.8%from 32.09μm to 16.75μm,and the eutectic Si is transformed from an acicular structure to short rods and a granular structure.The ultimate tensile strength(UTS)and elongation(EL)of the as-cast A356 alloy modified by Al-3Ti-4.35La and Sr reach 216.3 MPa and 10.6%,which are enhanced by 29.54%and 134.66%compared with the unmodified alloy,respectively.The fracture mode is transformed from transgranular fracture to intergranular fracture,and the ductile toughness of the alloy is improved.After adding the Al-3Ti-4.35La and Sr,the undercooling for the nucleation ofα-Al and eutectic Si increases,leading to an accelerated nucleation rate and an increased number of nuclei,which shortens the duration of the eutectic reaction and consequently inhibits grain growth.展开更多
The effects of Mn and Sn on the microstructure of Al?7Si?Mg alloy modified by Sr and Al?5Ti?B were studied. The results show that the columnar dendrites structure is observed with high content of Sr, indicating a pois...The effects of Mn and Sn on the microstructure of Al?7Si?Mg alloy modified by Sr and Al?5Ti?B were studied. The results show that the columnar dendrites structure is observed with high content of Sr, indicating a poisoning effect of the Al?5Ti?B grain refinement. In addition, Sr intermetallic compounds distribute on the TiB2 particles, which agglomerate inside the eutectic Si. The mechanism responsible for such poisoning was discussed. The addition of Mn changes the morphology of iron intermetallic compounds fromβ-Al5FeSi toα-Al(Mn,Fe)Si. Increasing the amount of Mn changes the morphology ofα-Al(Mn,Fe)Si from branched shape to rod-like shape with branched distribution, and finally convertsα-Al(Mn,Fe)Si to Chinese script shape. The microstructure observed by transmission electron microscopy (TEM) shows that Mg is more likely to interact with Sn in contrast with Si under the effect of Sn. Mg2Sn compound preferentially precipitates between the Si/Si interfaces and Al/Si interfaces.展开更多
Nucleation of dendritic primaryα(Al) phase with addition of element Ce and Sr in hypoeutectic Al-7%Si-Mg cast alloy was investigated by using differential scanning calorimetry (DSC) and scanning electron microsco...Nucleation of dendritic primaryα(Al) phase with addition of element Ce and Sr in hypoeutectic Al-7%Si-Mg cast alloy was investigated by using differential scanning calorimetry (DSC) and scanning electron microscopy. DSC results were used to calculate the activation energy and nucleation work of primaryα(Al) phase. The results show that the values of activation energy and nucleation work are decreased and the nucleation frequency is increased with the additions of Ce and Sr to the alloys. Moreover, the grain size of dendriticα(Al) phase is well refined, and the nucleation temperatures of primaryα(Al) dendrites are decreased with the additions of Ce and Sr. The effects of elements Ce and Sr additions on kinetic nucleation of primary α(Al) phases were also discussed in hypoeutectic Al-7%Si-Mg cast alloy.展开更多
基金supported by the National Natural Science Funds for Distinguished Young Scholar in China(No.50725413)the Major State Basic Research Development Program of China(973)(No.2007CB613704)+1 种基金the Natural Science Foundation Project of CQ CSTC(No.2007BB4400)Chongqing Science and Technology Commission in China(No.2006AA4012-9-6).
文摘The effect of Sr on modification and refinement of the Mg 2 Si phase in an AZ61-0.7Si magnesium alloy has been investigated and analyzed.The results indicate that Sr can effectively modify and refine the Chinese-script shaped Mg2Si phase in the AZ61-0.7Si alloy.By adding 0.06wt.%-0.12wt.%Sr to AZ61-0.7Si alloy,the Mg2Si phase in the alloy can be changed from the initial coarse Chinese-script shape to fine granule and/or irregular polygonal shapes.Accordingly,the Sr-containing AZ61-0.7Si alloy exhibits higher tensile and creep properties than the AZ61-0.7Si alloy without Sr modification.The mechanism on modification and refinement of the Mg2Si phase in Sr-containing AZ61-0.7Si alloy is possibly related to the following two aspects:(1)adding Sr may form the Al4Sr phase which can serve as the heterogeneous nucleus for the Mg2Si particles and/or(2)adding Sr may lower the onset crystallizing temperature and increase the undercooling level.
基金supported by National Natural Science Foundation of China (Nos. 90914007, 41125013)111 Plan (B07039)+1 种基金special fund of Ministry of Science and Technology,State Key Laboratory of Geological Processes and Mineral Resources (No. MSFGPMR201404)fund of Central University Fundamental Research (No. CUG090105)
文摘Isotope plays an important role in both tracing and dating in earth science, especially 87Rb-86 Sr system. With the development of earth science, whole-rock analysis can't sufficiently meet the requirements for scientific research and the micro-analysis becomes more and more significant. Laser ablation multi-collector inductively-coupled plasma mass-spectrometry(LA-MC-ICP-MS) has been extensively applied in micro-zone analysis due to its low sample-consumption, high accuracy, in situ and low requirements on matrix, but it is still difficult to accurately measure Sr isotope compositions especially for the samples with high Rb/Sr ratios and low Sr contents as it is restricted by severe quality discrimination and various types of mass spectrum interferences. Consequently, thermal ionization mass-spectrometry(TIMS), as the most accurate and precise method to analyze isotopic ratios, is still the most popular method of analyzing Sr ratios, especially for the samples with low Sr contents. This paper makes a systematic review on the high-precision Sr isotope analyses of low-Sr geological samples, including the micro-sampling technique, ultra-low procedural blank chemical method and TIMS measurement technique. The combination of ultra-low procedural blank and TIMS can be used to perform high-precision micro-analysis of the samples with ng magnitude, which will be undoubtedly an important direction for Rb-Sr geochronology, geochemistry and environmental studies.
基金Project(50725413)supported by the National Natural Science Foundation of China for Distinguished Young ScholarProject(2007CB613704)supported by the National Basic Research Program of China
文摘The effects of various Mg-Sr master alloys(conventional as-cast,rapidly-solidified,rolled and solutionized) on microstructural refinement of ZK60 magnesium alloy were investigated.The results indicate that the refinement efficiency of various Mg-Sr master alloys in ZK60 alloy is different.The rolled Mg-Srmaster alloy is found to have relatively higher refinement efficiency than the conventional as-cast,solutionized and rapidly-solidified Mg-Sr master alloys.After being treated with the rolled Mg-Sr master alloy,the ZK60 alloy obtains the minimum average grain size of 33μm.The difference of various Mg-Sr master alloys in refinement efficiency might be related to the initial microstructure change of various Mg-Sr master alloys.
基金financially supported by the National Natural Science Foundation of China(Grant No.52161006)an Industrial Support Plan Project of Gansu Provincial Department of Education(2021CYZC-23)+2 种基金the Gansu Key Research and Development Program(21YF5GD183)the Jiayuguan Science and Technology Planning Project(21-10)the China Postdoctoral Science Foundation Project(2019M653896XB)。
文摘It is a practically significant issue to refine and modify industrial Al-Si casting alloy to improve its properties.In the present study,a novel refiner Al-3Ti-4.35La alloy,prepared by a melt-reaction method,was used,combined with Sr to refine the as-cast A356 alloy.Their effects on the as-cast microstructures and mechanical properties of A356 alloy were investigated.The results indicate that the combined addition of Al-3Ti-4.35La intermediate alloy and Sr can improve the microstructure and enhance the mechanical properties of A356 alloy.After adding 0.3wt.%Al-3Ti-4.35La and 0.03wt.%Sr to the as-cast A356 alloy,the average grain size ofα-Al decreases from 693.47μm to 264.13μm(a decrease of 61.91%),the secondary dendrite arm spacing(SDAS)is decreased by 47.8%from 32.09μm to 16.75μm,and the eutectic Si is transformed from an acicular structure to short rods and a granular structure.The ultimate tensile strength(UTS)and elongation(EL)of the as-cast A356 alloy modified by Al-3Ti-4.35La and Sr reach 216.3 MPa and 10.6%,which are enhanced by 29.54%and 134.66%compared with the unmodified alloy,respectively.The fracture mode is transformed from transgranular fracture to intergranular fracture,and the ductile toughness of the alloy is improved.After adding the Al-3Ti-4.35La and Sr,the undercooling for the nucleation ofα-Al and eutectic Si increases,leading to an accelerated nucleation rate and an increased number of nuclei,which shortens the duration of the eutectic reaction and consequently inhibits grain growth.
文摘The effects of Mn and Sn on the microstructure of Al?7Si?Mg alloy modified by Sr and Al?5Ti?B were studied. The results show that the columnar dendrites structure is observed with high content of Sr, indicating a poisoning effect of the Al?5Ti?B grain refinement. In addition, Sr intermetallic compounds distribute on the TiB2 particles, which agglomerate inside the eutectic Si. The mechanism responsible for such poisoning was discussed. The addition of Mn changes the morphology of iron intermetallic compounds fromβ-Al5FeSi toα-Al(Mn,Fe)Si. Increasing the amount of Mn changes the morphology ofα-Al(Mn,Fe)Si from branched shape to rod-like shape with branched distribution, and finally convertsα-Al(Mn,Fe)Si to Chinese script shape. The microstructure observed by transmission electron microscopy (TEM) shows that Mg is more likely to interact with Sn in contrast with Si under the effect of Sn. Mg2Sn compound preferentially precipitates between the Si/Si interfaces and Al/Si interfaces.
基金Project (42-QP-009) support by Research Fund of the State Key Laboratory of Solidification Processing,ChinaProject (B08040) supported by the Program of Introducing Talents of Discipline to Universities ("111"Project),China
文摘Nucleation of dendritic primaryα(Al) phase with addition of element Ce and Sr in hypoeutectic Al-7%Si-Mg cast alloy was investigated by using differential scanning calorimetry (DSC) and scanning electron microscopy. DSC results were used to calculate the activation energy and nucleation work of primaryα(Al) phase. The results show that the values of activation energy and nucleation work are decreased and the nucleation frequency is increased with the additions of Ce and Sr to the alloys. Moreover, the grain size of dendriticα(Al) phase is well refined, and the nucleation temperatures of primaryα(Al) dendrites are decreased with the additions of Ce and Sr. The effects of elements Ce and Sr additions on kinetic nucleation of primary α(Al) phases were also discussed in hypoeutectic Al-7%Si-Mg cast alloy.