期刊文献+
共找到270篇文章
< 1 2 14 >
每页显示 20 50 100
Improved Reptile Search Algorithm by Salp Swarm Algorithm for Medical Image Segmentation 被引量:3
1
作者 Laith Abualigah Mahmoud Habash +4 位作者 Essam Said Hanandeh Ahmad MohdAziz Hussein Mohammad Al Shinwan Raed Abu Zitar Heming Jia 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第4期1766-1790,共25页
This study proposes a novel nature-inspired meta-heuristic optimizer based on the Reptile Search Algorithm combed with Salp Swarm Algorithm for image segmentation using gray-scale multi-level thresholding,called RSA-S... This study proposes a novel nature-inspired meta-heuristic optimizer based on the Reptile Search Algorithm combed with Salp Swarm Algorithm for image segmentation using gray-scale multi-level thresholding,called RSA-SSA.The proposed method introduces a better search space to find the optimal solution at each iteration.However,we proposed RSA-SSA to avoid the searching problem in the same area and determine the optimal multi-level thresholds.The obtained solutions by the proposed method are represented using the image histogram.The proposed RSA-SSA employed Otsu’s variance class function to get the best threshold values at each level.The performance measure for the proposed method is valid by detecting fitness function,structural similarity index,peak signal-to-noise ratio,and Friedman ranking test.Several benchmark images of COVID-19 validate the performance of the proposed RSA-SSA.The results showed that the proposed RSA-SSA outperformed other metaheuristics optimization algorithms published in the literature. 展开更多
关键词 BIOINSPIRED Reptile Search algorithm salp swarm algorithm Multi-level thresholding Image segmentation Meta-heuristic algorithm
在线阅读 下载PDF
Salp Swarm Incorporated Adaptive Dwarf Mongoose Optimizer with Lévy Flight and Gbest-Guided Strategy
2
作者 Gang Hu Yuxuan Guo Guanglei Sheng 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第4期2110-2144,共35页
In response to the shortcomings of Dwarf Mongoose Optimization(DMO)algorithm,such as insufficient exploitation capability and slow convergence speed,this paper proposes a multi-strategy enhanced DMO,referred to as GLS... In response to the shortcomings of Dwarf Mongoose Optimization(DMO)algorithm,such as insufficient exploitation capability and slow convergence speed,this paper proposes a multi-strategy enhanced DMO,referred to as GLSDMO.Firstly,we propose an improved solution search equation that utilizes the Gbest-guided strategy with different parameters to achieve a trade-off between exploration and exploitation(EE).Secondly,the Lévy flight is introduced to increase the diversity of population distribution and avoid the algorithm getting stuck in a local optimum.In addition,in order to address the problem of low convergence efficiency of DMO,this study uses the strong nonlinear convergence factor Sigmaid function as the moving step size parameter of the mongoose during collective activities,and combines the strategy of the salp swarm leader with the mongoose for cooperative optimization,which enhances the search efficiency of agents and accelerating the convergence of the algorithm to the global optimal solution(Gbest).Subsequently,the superiority of GLSDMO is verified on CEC2017 and CEC2019,and the optimization effect of GLSDMO is analyzed in detail.The results show that GLSDMO is significantly superior to the compared algorithms in solution quality,robustness and global convergence rate on most test functions.Finally,the optimization performance of GLSDMO is verified on three classic engineering examples and one truss topology optimization example.The simulation results show that GLSDMO achieves optimal costs on these real-world engineering problems. 展开更多
关键词 Dwarf mongoose optimization algorithm Gbest-guided Lévy flight Adaptive parameter salp swarm algorithm Engineering optimization Truss topological optimization
在线阅读 下载PDF
Pilot Allocation Optimization Using Enhanced Salp Swarm Algorithm for Sparse Channel Estimation 被引量:1
3
作者 Ning Li Kun Yao +2 位作者 Zhongliang Deng Xiaohao Zhao Jianchang Qin 《China Communications》 SCIE CSCD 2021年第11期141-154,共14页
Pilot pattern has a significant effect on the performance of channel estimation based on compressed sensing.However,because of the influence of the number of subcarriers and pilots,the complexity of the enumeration me... Pilot pattern has a significant effect on the performance of channel estimation based on compressed sensing.However,because of the influence of the number of subcarriers and pilots,the complexity of the enumeration method is computationally impractical.The meta-heuristic algorithm of the salp swarm algorithm(SSA)is employed to address this issue.Like most meta-heuristic algorithms,the SSA algorithm is prone to problems such as local optimal values and slow convergence.In this paper,we proposed the CWSSA to enhance the optimization efficiency and robustness by chaotic opposition-based learning strategy,adaptive weight factor,and increasing local search.Experiments show that the test results of the CWSSA on most benchmark functions are better than those of other meta-heuristic algorithms.Besides,the CWSSA algorithm is applied to pilot pattern optimization,and its results are better than other methods in terms of BER and MSE. 展开更多
关键词 OFDM channel estimation CWssa compressed sensing salp swarm algorithm pilot allocation
在线阅读 下载PDF
Optimization of Cognitive Radio System Using Self-Learning Salp Swarm Algorithm 被引量:1
4
作者 Nitin Mittal Harbinder Singh +5 位作者 Vikas Mittal Shubham Mahajan Amit Kant Pandit Mehedi Masud Mohammed Baz Mohamed Abouhawwash 《Computers, Materials & Continua》 SCIE EI 2022年第2期3821-3835,共15页
CognitiveRadio(CR)has been developed as an enabling technology that allows the unused or underused spectrum to be used dynamically to increase spectral efficiency.To improve the overall performance of the CR systemit ... CognitiveRadio(CR)has been developed as an enabling technology that allows the unused or underused spectrum to be used dynamically to increase spectral efficiency.To improve the overall performance of the CR systemit is extremely important to adapt or reconfigure the systemparameters.The Decision Engine is a major module in the CR-based system that not only includes radio monitoring and cognition functions but also responsible for parameter adaptation.As meta-heuristic algorithms offer numerous advantages compared to traditional mathematical approaches,the performance of these algorithms is investigated in order to design an efficient CR system that is able to adapt the transmitting parameters to effectively reduce power consumption,bit error rate and adjacent interference of the channel,while maximized secondary user throughput.Self-Learning Salp Swarm Algorithm(SLSSA)is a recent meta-heuristic algorithm that is the enhanced version of SSA inspired by the swarming behavior of salps.In this work,the parametric adaption of CR system is performed by SLSSA and the simulation results show that SLSSA has high accuracy,stability and outperforms other competitive algorithms formaximizing the throughput of secondary users.The results obtained with SLSSA are also shown to be extremely satisfactory and need fewer iterations to converge compared to the competitive methods. 展开更多
关键词 Cognitive radio meta-heuristic algorithm cognitive decision engine salp swarm algorithm
在线阅读 下载PDF
Hybrid Chaotic Salp Swarm with Crossover Algorithm for Underground Wireless Sensor Networks 被引量:1
5
作者 Mariem Ayedi Walaa H.ElAshmawi Esraa Eldesouky 《Computers, Materials & Continua》 SCIE EI 2022年第8期2963-2980,共18页
Resource management in Underground Wireless Sensor Networks(UWSNs)is one of the pillars to extend the network lifetime.An intriguing design goal for such networks is to achieve balanced energy and spectral resource ut... Resource management in Underground Wireless Sensor Networks(UWSNs)is one of the pillars to extend the network lifetime.An intriguing design goal for such networks is to achieve balanced energy and spectral resource utilization.This paper focuses on optimizing the resource efficiency in UWSNs where underground relay nodes amplify and forward sensed data,received from the buried source nodes through a lossy soil medium,to the aboveground base station.A new algorithm called the Hybrid Chaotic Salp Swarm and Crossover(HCSSC)algorithm is proposed to obtain the optimal source and relay transmission powers to maximize the network resource efficiency.The proposed algorithm improves the standard Salp Swarm Algorithm(SSA)by considering a chaotic map to initialize the population along with performing the crossover technique in the position updates of salps.Through experimental results,the HCSSC algorithm proves its outstanding superiority to the standard SSA for resource efficiency optimization.Hence,the network’s lifetime is prolonged.Indeed,the proposed algorithm achieves an improvement performance of 23.6%and 20.4%for the resource efficiency and average remaining relay battery per transmission,respectively.Furthermore,simulation results demonstrate that the HCSSC algorithm proves its efficacy in the case of both equal and different node battery capacities. 展开更多
关键词 Underground wireless sensor networks resource efficiency chaotic theory crossover algorithm salp swarm algorithm
在线阅读 下载PDF
Adaptive Barebones Salp Swarm Algorithm with Quasi-oppositional Learning for Medical Diagnosis Systems: A Comprehensive Analysis 被引量:1
6
作者 Jianfu Xia Hongliang Zhang +5 位作者 Rizeng Li Zhiyan Wang Zhennao Cai Zhiyang Gu Huiling Chen Zhifang Pan 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第1期240-256,共17页
The Salp Swarm Algorithm(SSA)may have trouble in dropping into stagnation as a kind of swarm intelligence method.This paper developed an adaptive barebones salp swarm algorithm with quasi-oppositional-based learning t... The Salp Swarm Algorithm(SSA)may have trouble in dropping into stagnation as a kind of swarm intelligence method.This paper developed an adaptive barebones salp swarm algorithm with quasi-oppositional-based learning to compensate for the above weakness called QBSSA.In the proposed QBSSA,an adaptive barebones strategy can help to reach both accurate convergence speed and high solution quality;quasi-oppositional-based learning can make the population away from traping into local optimal and expand the search space.To estimate the performance of the presented method,a series of tests are performed.Firstly,CEC 2017 benchmark test suit is used to test the ability to solve the high dimensional and multimodal problems;then,based on QBSSA,an improved Kernel Extreme Learning Machine(KELM)model,named QBSSA–KELM,is built to handle medical disease diagnosis problems.All the test results and discussions state clearly that the QBSSA is superior to and very competitive to all the compared algorithms on both convergence speed and solutions accuracy. 展开更多
关键词 salp swarm algorithm Bare bones Quasi-oppositional based learning Function optimizations Kernel extreme learning machine
在线阅读 下载PDF
基于ISSA-Transformer的电梯制动力矩预测研究
7
作者 苏万斌 江叶峰 +2 位作者 李科 周振超 易灿灿 《机电工程》 北大核心 2025年第10期2027-2036,共10页
实现电梯制动器力矩的精确预测对确保电梯安全运行和实现预测性维护具有重要的意义。针对曳引式电梯在制动力矩预测方面存在准确性与可靠性不足的问题,以及现有Transformer存在计算复杂度高和训练时间长的局限性,提出了一种基于改进鲸... 实现电梯制动器力矩的精确预测对确保电梯安全运行和实现预测性维护具有重要的意义。针对曳引式电梯在制动力矩预测方面存在准确性与可靠性不足的问题,以及现有Transformer存在计算复杂度高和训练时间长的局限性,提出了一种基于改进鲸沙虫群算法优化Transformer网络(ISSA-Transformer)的电梯制动力矩预测方法。首先,为了提高Transformer的预测精度,在Transformer模型中添加了特征融合门(FFG)以提高模型的特征提取能力,使其能够更有效地捕捉制动力矩的全局与局部特征;然后,利用拉普拉斯交叉算子、混合对立学习方法以及高斯扰动对鲸沙虫群算法(SSA)进行了改进,以增强SSA的搜索能力和全局最优收敛性。并采用ISSA算法优化了Transformer的迭代次数、批次大小和学习率,以提高模型的计算效率并减少训练时间,从而建立了电梯制动器制动力矩的预测模型;最后,对曳引式电梯制动器数据进行了分析,将所得结果与LSTM、Transformer和SSA-Transformer模型进行了比较。研究结果表明:ISSA-Transformer的均方根误差(RMSE)较LSTM、Transformer和SSA-Transformer模型分别降低了0.0318、0.0144和0.0133,用于电梯制动力矩预测的准确率达到了98.7%,相较传统方法具有更高的精度和稳定性。该方法可为电梯的安全评估和预测性维护提供更可靠的技术支持。 展开更多
关键词 曳引式电梯 升降台 电梯制动器 改进鲸沙虫群算法 Transformer网络 特征融合门 均方根误差 长短期记忆网络
在线阅读 下载PDF
基于新型B&R-SSA算法的混合威布尔参数估计优化方法
8
作者 赵闵清 姜维 +3 位作者 黄子龙 熊德明 龚春辉 程小强 《汽车工程学报》 2025年第3期385-394,共10页
混合威布尔分布被广泛用于模拟失效分布和耐久性预测。在实际工程开发过程中对模型参数的准确估计是非常关键的。因此,提高混合威布尔分布的估计精度已成为领域内亟需解决的难题。在原始混合威布尔分布的基础上,提出了一种基于新型B&... 混合威布尔分布被广泛用于模拟失效分布和耐久性预测。在实际工程开发过程中对模型参数的准确估计是非常关键的。因此,提高混合威布尔分布的估计精度已成为领域内亟需解决的难题。在原始混合威布尔分布的基础上,提出了一种基于新型B&R-SSA算法的混合威布尔参数估计的优化求解方法。该方法首先基于逐次逼近的方法建立位置、尺寸和形状参数的迭代优化模型;然后通过运用引入“背叛”行为和自适应惯性权重机制,用于解决原始樽海鞘算法(SSA)求解效率低、易于陷入局部最优的问题,进而提出了一种新型B&R-SSA算法,并运用该算法对迭代模型进行求解;最后进行蒙特卡洛模拟仿真试验和工程实例试验。仿真和试验结果均表明,该方法在估计混合威布尔分布参数求解方面具有较好的精度和计算效率。 展开更多
关键词 可靠性 混合威布尔分布 樽海鞘算法 参数估计 蒙特卡洛模拟
在线阅读 下载PDF
基于改进ISSA-INC算法MPPT控制研究
9
作者 周冬冬 朱旋 李士林 《淮北师范大学学报(自然科学版)》 2025年第4期14-20,共7页
为提升光伏系统在复杂光照条件下最大功率点跟踪(MPPT)性能,提出融合多策略改进型樽海鞘算法与电导增量法(ISSA-INC)混合控制策略。利用Logistic混沌映射优化初始种群分布,引入Levy飞行提升领导者全局搜索能力,并在追随者更新中嵌入万... 为提升光伏系统在复杂光照条件下最大功率点跟踪(MPPT)性能,提出融合多策略改进型樽海鞘算法与电导增量法(ISSA-INC)混合控制策略。利用Logistic混沌映射优化初始种群分布,引入Levy飞行提升领导者全局搜索能力,并在追随者更新中嵌入万有引力机制,结合动态衰减引力和适应度驱动质量更新,增强个体协同与搜索精度;在接近最优解时切换INC以实现快速局部收敛。Matlab/Simulink仿真表明:在标准、静态遮阴及动态突变3类工况下,ISSA-INC与SSA和PSO比较,收敛速度分别提高82%和83%,稳态功率误差控制在0.1%以内,光照突变响应时间低于0.04 s,具备良好抗扰性和稳定性。结果验证该策略在非线性、多峰特性下具备快速、精确与鲁棒控制能力,为复杂场景下光伏MPPT提供有效方案。 展开更多
关键词 光伏发电 最大功率点跟踪 改进樽海鞘算法 电导增量法 智能优化
在线阅读 下载PDF
A Boosted Communicational Salp Swarm Algorithm: Performance Optimization and Comprehensive Analysis
10
作者 Chao Lin Pengjun Wang +2 位作者 Ali Asghar Heidari Xuehua Zhao Huiling Chen 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第3期1296-1332,共37页
The Salp Swarm Algorithm (SSA) is a recently proposed swarm intelligence algorithm inspired by salps, a marine creature similar to jellyfish. Despite its simple structure and solid exploratory ability, SSA suffers fro... The Salp Swarm Algorithm (SSA) is a recently proposed swarm intelligence algorithm inspired by salps, a marine creature similar to jellyfish. Despite its simple structure and solid exploratory ability, SSA suffers from low convergence accuracy and slow convergence speed when dealing with some complex problems. Therefore, this paper proposes an improved algorithm based on SSA and adds three improvements. First, the Real-time Update Mechanism (RUM) underwrites the role of ensuring that excellent individual information will not be lost and information exchange will not lag in the iterative process. Second, the Communication Strategy (CMS), on the other hand, uses the multiplicative relationship of multiple individuals to regulate the exploration and exploitation process dynamically. Third, the Selective Replacement Strategy (SRS) is designed to adaptively adjust the variance ratio of individuals to enhance the accuracy and depth of convergence. The new proposal presented in this study is named RCSSSA. The global optimization capability of the algorithm was tested against various high-performance and novel algorithms at IEEE CEC 2014, and its constrained optimization capability was tested at IEEE CEC 2011. The experimental results demonstrate that the proposed algorithm can converge faster while obtaining better optimization results than traditional swarm intelligence and other improved algorithms. The statistical data in the table support its optimization capabilities, and multiple graphs deepen the understanding and analysis of the proposed algorithm. 展开更多
关键词 salp swarm algorithm swarm intelligence Global optimization EXPLORATION EXPLOITATION
在线阅读 下载PDF
Double Mutational Salp Swarm Algorithm:From Optimal Performance Design to Analysis
11
作者 Chao Lin Pengjun Wang +1 位作者 Xuehua Zhao Huiling Chen 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第1期184-211,共28页
The Salp Swarm Algorithm(SSA)is a population-based Meta-heuristic Algorithm(MA)that simulates the behavior of a group of salps foraging in the ocean.Although the basic SSA has stable exploration capability and converg... The Salp Swarm Algorithm(SSA)is a population-based Meta-heuristic Algorithm(MA)that simulates the behavior of a group of salps foraging in the ocean.Although the basic SSA has stable exploration capability and convergence speed,it still can fall into local optimum when solving complex optimization problems,which may be due to low utilization of population information and unbalanced exploration-to-exploitation ratio.Therefore,this study proposes a Double Mutation Salp Swarm Algorithm(DMSSA).In this study,a Cuckoo Mutation Strategy(CMS)and an Adaptive DE Mutation Strategy(ADMS)are introduced into the structure of the original SSA.The former mutation strategy is summarized as three basic operations:judgment,shuffling,and mutation.The purpose is to fully consider the information among search agents and use the differences between different search agents to participate in the update of positions,making the optimization process both diverse in exploration and minor in randomness.The latter strategy employs three basic operations:selection,mutation,and adaptation.As the follower part,some individuals do not blindly adopt the original follow method.Instead,the global optimal position and differences are considered,and the variation factor is adjusted adaptively,allowing the new algorithm to balance exploration,exploitation,and convergence efficiency.To evaluate the performance of DMSSA,comparisons are made with numerous algorithms on 30 IEEE CEC2014 benchmark functions.The statistical results confirm the better performance and significant difference of DMSSA in solving benchmark function tests.Finally,the applicability and scalability of DMSSA to optimization problems with constraints are further confirmed in three experiments on classical engineering design optimization problems.The source code of the proposed algorithm will be available at:https://github.com/ncjsq/Double-Mutational-Salp-Swarm-Algorithm. 展开更多
关键词 salp swarm algorithm Meta-heuristic algorithm Global optimization-Exploration EXPLOITATION BIONIC
在线阅读 下载PDF
Multi-Strategy-Driven Salp Swarm Algorithm for Global Optimization
12
作者 Zhiwei Gao Bo Wang 《Journal of Computer and Communications》 2023年第7期88-117,共30页
In response to the shortcomings of the Salp Swarm Algorithm (SSA) such as low convergence accuracy and slow convergence speed, a Multi-Strategy-Driven Salp Swarm Algorithm (MSD-SSA) was proposed. First, food sources o... In response to the shortcomings of the Salp Swarm Algorithm (SSA) such as low convergence accuracy and slow convergence speed, a Multi-Strategy-Driven Salp Swarm Algorithm (MSD-SSA) was proposed. First, food sources or random leaders were associated with the current bottle sea squirt at the beginning of the iteration, to which Levy flight random walk and crossover operators with small probability were added to improve the global search and ability to jump out of local optimum. Secondly, the position mean of the leader was used to establish a link with the followers, which effectively avoided the blind following of the followers and greatly improved the convergence speed of the algorithm. Finally, Brownian motion stochastic steps were introduced to improve the convergence accuracy of populations near food sources. The improved method switched under changes in the adaptive parameters, balancing the exploration and development of SSA. In the simulation experiments, the performance of the algorithm was examined using SSA and MSD-SSA on the commonly used CEC benchmark test functions and CEC2017-constrained optimization problems, and the effectiveness of MSD-SSA was verified by solving three real engineering problems. The results showed that MSD-SSA improved the convergence speed and convergence accuracy of the algorithm, and achieved good results in practical engineering problems. 展开更多
关键词 salp swarm algorithm (ssa) Levy Flight Brownian Motion Location Update Simulation Experiment
在线阅读 下载PDF
基于ISSA的含分布式电源配电网优化重构
13
作者 李小龙 张喻 +2 位作者 万亮 胡俊 刘闯 《黑龙江电力》 2025年第2期125-130,共6页
为使含有分布式电源的配电网运行更加经济可靠,以网络损耗和电压偏移率作为两个优化目标,利用层次分析法将其转化为单目标适应度函数,建立了以适应度函数最小为优化目标的配电网重构模型。采用收敛因子和莱维飞行策略对樽海鞘群算法进... 为使含有分布式电源的配电网运行更加经济可靠,以网络损耗和电压偏移率作为两个优化目标,利用层次分析法将其转化为单目标适应度函数,建立了以适应度函数最小为优化目标的配电网重构模型。采用收敛因子和莱维飞行策略对樽海鞘群算法进行改进,得到改进樽海鞘群算法(ISSA),采用ISSA对配电网重构模型进行求解。算例分析结果表明,配电网重构后系统网损由211.92 kW降至142.13 kW,电压偏移率由1.561(p.u.)降至0.955(p.u.),配电网运行的经济性和可靠性明显提升,重构效果显著。 展开更多
关键词 配电网 重构 分布式电源 改进樽海鞘群算法 层次分析法
在线阅读 下载PDF
基于改进SSA结合模糊RBF神经网络的悬臂梁振动主动控制
14
作者 缑新科 曹群 杨娇 《计算机与数字工程》 2024年第9期2659-2666,共8页
随着航空航天事业的发展,为了节省燃料,同时提高航天器速度,航天器采用更轻的材料来减少质量。然而,此举也引入了柔性振动,灵活的振动增加了姿态控制的时间,导致姿态精度控制不尽如人意。因此,有效抑制柔性振动以实现高精度姿态控制非... 随着航空航天事业的发展,为了节省燃料,同时提高航天器速度,航天器采用更轻的材料来减少质量。然而,此举也引入了柔性振动,灵活的振动增加了姿态控制的时间,导致姿态精度控制不尽如人意。因此,有效抑制柔性振动以实现高精度姿态控制非常重要。论文以柔性压电悬臂梁作被控对象,并利用压电薄膜(Polyvinylidene Fluoride,PVDF)作传感器和致动器,分析其振动的控制问题。基于PID和模糊理论的局限性,结合模糊控制器能模仿专家经验和径向基神经网络(Radial Basis Function Network,RBFNN)善于学习的优点,设计了模糊径向基(Fuzzy Radial Basis Function,FRBF)神经网络控制器来抑制悬臂梁的振动,并采用混沌映射的种群初始化策略、疯狂算子的领导者位置更新策略、精英保留及动态惯性权重的追随者位置更新策略改进的樽海鞘群算法(Salp Swarm Algorithm,SSA)来优化模糊神经网络权值。将改进后的控制方法在Matlab软件环境下进行了数值仿真,仿真结果表明,应用改进的模糊径向基神经网络控制器可以有效地提升主动控制的振动效果。 展开更多
关键词 悬臂梁 振动主动控制 模糊径向基神经网络 樽海鞘群算法
在线阅读 下载PDF
基于FA-ISSA-PPR模型的旋风分离器分离效率预测 被引量:2
15
作者 汤鸿宇 仲谦 邹明 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期101-109,共9页
旋风分离器是气田开发中常用的气固分离设备,准确预测旋风分离器的分离效率对于指导其结构设计和方法优化具有重要意义。在对数据集进行相关性分析的基础上,采用因子分析(factor analysis, FA)简化变量,降低预测模型的复杂程度,利用改... 旋风分离器是气田开发中常用的气固分离设备,准确预测旋风分离器的分离效率对于指导其结构设计和方法优化具有重要意义。在对数据集进行相关性分析的基础上,采用因子分析(factor analysis, FA)简化变量,降低预测模型的复杂程度,利用改进的樽海鞘群算法(improved salp swarm algorithm, ISSA)对投影寻踪(projection pursuit regression, PPR)的模型参数进行优化,形成FA-ISSA-PPR组合模型。结果表明,利用FA模型,原数据集的10个变量可以简化合并为4个公因子,分别代表尺寸参数、颗粒沉降特性、粒子运行轨迹和等效分割粒径对分离效率的影响;与半经验模型和其余机器学习模型相比,组合模型在预测精度和训练时间上具有一定的优越性,在测试样本上的平均绝对误差(MAE)为0.005 91,R^(2)可达0.995,证明了其在小样本、非线性数据分析上的准确性、鲁棒性和泛化性。 展开更多
关键词 因子分析(FA) 樽海鞘群算法(ssa) 投影寻踪(PPR) 旋风分离器 分离效率
在线阅读 下载PDF
高光谱结合改进CARS和SSA-XGBoost的鸡蛋品质快速检测方法 被引量:1
16
作者 王淋铱 邹倩颖 孙强 《食品与机械》 CSCD 北大核心 2024年第8期99-104,共6页
[目的]实现鸡蛋品质的无损、准确和快速检测。[方法]在高光谱检测技术的基础上,提出了一种将樽海鞘群算法与XGBoost算法相结合的鸡蛋品质快速检测方法。通过樽海鞘群算法优化XGBoost模型的多个超参数,提高XGBoost模型的预测性能。高光... [目的]实现鸡蛋品质的无损、准确和快速检测。[方法]在高光谱检测技术的基础上,提出了一种将樽海鞘群算法与XGBoost算法相结合的鸡蛋品质快速检测方法。通过樽海鞘群算法优化XGBoost模型的多个超参数,提高XGBoost模型的预测性能。高光谱采集图像通过数据预处理和特征波长选择后输入优化的XGBoost模型进行品质检测。通过试验验证了所提无损检测方法的性能。[结果]试验方法可实现鸡蛋品质的快速无损检测,具有较高的识别精度和效率,决定系数为0.942,平均检测时间为0.032 s。[结论]高光谱检测技术结合试验方法可以实现鸡蛋品质的快速、准确、无损检测。 展开更多
关键词 鸡蛋 品质 高光谱检测 樽海鞘群算法 XGBoost算法 无损检测
在线阅读 下载PDF
基于ISSA-H_(∞)的水电机组鲁棒控制
17
作者 马元江 陈金保 +2 位作者 谈泰权 王凯 肖志怀 《中国农村水利水电》 北大核心 2024年第4期199-204,共6页
随着风电、光伏等随机能源大量接入,电网结构变得复杂。在此背景下,水电机组将根据需要经常处于变工况运行,运行环境日趋恶劣,其传统的PID控制策略显然难以实现各种复杂工况下的最优控制。为此,将H_(∞)理论应用于水电机组,并基于改进... 随着风电、光伏等随机能源大量接入,电网结构变得复杂。在此背景下,水电机组将根据需要经常处于变工况运行,运行环境日趋恶劣,其传统的PID控制策略显然难以实现各种复杂工况下的最优控制。为此,将H_(∞)理论应用于水电机组,并基于改进樽海鞘算法(ISSA)和综合ITAE指标对其参数进行优化,实现了基于ISSA-H_(∞)的水电机组自适应鲁棒控制。仿真结果表明,相比传统的PID控制器,设计的基于ISSA-H_(∞)的自适应鲁棒控制器在不同工况下均有优异的调节性能,实现了水电机组多工况下最优控制。 展开更多
关键词 水电机组 PID控制 H_∞理论 改进樽海鞘算法 自适应鲁棒控制
在线阅读 下载PDF
改进樽海鞘算法求解低碳冷链多式联运路径优化问题 被引量:1
18
作者 齐琳 马良 张惠珍 《包装工程》 北大核心 2025年第9期196-202,共7页
目的设计一种改进的樽海鞘算法求解所构建的模型,并验证该模型和算法的有效性和可行性。方法建立最小化总运输成本、碳排放成本和最小化风险多目标模型,设计融合混沌映射、信息共享机制、多种群策略的樽海鞘算法求解该模型,并用其求解... 目的设计一种改进的樽海鞘算法求解所构建的模型,并验证该模型和算法的有效性和可行性。方法建立最小化总运输成本、碳排放成本和最小化风险多目标模型,设计融合混沌映射、信息共享机制、多种群策略的樽海鞘算法求解该模型,并用其求解临沂—沈阳多式联运路径问题。结果通过随机算例、实际案例验证以及与基本樽海鞘算法对比可知,改进的樽海鞘算法展现出优越的优化性能。结论采用改进的樽海鞘算法求解低碳冷链多式联运路径优化模型,能够提供高效的解决方案,为决策者在处理多目标决策问题时提供一个有效的解决策略,有助于在实际应用中提供更优的运输路径规划方案。 展开更多
关键词 多式联运 低碳 樽海鞘算法 路径优化问题
在线阅读 下载PDF
基于折射反向学习机制的樽海鞘群算法 被引量:1
19
作者 钱谦 翟豪 +2 位作者 潘家文 冯勇 李英娜 《小型微型计算机系统》 北大核心 2025年第1期119-127,共9页
由于樽海鞘群算法(SSA)容易陷入局部最优,导致算法收敛能力较差,为了提高算法的搜索性能,本文提出了一种基于折射反向学习的樽海鞘群算法rOSSA.算法根据折射反向学习在解空间中获得反向解,使搜索代理获得更多选择机会,增加算法找到更优... 由于樽海鞘群算法(SSA)容易陷入局部最优,导致算法收敛能力较差,为了提高算法的搜索性能,本文提出了一种基于折射反向学习的樽海鞘群算法rOSSA.算法根据折射反向学习在解空间中获得反向解,使搜索代理获得更多选择机会,增加算法找到更优解的可能性.此外,在折射反向学习中引入概率扰动机制,通过概率扰动机制使搜索代理在迭代后期能够跳出局部最优,从而增强算法的全局搜索能力.最后,通过9个单峰、多峰、复合测试函数和一个工程计算问题将rOSSA与近年提出的一些主流算法进行比较,实验结果有效证明了本文改进算法的有效性. 展开更多
关键词 樽海鞘群算法 搜索性能 折射反向学习 概率扰动
在线阅读 下载PDF
融合多策略的改进鹈鹕优化算法 被引量:1
20
作者 李智杰 赵铁柱 +3 位作者 李昌华 介军 石昊琦 杨辉 《控制工程》 北大核心 2025年第7期1184-1197,1206,共15页
针对鹈鹕优化算法在寻优过程中存在的种群多样性降低、收敛速度下降、易陷入局部最优等问题,融合多种策略对其进行改进,提出了改进鹈鹕优化算法(improved pelican optimization algorithm,IPOA)。首先,利用帐篷(tent)混沌映射和折射反... 针对鹈鹕优化算法在寻优过程中存在的种群多样性降低、收敛速度下降、易陷入局部最优等问题,融合多种策略对其进行改进,提出了改进鹈鹕优化算法(improved pelican optimization algorithm,IPOA)。首先,利用帐篷(tent)混沌映射和折射反向学习策略初始化鹈鹕种群,在增加种群多样性的同时为算法寻优能力的提升打下基础;然后,在鹈鹕逼近猎物阶段引入非线性惯性权重因子以提高算法的收敛速度;最后,引入樽海鞘群算法的领导者策略以协调算法的全局搜索能力和局部寻优能力。实验测试了单一改进策略的改进效果,并将IPOA与其他9种优化算法进行了对比。实验结果证明了各改进策略的有效性和IPOA的优越性和鲁棒性。 展开更多
关键词 鹈鹕优化算法 帐篷混沌映射 折射反向学习 非线性惯性权重因子 樽海鞘群算法
原文传递
上一页 1 2 14 下一页 到第
使用帮助 返回顶部