Salinity stress is a major challenge for global agriculture,particularly in arid and semi-arid regions,limiting plant productivity due to water and soil salinity.These conditions particularly affect countries along th...Salinity stress is a major challenge for global agriculture,particularly in arid and semi-arid regions,limiting plant productivity due to water and soil salinity.These conditions particularly affect countries along the southern Mediterranean rim,including Algeria,which primarily focuses on pastoral and forage practices.This study investigates salinity tolerance and ecotypic variability in Vicia narbonensis L.,a fodder legume species recognized for its potential to reclaim marginal soils.Morphological,physiological,and biochemical responses were assessed in three ecotypes(eco2,eco9,and eco10)exposed to different salinity levels(low,moderate,and severe).The study was conducted using a completely randomized block design with three blocks per ecotype per dose.The results from the two-way analysis of variance demonstrate significant effects across nearly all attributes studied,revealing distinct ecotypic responses.These findings underscore variations in growth parameters,osmotic regulation mechanisms,and biochemical adjustments.The substantial diversity observed among these ecotypes in their response to salinity provides valuable insights for breeders addressing both agronomic and ecological challenges.Multivariate analyses,including Principal Component Analysis(PCA),revealed key variables distinguishing between ecotypes under salinity stress.Moreover,Classification based on Salinity Tolerance Indices(STI)further differentiated ecotypic performance with more precision,and this is because of the combination of the different parameters studied.These results open up new prospects for the development of strategies to improve the salinity tolerance of forage legumes.展开更多
The okra germplasm was screened for salinity tolerance at the seedling stage and during plant ontogeny. Substantial variation existed in okra for salinity tolerance at the seedling stage. An 80 mmol/L NaCI concentrati...The okra germplasm was screened for salinity tolerance at the seedling stage and during plant ontogeny. Substantial variation existed in okra for salinity tolerance at the seedling stage. An 80 mmol/L NaCI concentration was suitable for discriminating tolerant and non-tolerant okra genotypes. The pooled ranking of the genotypes, based on individual rankings for each trait (root and shoot length, germination percentage, and relative Na^+ and K%+) in individual NaCI concentrations, was effective for selecting tolerant genotypes. Genotypes selected at the seedling stage maintained their tolerance to NaCI during plant ontogeny, suggesting that screening of the germplasm entries and advanced breeding materials for salt tolerance at the seedling stage is effective. Among 39 okra genotypes, five were identified as the most tolerant genotypes and showed potential for use in breeding programs that focus on the development of salt-tolerant, high-yield okra cultivars.展开更多
A pot experiment was carried out on a marine saline soil to study the effect of initial soluble Na/Ca ratio of saline soil on the salinity tolerance of barley plant.The results showed that (1) the Na/Ca ratio affected...A pot experiment was carried out on a marine saline soil to study the effect of initial soluble Na/Ca ratio of saline soil on the salinity tolerance of barley plant.The results showed that (1) the Na/Ca ratio affected significantly the dry weight of the plant at an earlier stage of growth,the critical values of initial Na/Ca ratio at which the plant could grow normally on soils containing salts of 2.5,3.5 and 4.5g kg^-1 were 30,20 and 15,respectively;(2)smaller Na/Ca ratio resulted in a considerable decrease in Na accumulation but a great increase in K accumulation in the barley plant;and (3) the plasmallema of barley leaf were badly injured when the Na/Ca ratio was more than 30 and the increase of Na content of plant caused an exudation of K from the leaf cells.Some critical indexes were suggested for the cultivation of barley plant on marine saline soils and could be used as reference in the biological reclamation of marine saline soils.展开更多
Salinity affects more than 6%of the world’s total land area,causing massive losses in crop yield.Salinity inhibits plant growth and development through osmotic and ionic stresses;however,some plants exhibit adaptatio...Salinity affects more than 6%of the world’s total land area,causing massive losses in crop yield.Salinity inhibits plant growth and development through osmotic and ionic stresses;however,some plants exhibit adaptations through osmotic regulation,exclusion,and translocation of accumulated Na+or Cl-.Currently,there are no practical,economically viable methods for managing salinity,so the best practice is to grow crops with improved tolerance.Germination is the stage in a plant’s life cycle most adversely affected by salinity.Barley,the fourth most important cereal crop in the world,has outstanding salinity tolerance,relative to other cereal crops.Here,we review the genetics of salinity tolerance in barley during germination by summarizing reported quantitative trait loci(QTLs)and functional genes.The homologs of candidate genes for salinity tolerance in Arabidopsis,soybean,maize,wheat,and rice have been blasted and mapped on the barley reference genome.The genetic diversity of three reported functional gene families for salt tolerance during barley germination,namely dehydration-responsive element-binding(DREB)protein,somatic embryogenesis receptor-like kinase and aquaporin genes,is discussed.While all three gene families show great diversity in most plant species,the DREB gene family is more diverse in barley than in wheat and rice.Further to this review,a convenient method for screening for salinity tolerance at germination is needed,and the mechanisms of action of the genes involved in salt tolerance need to be identified,validated,and transferred to commercial cultivars for field production in saline soil.展开更多
In Burton Lake (an Antarctic littoral saline lake), as one of the overwinter species, the female Drepanopus bispinosus reach adult form in autumn. and early winter.For the subsequent life period of more than eight mon...In Burton Lake (an Antarctic littoral saline lake), as one of the overwinter species, the female Drepanopus bispinosus reach adult form in autumn. and early winter.For the subsequent life period of more than eight months, the animals experience such changing environment as increasing salinities from approximately 33 (in May) to 39 (in November). There is a considerable difference of salinity tolerance of female adults between summer and winter populations.Winter collected copepods survived lower salinities than summer collected copepods in this experiment. The upward shift in their salinity tolerance range is related to the development of field acclimation to salinity. Respiration rates of the summer animals showed a visible increase over those of winter copepods in simitar salinity and temperature conditions, thus supporting the above conclusion.展开更多
Rice is sensitive to salinity stress at both the seedling and reproductive stages.The present study used 145 rice genotypes comprising of 100 landraces and 45 advanced breeding lines collected from different regions o...Rice is sensitive to salinity stress at both the seedling and reproductive stages.The present study used 145 rice genotypes comprising of 100 landraces and 45 advanced breeding lines collected from different regions of India.These genotypes were evaluated in hydroponics under control[electrical conductivity(ECe)~1.2 dS/m]and saline(ECe~10.0 dS/m)environments along with susceptible(IR29)and tolerant(FL478)checks.The stress susceptibility index for eight morphophysiological traits was estimated.Analysis of variance showed significant differences among the genotypes for all the parameters studied in control,stress and relative stress conditions.We identified 3 landraces(Kuttimanja,Tulasimog and IET-13713I)as tolerant and 14 lines as moderately tolerant to salt stress.Strong correlations in the morphological(root and shoot lengths)and physiological traits(shoot Na^(+),Ca^(2+)and Mg^(2+)contents,and Na^(+)/K^(+)ratio)were observed under all the conditions.The hierarchical cluster analysis grouped the genotypes into five clusters,among which cluster Ⅱ comprised salt-tolerant lines.Haplotyping of Saltol region using 11 simple sequence repeat markers on 17 saline tolerant and moderately tolerant lines was conducted.Markers AP3206F,RM10793 and RM3412b,located close to SKC1 gene(11.23‒12.55 Mb),displayed diverse allelic variations and they were not related to the FL478 type.In this region,tolerant lines like Kuttimanja,IET-13713I and Tulasimog have new alleles.As a result,these lines may be suitable candidates for novel genomic regions governing rice salinity tolerance.Salt-tolerance ability of Kuttimanja,Tulasimog and IET-13713I was validated in two years in three salinity stress environments.These promising lines can be used in breeding programs to broaden the genetic base of salinity tolerance in rice,and it may help to dissect key genomic regions responsible for salinity tolerance.展开更多
The present study reported the morpho-biochemical evaluation of 15 selected rice genotypes for salt tolerance at the seedling stage. Growth parameters including shoot length, root length, plant biomass, plant turgid w...The present study reported the morpho-biochemical evaluation of 15 selected rice genotypes for salt tolerance at the seedling stage. Growth parameters including shoot length, root length, plant biomass, plant turgid weight, plant dry weight along with relative water content were measured after exposure to saline solution (with electrical conductivity value of 12 dS/m). Genotypes, showing significant differential responses towards salinity in the fields, were assessed through 14 salinity-linked morpho-biochemical attributes, measured at 14 d after exposure of seedling in saline nutrient solution. Relative water content, chlorophyll a/b, peroxidase activity and plant biomass were identified as potential indicators of salt tolerance. Principal component analysis and successive Hierarchical clustering using Euclidean distance revealed that Talmugur, Gheus, Ghunsi, Langalmura, Sabitapalui, and Sholerpona were promising genotypes for further breeding programmes in rice. The maximum Euclidean distance was plotted between Thavallakanan and Talmugur (7.49), followed by Thavallakanan and Langalmura (6.82), indicating these combinations may be exploited as parental lines in hybridization programmes to develop salinity tolerant variety.展开更多
Juveniles of Oreochromis mossambicus with initial wet weights of 0.0382±0.0859 g and initial total lengths of 0.735 ±1.425 cm were tested for their salinity tolerance. The juveniles were subjected to five sa...Juveniles of Oreochromis mossambicus with initial wet weights of 0.0382±0.0859 g and initial total lengths of 0.735 ±1.425 cm were tested for their salinity tolerance. The juveniles were subjected to five salinity levels for a period of seventy five days. These salinity levels correspond to the salinities found along the creek and in estuarine regions. Each set of experiments was conducted at a fifteen day intervals. The weight, length and survival rate were calculated. No mortality was observed at salinity levels 0, 5, 10 and 15, while the juveniles faced slight mortality at 20 in the same environmental conditions, including the diet. There was no significant difference in specific growth rate at all salinity levels. The juveniles of O. mossambicus could survive up to 20 salinity. These results suggest that this species can grow and be exploited commercially in brackish waters, rivers and estuarine regions.展开更多
Nannochloropsis oceanica is a marine microalgal species with both economic value and biological importance.It grows fast,contains rich oils,reproduces asexually,holds a small and haploidy genome,and is easy to be modi...Nannochloropsis oceanica is a marine microalgal species with both economic value and biological importance.It grows fast,contains rich oils,reproduces asexually,holds a small and haploidy genome,and is easy to be modified genetically.However,the genetic study of N.oceanica is scarce.Very less genetic bases of its traits have been deciphered,and no gene has been isolated from it with the function verified simultaneously via either genetic or reverse genetic approaches or both(de novo cloned).Changing medium salinity may aid to control harmful organisms met during large scale cultivation.As a stress,it may also facilitate the accumulation of desirable chemicals including fatty acids.In order to decipher the genetic basis of the low salinity tolerance of N.oceanica,we mutated N.oceanica with Zeocin.In total,five mutant bulks were constructed at equal number of cells,100 mutants each,which were tolerant to a discontinuous serial of salinities from that of 100%of f/2 to that of a mixture of 4%of f/2 and 94%of BG11.The bulks were genotyped through whole genome re-sequencing and analyzed with bulked mutant analysis(BMA)newly modified from bulked segregant analysis(BSA).In total,47 SNPs and 112 InDels were found to associate with the low salinity tolerance,and around them a set of low salinity tolerance associating genes were identified.A set of annotatable genes commonly found between control and different salinities indicated that the genes functioning in gene expression,energy metabolism and cellular structure may be involved in the low salinity tolerance.These associating molecular markers and genes around them were not enough for outlining the physiological mechanism underlining the tolerance;however they should aid to improve N.oceanica genetically.展开更多
The aim of this research was to evaluate the salinity tolerance in prairie grass populations at the seedling stage quantifying the variability and the influence of physiological traits related to it. Salinity toleranc...The aim of this research was to evaluate the salinity tolerance in prairie grass populations at the seedling stage quantifying the variability and the influence of physiological traits related to it. Salinity tolerance, in </span><i><span style="font-family:Verdana;">Bromus</span></i> <i><span style="font-family:Verdana;">catharticus</span></i><span style="font-family:Verdana;"> Vahl (prairie grass) populations collected in different environments of the Pampean Phytogeography region (Argentine) was evaluated at the seedling stage, using controlled condition of temperature and light. It was adopted a completely randomized design using 3 plots with three plants each one per population and two levels of treatment: 0 mM and 100 mM NaCl. Morphological, biomass and membrane stability root and shoot traits were studied. A factorial ANOVA with interaction was estimated. Then one way ANOVA for all seedling traits in both treatments allowed estimating variance components, coefficient of genotypic determination (CGD) and variation index (VI). Comparisons between populations were made using Tukey test (at 5% of probability). Phenotypic correlations among traits were calculated and then a path coefficient analysis separated direct and indirect effects at 100 and 0 mM NaCl. No significant interactions “Population × Treatment” were found for any character. The saline stress caused a pairing in the population means for the most traits. Coefficients of variation were mainly higher when the seedlings grew without stress (0 mM) because it allowed a greater potential genotypic expression. The absence of significant interactions denotes a good homeostatic capacity of the prairie grass facing that abiotic stress. Leaf length, shoot length and root dry matter were the variables with the largest direct and indirect effects. Our results showed an increase for them at salt and demonstrated intraspecific variation, possibly in relation with the origin sites. Plants under stress showed a marked resilience, in order to quickly restore the same biomass allocation patterns that occur in non-stress environment.展开更多
The study was performed with seven groundnut varieties/genotypes and F1s derived from crossing in all possible combinations without reciprocal among the mentioned varieties/genotypes. The objective was to assess wheth...The study was performed with seven groundnut varieties/genotypes and F1s derived from crossing in all possible combinations without reciprocal among the mentioned varieties/genotypes. The objective was to assess whether low Ca2+ content and Ca2+/Na+ ratio of leaf tissue or stem tissue determine salinity tolerance in terms of economic yield (kernel yield) in groundnut. It revealed that the varieties, “Binachinabadam-6”, “Binachinabadam-5” and the F1 G2 × G3 were most tolerant based on kernel yield under 8 dS/m and 10 dS/m salinity stresses. These two tolerant varieties and the F1 also showed lower Ca2+ and Ca2+/Na+ ratios in leaf tissue, which indicated lower Ca2+ and Ca2+/Na+ ratio of leaf tissue determined salinity tolerance in terms of kernel yield in Spanish type groundnut. These findings could be applied in future plant breeding applications for screening salt tolerant Spanish type groundnut genotypes.展开更多
Fructokinase(FRK)is a regulator of fructose signaling in plants and gateway proteins that catalyze the initial step in fructose metabolism through phosphorylation.Our previous study demonstrated that MdFRK2 protein ex...Fructokinase(FRK)is a regulator of fructose signaling in plants and gateway proteins that catalyze the initial step in fructose metabolism through phosphorylation.Our previous study demonstrated that MdFRK2 protein exhibit not only high affinity for fructose,but also high enzymatic activity due to sorbitol.However,genome-wide identification of the MdFRK gene family and their evolutionary dynamics in apple are yet to be reported.A systematic genome-wide analysis in this study identified a total of nine MdFRK gene members,which could phylogenetically be clustered into seven groups.Chromosomal location and synteny analysis of MdFRKs revealed that their expansion in the apple genome is primarily driven by tandem and segmental duplication events.Divergent expression patterns of MdFRKs were observed in four source-sink tissues and at five different apple fruit developmental stages,which suggested their potential crucial roles in the apple fruit development and sugar accumulation.Reverse transcription-quantitative PCR(RT-qPCR)identified candidate NaCl or drought stress responsive MdFRKs,and transgenic apple plants overexpressing MdFRK2 exhibited considerably enhanced salinity tolerance.Our results will be useful for understanding the functions of MdFRKs in the regulation of apple fruit development and salt stress response.展开更多
Salinity causes a detrimental impact on plant growth,particularly when the stress occurs during germination and early development stages.Barley is one of the most salt-tolerant crops;previously we mapped two quantitat...Salinity causes a detrimental impact on plant growth,particularly when the stress occurs during germination and early development stages.Barley is one of the most salt-tolerant crops;previously we mapped two quantitative trait loci(QTL)for salinity tolerance during germination on the short arm of chromosome 2 H using a CM72/Gairdner doubled haploid(DH)population.Here,we narrowed down the major QTL to a region of 0.341 or 0.439 Mb containing 9 or 24 candidate genes belonging to 6 or 20 functional gene families according to barley reference genomes v1 and v3 respectively,using two DH populations of CM72/Gairdner and Skiff/CM72,F_(2)and F;generations of CM72/Gairdner/;Spartacus CL,Two Receptorlike kinase 4(RLPK4)v1 or Receptor-like kinase(RLK)v3 could be the candidates for enhanced germination under salinity stress because of their upregulated expression in salt-tolerant variety CM72.Besides,several insertion/deletion polymorphisms were identified within the 3 rd exon of the genes between CM72 and Gairdner.The sequence variations resulted in shifted functional protein domains,which may be associated with differences in salinity tolerance.Two molecular markers were designed for selecting the locus with receptor-like protein kinase 4,and one was inside HORVU2 Hr1 G111760.1 or HORVU.MOREX.r3.2 HG0202810.1.The diagnostic markers will allow for pyramiding of 2 H locus in barley varieties and facilitate genetic improvement for saline soils.Further,validation of the genes to elucidate the mechanisms involved in enhancing salinity tolerance at germination and designing RLPK4 specific markers is proposed.For this publication,all the analysis was based on barley reference genome of2017(v1),and it was used throughout for consistence.However,the positions of the markers and genes identified were updated according to new genome(v3)for reference.展开更多
Water strider Aquarius paludum (Fabricius) is a cosmopolitan species colonizes mainly freshwater but occasionally brackish habitats throughout the Palearctic and Oriental regions. Water strider Gerris latiabdominis ...Water strider Aquarius paludum (Fabricius) is a cosmopolitan species colonizes mainly freshwater but occasionally brackish habitats throughout the Palearctic and Oriental regions. Water strider Gerris latiabdominis (Miyamoto) is a common species in Japan lives in temporary habitats as freshwater paddy fields. These two species often occur syntopically. We investigated differences in the developmental response to brackish water during embryonic and larval stages between the two species. Eggs were exposed to 0-1.8% NaC1 solutions within 24 h of oviposition. Larvae of G. latiabdominis were exposed to salinities of 0, 0.5%, and 0.9% from the first instar until adult emergence. Limits of NaC1 concentration for hatching were 1.3% and 1.0% for A. paludum and G. latiabdominis, respectively. The hatching rate of G. latiabdominis was lower than that ofA. paludum at salinities 〉0.9%. The period of embryonic development of G. latiabdominis was more prolonged than that ofA. paludum at a given salinity. Although the salinity tolerance of G. latiabdominis was lower than that ofA. paludum, our results suggest G. latiabdominis has the physiological capacity to expand into brackish waters. High and low salinity tolerances of A. paludum and G. latiabdominis, respectively, reflect the relatively wide range of habitat salinities utilized by A. paludum and the relatively restricted habitats preferred by G. latiabdominis. The high salinity tolerance ofA. paludum could be an important factor contributing to their cosmopolitan distribution because high tolerance to salinity means the possibility of them to be dispersed via ocean or sea to other continents and islands.展开更多
Urease has a broad range of applications,however,the current studies on urease mainly focus on terrestrial plants or microbes.Thus,it is quite necessary to determine if marine-derived ureases have diferent characteris...Urease has a broad range of applications,however,the current studies on urease mainly focus on terrestrial plants or microbes.Thus,it is quite necessary to determine if marine-derived ureases have diferent characteristics from terrestrial origins since the fnding of ureases with superior performance is of industrial interest.In this study,the marine urease produced by Penicillium steckii S4-4 derived from marine sponge Siphonochalina sp.was investigated.This marine urease exhibited a maximum specifc activity of 1542.2 U mg protein−1.The molecular weight of the enzyme was 183 kDa and a single subunit of 47 kDa was detected,indicating that it was a tetramer.The N-terminal amino acid sequence of the urease was arranged as GPVLKKTKAAAV with greatest similarity to that from marine algae Ectocarpus siliculosus.This urease exhibited a K_(m) of 7.3 mmol L^(−1) and a V_(max) of 1.8 mmol urea min^(−1) mg protein^(−1).The optimum temperature,pH and salinity are 55℃,8.5 and 10%,respectively.This urease was stable and more than 80%of its maximum specifc activity was detected after incubating at 25–60℃for 30 min,pH 5.5–10.0 or 0–25%salinity for 6 h.Compared with the terrestrial urease from Jack bean,this marine urease shows higher thermostability,alkaline preference and salinity tolerance,which extends the potential application felds of urease to a great extent.展开更多
The Northeast region is the main producer of guava in Brazil,generating employment and income.However,water availability means that producer’s resort to using water with high salinity,which harms plant development,es...The Northeast region is the main producer of guava in Brazil,generating employment and income.However,water availability means that producer’s resort to using water with high salinity,which harms plant development,especially during the seedling formation phase.The adoption of techniques that mitigate the deleterious effect of salinity is increasingly necessary,such as the use of elicitors such as ascorbic acid.The purpose of this study was to analyze the morphophysiology of guava seedlings under saline and ascorbic acid levels.The study was carried out by applying treatments composed of five saline levels(SL=0.3;1.3;2.3;3.3 and 4.3 dS m^(-1))and four levels of ascorbic acid—AA(0,200,400,and 600 mg L^(-1)),in a 5×4 factorial arrangement,adopting a randomized block design.Gas exchange and growth of guava seedlings are limited from 0.3 dS m^(-1).Using 400 mg L^(-1)of AA reduces damage from salinity on stomatal conductance,transpiration,and net assimilation rate up to the estimated SL of 1.80 dS m^(-1).In contrast,AA level 412 mg L^(-1)increased instantaneous water use efficiency up to the salinity of 2.3 dS m^(-1).AA level of 600 mg L^(-1)attenuated salt stress effects on leaf area and height/stem diameter ratio up to SL of 2.05 dS m^(-1).The number of leaves and the absolute and relative growth rates were stimulated by AA under the lowest saline level.展开更多
Polyploidy is pursued in plant breeding programs due mainly to its ability to yield larger vegetative or reproductive organs. In controlled growth chamber experiments, a tetraploid turnip (cv. Aijiaohuang, 4n) and i...Polyploidy is pursued in plant breeding programs due mainly to its ability to yield larger vegetative or reproductive organs. In controlled growth chamber experiments, a tetraploid turnip (cv. Aijiaohuang, 4n) and its diploid progenitor (cv. Aijiaohuang, 2n) were evaluated for their tolerance to salinity stress via investigations on a group of physiological parameters. The results indicate that the tetraploid turnip exhibit better adaptation to a high concentration salt medium (200 mmol L-1), as evidenced by a less-affected germination rate and a healthier morphological appearance at the seedling stage. Furthermore, an extension of salinity stress up to a certain period of time at the 5-7-leaf stage shows differences between the tetraploid turnip and its diploid progenitor. The former had a higher K+/Na+ ratio in the roots, higher glutathione concentration and antioxidant activities in the leaves, and smaller reductions in photosynthetic capacity in terms of leaf chlorophyll content. Studies on the differences between an autopolyploid and its respective relative, from which the autopolyploid originated, in terms of their tolerance to salinity and/or other abiotic stresses, have remained rather limited. The comparison is interesting due to a homogenous genetic background.展开更多
Mepiquat chloride(MC)priming alleviates the effects of salt stress during seed germination in cotton(Gossypium hirsutum L.),but the mechanisms underlying its effects are unknown.We found that MC priming increases salt...Mepiquat chloride(MC)priming alleviates the effects of salt stress during seed germination in cotton(Gossypium hirsutum L.),but the mechanisms underlying its effects are unknown.We found that MC priming increases salt tolerance,as evidenced by marked increases in seed vigor and germination rates,and alleviated salt toxicity by reducing Cl^(−)accumulation in germinating seeds.Consistently,electrophysiological experiments revealed that the seeds with MC priming displayed superior Cl^(−)exclusion ability in the root apex.These beneficial effects of MC priming were abolished by the abscisic acid(ABA)-synthesis blocker fluridone under salt stress.MC priming induced an early response to acclimatization and stress,as indicated by rapidly increasing ABA content during initial exposure to salt stress.Transcriptome analyses revealed that MC priming induced an array of differentially expressed genes(DEGs)in germinating seeds.The most noticeable changes in germinating seeds were MC priming-induced increases in the expression of DEGs encoding components of ABA biosynthesis,ABA catabolism,and ABA signaling pathways under salt stress.MC priming also increased the expression of some DEGs encoding Cl^(−)ion transporters(e.g.CCC,SLAC1/SLAH1/SLAH3,CLC,and ALMT9)in germinating seeds.These results indicate that MC priming-induced ABA contributes to Cl^(−)homeostasis in tissues and acts as a positive regulator of salt tolerance via regulation of Cl^(−)transporters(particularly CCC and SLAC1/SLAH1/SLAH3).Taken together,these findings shed light on the molecular mechanism underlying MC-mediated tolerance to salt stress during seed germination.展开更多
Salinity is one of the major abiotic factors affecting the growth and productivity of crops in Hetao Irrigation District, China. In this study, the salinity tolerances of three local crops, wheat (Triticum aestinum L...Salinity is one of the major abiotic factors affecting the growth and productivity of crops in Hetao Irrigation District, China. In this study, the salinity tolerances of three local crops, wheat (Triticum aestinum L.), maize (Zea mays L.) and sunflower (Helianthus annuus L.), growing in 76 farm fields are evaluated with modified discount function. Salinity ecological zones appropriate for these local crops are characterized and a case study is presented for crop salinity ecological zoning. The results show that the yield reductions of wheat, maize and sunflower when grown in saline soils are attributed primarily to a reduction in spikelet number, 1 000-grain weight and seed number per head, respectively. Sunflower is the most tolerant crop among the three which had a salinity tolerance index (ST-index) of 12.24, followed by spring maize and spring wheat with ST-Indices of 9.00 and 7.43, respectively. According to the crop salinity tolerance results, the arable land in the Heping Village of this district was subdivided into four salinity ecological zones: the most suitable, suitable, sub-suitable and unsuitable zones. The area proportion of the most suitable zone for wheat, maize and sunflower within the Heping Village was 27.5, 46.5 and 77.5%, respectively. Most of the most suitable zone occurred in the western part of the village. The results of this study provide the scientific basis for optimizing the local major crop distribution and improving cultural practices management in Hetao Irrigation District.展开更多
Drought and salinity are the most widespread soil problems, posing a big threat to food security in rice growing regions. The present study evaluated the performance of eleven rice genotypes using morphological and ph...Drought and salinity are the most widespread soil problems, posing a big threat to food security in rice growing regions. The present study evaluated the performance of eleven rice genotypes using morphological and physiological parameters, under induced drought and salinity conditions. The seedlings were raised in 5 kg of homogenous soil in plastic bags in the </span><span style="font-family:Verdana;">greenhouse</span><span style="font-family:""><span style="font-family:Verdana;">. For the drought experiment, each bag was watered with 200 ml of water twice daily until plants reached the five-leaf stage when watering was suspended for 2 weeks for the drought stressed plants but not suspended for the control plants. The experiment was a 2 × 11 factorial and the set up was arranged using the completely randomized design with three replications. Data were taken on Plant height, Number of tillers, leaf length, Number of green leaves, Number of dead leaves, Leaf rolling score (LRS) and Rate of water loss. The salinity experiment was set up in a similar manner except that the plants were irrigated twice a day for 2 weeks with 200 ml of treatment solution containing either 0 mM NaCl or 75 mM and data were collected on plant height, number of tillers, shoot fresh weight, shoot dry weight, Na</span><sup><span style="font-family:Verdana;">+</span></sup><span style="font-family:Verdana;"> and K</span><sup><span style="font-family:Verdana;">+</span></sup><span style="font-family:Verdana;"> concentrations, relative water content and chlorophyll content. Data from both experiments were subjected to Analysis of variance test using the GenStat software 10</span><sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;"> edition and the means separated using least significant difference test. Individual stress response index (ISRI) was calculated for each parameter and the means used in grouping the varieties. Of the genotypes evaluated, four (FARO 44, NERICA 2, NERICA 8 and NERICA 5) were identified as tolerant, two (NERICA 4 and FARO 57) as moderately tolerant, while the rest were found to be sensitive to drought. Equally, two varieties (FARO 44 and RAM 137) stood out in the salinity screening as tolerant varieties, five were moderately tolerant while four (FARO 64, FARO 52, NERICA 2 and FARO 55) were clearly susceptible. FARO 44 is the only genotype that </span><span style="font-family:Verdana;">showed </span></span><span style="font-family:Verdana;">tolerance</span><span style="font-family:""> </span><span style="font-family:Verdana;">to both drought and salinity. The identified drought and salinity tolerant rice genotypes from this study can be recommended as genetic sources for future breeding programs for drought and salinity </span><span style="font-family:Verdana;">tolerance</span><span style="font-family:""> </span><span style="font-family:Verdana;">in rice.展开更多
基金Direction Generale de la Recherche Scientifique et du Developpement Technologique(DGRSDT)Algeria,and the Researchers Supporting Project No.(RSP2025R390),King Saud University,Riyadh,Saudi Arabia.
文摘Salinity stress is a major challenge for global agriculture,particularly in arid and semi-arid regions,limiting plant productivity due to water and soil salinity.These conditions particularly affect countries along the southern Mediterranean rim,including Algeria,which primarily focuses on pastoral and forage practices.This study investigates salinity tolerance and ecotypic variability in Vicia narbonensis L.,a fodder legume species recognized for its potential to reclaim marginal soils.Morphological,physiological,and biochemical responses were assessed in three ecotypes(eco2,eco9,and eco10)exposed to different salinity levels(low,moderate,and severe).The study was conducted using a completely randomized block design with three blocks per ecotype per dose.The results from the two-way analysis of variance demonstrate significant effects across nearly all attributes studied,revealing distinct ecotypic responses.These findings underscore variations in growth parameters,osmotic regulation mechanisms,and biochemical adjustments.The substantial diversity observed among these ecotypes in their response to salinity provides valuable insights for breeders addressing both agronomic and ecological challenges.Multivariate analyses,including Principal Component Analysis(PCA),revealed key variables distinguishing between ecotypes under salinity stress.Moreover,Classification based on Salinity Tolerance Indices(STI)further differentiated ecotypic performance with more precision,and this is because of the combination of the different parameters studied.These results open up new prospects for the development of strategies to improve the salinity tolerance of forage legumes.
基金Project supported by the Indigenous 5000 Fellowship Program(Batch II)of the Higher Education Commission,Pakistan
文摘The okra germplasm was screened for salinity tolerance at the seedling stage and during plant ontogeny. Substantial variation existed in okra for salinity tolerance at the seedling stage. An 80 mmol/L NaCI concentration was suitable for discriminating tolerant and non-tolerant okra genotypes. The pooled ranking of the genotypes, based on individual rankings for each trait (root and shoot length, germination percentage, and relative Na^+ and K%+) in individual NaCI concentrations, was effective for selecting tolerant genotypes. Genotypes selected at the seedling stage maintained their tolerance to NaCI during plant ontogeny, suggesting that screening of the germplasm entries and advanced breeding materials for salt tolerance at the seedling stage is effective. Among 39 okra genotypes, five were identified as the most tolerant genotypes and showed potential for use in breeding programs that focus on the development of salt-tolerant, high-yield okra cultivars.
文摘A pot experiment was carried out on a marine saline soil to study the effect of initial soluble Na/Ca ratio of saline soil on the salinity tolerance of barley plant.The results showed that (1) the Na/Ca ratio affected significantly the dry weight of the plant at an earlier stage of growth,the critical values of initial Na/Ca ratio at which the plant could grow normally on soils containing salts of 2.5,3.5 and 4.5g kg^-1 were 30,20 and 15,respectively;(2)smaller Na/Ca ratio resulted in a considerable decrease in Na accumulation but a great increase in K accumulation in the barley plant;and (3) the plasmallema of barley leaf were badly injured when the Na/Ca ratio was more than 30 and the increase of Na content of plant caused an exudation of K from the leaf cells.Some critical indexes were suggested for the cultivation of barley plant on marine saline soils and could be used as reference in the biological reclamation of marine saline soils.
文摘Salinity affects more than 6%of the world’s total land area,causing massive losses in crop yield.Salinity inhibits plant growth and development through osmotic and ionic stresses;however,some plants exhibit adaptations through osmotic regulation,exclusion,and translocation of accumulated Na+or Cl-.Currently,there are no practical,economically viable methods for managing salinity,so the best practice is to grow crops with improved tolerance.Germination is the stage in a plant’s life cycle most adversely affected by salinity.Barley,the fourth most important cereal crop in the world,has outstanding salinity tolerance,relative to other cereal crops.Here,we review the genetics of salinity tolerance in barley during germination by summarizing reported quantitative trait loci(QTLs)and functional genes.The homologs of candidate genes for salinity tolerance in Arabidopsis,soybean,maize,wheat,and rice have been blasted and mapped on the barley reference genome.The genetic diversity of three reported functional gene families for salt tolerance during barley germination,namely dehydration-responsive element-binding(DREB)protein,somatic embryogenesis receptor-like kinase and aquaporin genes,is discussed.While all three gene families show great diversity in most plant species,the DREB gene family is more diverse in barley than in wheat and rice.Further to this review,a convenient method for screening for salinity tolerance at germination is needed,and the mechanisms of action of the genes involved in salt tolerance need to be identified,validated,and transferred to commercial cultivars for field production in saline soil.
文摘In Burton Lake (an Antarctic littoral saline lake), as one of the overwinter species, the female Drepanopus bispinosus reach adult form in autumn. and early winter.For the subsequent life period of more than eight months, the animals experience such changing environment as increasing salinities from approximately 33 (in May) to 39 (in November). There is a considerable difference of salinity tolerance of female adults between summer and winter populations.Winter collected copepods survived lower salinities than summer collected copepods in this experiment. The upward shift in their salinity tolerance range is related to the development of field acclimation to salinity. Respiration rates of the summer animals showed a visible increase over those of winter copepods in simitar salinity and temperature conditions, thus supporting the above conclusion.
基金the Department of Science and Technology,Government of India(Grant No.CRG/2020/003078).
文摘Rice is sensitive to salinity stress at both the seedling and reproductive stages.The present study used 145 rice genotypes comprising of 100 landraces and 45 advanced breeding lines collected from different regions of India.These genotypes were evaluated in hydroponics under control[electrical conductivity(ECe)~1.2 dS/m]and saline(ECe~10.0 dS/m)environments along with susceptible(IR29)and tolerant(FL478)checks.The stress susceptibility index for eight morphophysiological traits was estimated.Analysis of variance showed significant differences among the genotypes for all the parameters studied in control,stress and relative stress conditions.We identified 3 landraces(Kuttimanja,Tulasimog and IET-13713I)as tolerant and 14 lines as moderately tolerant to salt stress.Strong correlations in the morphological(root and shoot lengths)and physiological traits(shoot Na^(+),Ca^(2+)and Mg^(2+)contents,and Na^(+)/K^(+)ratio)were observed under all the conditions.The hierarchical cluster analysis grouped the genotypes into five clusters,among which cluster Ⅱ comprised salt-tolerant lines.Haplotyping of Saltol region using 11 simple sequence repeat markers on 17 saline tolerant and moderately tolerant lines was conducted.Markers AP3206F,RM10793 and RM3412b,located close to SKC1 gene(11.23‒12.55 Mb),displayed diverse allelic variations and they were not related to the FL478 type.In this region,tolerant lines like Kuttimanja,IET-13713I and Tulasimog have new alleles.As a result,these lines may be suitable candidates for novel genomic regions governing rice salinity tolerance.Salt-tolerance ability of Kuttimanja,Tulasimog and IET-13713I was validated in two years in three salinity stress environments.These promising lines can be used in breeding programs to broaden the genetic base of salinity tolerance in rice,and it may help to dissect key genomic regions responsible for salinity tolerance.
文摘The present study reported the morpho-biochemical evaluation of 15 selected rice genotypes for salt tolerance at the seedling stage. Growth parameters including shoot length, root length, plant biomass, plant turgid weight, plant dry weight along with relative water content were measured after exposure to saline solution (with electrical conductivity value of 12 dS/m). Genotypes, showing significant differential responses towards salinity in the fields, were assessed through 14 salinity-linked morpho-biochemical attributes, measured at 14 d after exposure of seedling in saline nutrient solution. Relative water content, chlorophyll a/b, peroxidase activity and plant biomass were identified as potential indicators of salt tolerance. Principal component analysis and successive Hierarchical clustering using Euclidean distance revealed that Talmugur, Gheus, Ghunsi, Langalmura, Sabitapalui, and Sholerpona were promising genotypes for further breeding programmes in rice. The maximum Euclidean distance was plotted between Thavallakanan and Talmugur (7.49), followed by Thavallakanan and Langalmura (6.82), indicating these combinations may be exploited as parental lines in hybridization programmes to develop salinity tolerant variety.
文摘Juveniles of Oreochromis mossambicus with initial wet weights of 0.0382±0.0859 g and initial total lengths of 0.735 ±1.425 cm were tested for their salinity tolerance. The juveniles were subjected to five salinity levels for a period of seventy five days. These salinity levels correspond to the salinities found along the creek and in estuarine regions. Each set of experiments was conducted at a fifteen day intervals. The weight, length and survival rate were calculated. No mortality was observed at salinity levels 0, 5, 10 and 15, while the juveniles faced slight mortality at 20 in the same environmental conditions, including the diet. There was no significant difference in specific growth rate at all salinity levels. The juveniles of O. mossambicus could survive up to 20 salinity. These results suggest that this species can grow and be exploited commercially in brackish waters, rivers and estuarine regions.
基金Supported by the National Key R&D Program of China(Nos.2018YFD0900305,2018YFD0901506)the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2018SDKJ0406-3)the Fundamental Research Funds for the Central Universities(No.201762017)。
文摘Nannochloropsis oceanica is a marine microalgal species with both economic value and biological importance.It grows fast,contains rich oils,reproduces asexually,holds a small and haploidy genome,and is easy to be modified genetically.However,the genetic study of N.oceanica is scarce.Very less genetic bases of its traits have been deciphered,and no gene has been isolated from it with the function verified simultaneously via either genetic or reverse genetic approaches or both(de novo cloned).Changing medium salinity may aid to control harmful organisms met during large scale cultivation.As a stress,it may also facilitate the accumulation of desirable chemicals including fatty acids.In order to decipher the genetic basis of the low salinity tolerance of N.oceanica,we mutated N.oceanica with Zeocin.In total,five mutant bulks were constructed at equal number of cells,100 mutants each,which were tolerant to a discontinuous serial of salinities from that of 100%of f/2 to that of a mixture of 4%of f/2 and 94%of BG11.The bulks were genotyped through whole genome re-sequencing and analyzed with bulked mutant analysis(BMA)newly modified from bulked segregant analysis(BSA).In total,47 SNPs and 112 InDels were found to associate with the low salinity tolerance,and around them a set of low salinity tolerance associating genes were identified.A set of annotatable genes commonly found between control and different salinities indicated that the genes functioning in gene expression,energy metabolism and cellular structure may be involved in the low salinity tolerance.These associating molecular markers and genes around them were not enough for outlining the physiological mechanism underlining the tolerance;however they should aid to improve N.oceanica genetically.
文摘The aim of this research was to evaluate the salinity tolerance in prairie grass populations at the seedling stage quantifying the variability and the influence of physiological traits related to it. Salinity tolerance, in </span><i><span style="font-family:Verdana;">Bromus</span></i> <i><span style="font-family:Verdana;">catharticus</span></i><span style="font-family:Verdana;"> Vahl (prairie grass) populations collected in different environments of the Pampean Phytogeography region (Argentine) was evaluated at the seedling stage, using controlled condition of temperature and light. It was adopted a completely randomized design using 3 plots with three plants each one per population and two levels of treatment: 0 mM and 100 mM NaCl. Morphological, biomass and membrane stability root and shoot traits were studied. A factorial ANOVA with interaction was estimated. Then one way ANOVA for all seedling traits in both treatments allowed estimating variance components, coefficient of genotypic determination (CGD) and variation index (VI). Comparisons between populations were made using Tukey test (at 5% of probability). Phenotypic correlations among traits were calculated and then a path coefficient analysis separated direct and indirect effects at 100 and 0 mM NaCl. No significant interactions “Population × Treatment” were found for any character. The saline stress caused a pairing in the population means for the most traits. Coefficients of variation were mainly higher when the seedlings grew without stress (0 mM) because it allowed a greater potential genotypic expression. The absence of significant interactions denotes a good homeostatic capacity of the prairie grass facing that abiotic stress. Leaf length, shoot length and root dry matter were the variables with the largest direct and indirect effects. Our results showed an increase for them at salt and demonstrated intraspecific variation, possibly in relation with the origin sites. Plants under stress showed a marked resilience, in order to quickly restore the same biomass allocation patterns that occur in non-stress environment.
文摘The study was performed with seven groundnut varieties/genotypes and F1s derived from crossing in all possible combinations without reciprocal among the mentioned varieties/genotypes. The objective was to assess whether low Ca2+ content and Ca2+/Na+ ratio of leaf tissue or stem tissue determine salinity tolerance in terms of economic yield (kernel yield) in groundnut. It revealed that the varieties, “Binachinabadam-6”, “Binachinabadam-5” and the F1 G2 × G3 were most tolerant based on kernel yield under 8 dS/m and 10 dS/m salinity stresses. These two tolerant varieties and the F1 also showed lower Ca2+ and Ca2+/Na+ ratios in leaf tissue, which indicated lower Ca2+ and Ca2+/Na+ ratio of leaf tissue determined salinity tolerance in terms of kernel yield in Spanish type groundnut. These findings could be applied in future plant breeding applications for screening salt tolerant Spanish type groundnut genotypes.
基金supported by the Yunnan Provincial Science and Technology Department Agriculture Joint Project,China(202301BD070001-020)。
文摘Fructokinase(FRK)is a regulator of fructose signaling in plants and gateway proteins that catalyze the initial step in fructose metabolism through phosphorylation.Our previous study demonstrated that MdFRK2 protein exhibit not only high affinity for fructose,but also high enzymatic activity due to sorbitol.However,genome-wide identification of the MdFRK gene family and their evolutionary dynamics in apple are yet to be reported.A systematic genome-wide analysis in this study identified a total of nine MdFRK gene members,which could phylogenetically be clustered into seven groups.Chromosomal location and synteny analysis of MdFRKs revealed that their expansion in the apple genome is primarily driven by tandem and segmental duplication events.Divergent expression patterns of MdFRKs were observed in four source-sink tissues and at five different apple fruit developmental stages,which suggested their potential crucial roles in the apple fruit development and sugar accumulation.Reverse transcription-quantitative PCR(RT-qPCR)identified candidate NaCl or drought stress responsive MdFRKs,and transgenic apple plants overexpressing MdFRK2 exhibited considerably enhanced salinity tolerance.Our results will be useful for understanding the functions of MdFRKs in the regulation of apple fruit development and salt stress response.
基金Australian Grains Research and Development Corporation(GRDC)grant IDUmu00046Graduate Research Funds from Murdoch University。
文摘Salinity causes a detrimental impact on plant growth,particularly when the stress occurs during germination and early development stages.Barley is one of the most salt-tolerant crops;previously we mapped two quantitative trait loci(QTL)for salinity tolerance during germination on the short arm of chromosome 2 H using a CM72/Gairdner doubled haploid(DH)population.Here,we narrowed down the major QTL to a region of 0.341 or 0.439 Mb containing 9 or 24 candidate genes belonging to 6 or 20 functional gene families according to barley reference genomes v1 and v3 respectively,using two DH populations of CM72/Gairdner and Skiff/CM72,F_(2)and F;generations of CM72/Gairdner/;Spartacus CL,Two Receptorlike kinase 4(RLPK4)v1 or Receptor-like kinase(RLK)v3 could be the candidates for enhanced germination under salinity stress because of their upregulated expression in salt-tolerant variety CM72.Besides,several insertion/deletion polymorphisms were identified within the 3 rd exon of the genes between CM72 and Gairdner.The sequence variations resulted in shifted functional protein domains,which may be associated with differences in salinity tolerance.Two molecular markers were designed for selecting the locus with receptor-like protein kinase 4,and one was inside HORVU2 Hr1 G111760.1 or HORVU.MOREX.r3.2 HG0202810.1.The diagnostic markers will allow for pyramiding of 2 H locus in barley varieties and facilitate genetic improvement for saline soils.Further,validation of the genes to elucidate the mechanisms involved in enhancing salinity tolerance at germination and designing RLPK4 specific markers is proposed.For this publication,all the analysis was based on barley reference genome of2017(v1),and it was used throughout for consistence.However,the positions of the markers and genes identified were updated according to new genome(v3)for reference.
文摘Water strider Aquarius paludum (Fabricius) is a cosmopolitan species colonizes mainly freshwater but occasionally brackish habitats throughout the Palearctic and Oriental regions. Water strider Gerris latiabdominis (Miyamoto) is a common species in Japan lives in temporary habitats as freshwater paddy fields. These two species often occur syntopically. We investigated differences in the developmental response to brackish water during embryonic and larval stages between the two species. Eggs were exposed to 0-1.8% NaC1 solutions within 24 h of oviposition. Larvae of G. latiabdominis were exposed to salinities of 0, 0.5%, and 0.9% from the first instar until adult emergence. Limits of NaC1 concentration for hatching were 1.3% and 1.0% for A. paludum and G. latiabdominis, respectively. The hatching rate of G. latiabdominis was lower than that ofA. paludum at salinities 〉0.9%. The period of embryonic development of G. latiabdominis was more prolonged than that ofA. paludum at a given salinity. Although the salinity tolerance of G. latiabdominis was lower than that ofA. paludum, our results suggest G. latiabdominis has the physiological capacity to expand into brackish waters. High and low salinity tolerances of A. paludum and G. latiabdominis, respectively, reflect the relatively wide range of habitat salinities utilized by A. paludum and the relatively restricted habitats preferred by G. latiabdominis. The high salinity tolerance ofA. paludum could be an important factor contributing to their cosmopolitan distribution because high tolerance to salinity means the possibility of them to be dispersed via ocean or sea to other continents and islands.
基金This work was supported by the National Key Research and Development Program of China(2018YFC030980504).
文摘Urease has a broad range of applications,however,the current studies on urease mainly focus on terrestrial plants or microbes.Thus,it is quite necessary to determine if marine-derived ureases have diferent characteristics from terrestrial origins since the fnding of ureases with superior performance is of industrial interest.In this study,the marine urease produced by Penicillium steckii S4-4 derived from marine sponge Siphonochalina sp.was investigated.This marine urease exhibited a maximum specifc activity of 1542.2 U mg protein−1.The molecular weight of the enzyme was 183 kDa and a single subunit of 47 kDa was detected,indicating that it was a tetramer.The N-terminal amino acid sequence of the urease was arranged as GPVLKKTKAAAV with greatest similarity to that from marine algae Ectocarpus siliculosus.This urease exhibited a K_(m) of 7.3 mmol L^(−1) and a V_(max) of 1.8 mmol urea min^(−1) mg protein^(−1).The optimum temperature,pH and salinity are 55℃,8.5 and 10%,respectively.This urease was stable and more than 80%of its maximum specifc activity was detected after incubating at 25–60℃for 30 min,pH 5.5–10.0 or 0–25%salinity for 6 h.Compared with the terrestrial urease from Jack bean,this marine urease shows higher thermostability,alkaline preference and salinity tolerance,which extends the potential application felds of urease to a great extent.
基金supported by CNPq(National Council for Scientific and Technological Development—Processo:151057/2024-9),CAPES(Coordination for the Improvement of Higher Education Personnel)financial code—001,and UFCG(Universidade Federal de Campina Grande).
文摘The Northeast region is the main producer of guava in Brazil,generating employment and income.However,water availability means that producer’s resort to using water with high salinity,which harms plant development,especially during the seedling formation phase.The adoption of techniques that mitigate the deleterious effect of salinity is increasingly necessary,such as the use of elicitors such as ascorbic acid.The purpose of this study was to analyze the morphophysiology of guava seedlings under saline and ascorbic acid levels.The study was carried out by applying treatments composed of five saline levels(SL=0.3;1.3;2.3;3.3 and 4.3 dS m^(-1))and four levels of ascorbic acid—AA(0,200,400,and 600 mg L^(-1)),in a 5×4 factorial arrangement,adopting a randomized block design.Gas exchange and growth of guava seedlings are limited from 0.3 dS m^(-1).Using 400 mg L^(-1)of AA reduces damage from salinity on stomatal conductance,transpiration,and net assimilation rate up to the estimated SL of 1.80 dS m^(-1).In contrast,AA level 412 mg L^(-1)increased instantaneous water use efficiency up to the salinity of 2.3 dS m^(-1).AA level of 600 mg L^(-1)attenuated salt stress effects on leaf area and height/stem diameter ratio up to SL of 2.05 dS m^(-1).The number of leaves and the absolute and relative growth rates were stimulated by AA under the lowest saline level.
基金supported by the Special Grand National Science and Technology Project, China(2009ZX08009-076B)the Natural Science Foundation of China (30971700)the Natural Science Foundation of Zhejiang Province, China (Z3100130)
文摘Polyploidy is pursued in plant breeding programs due mainly to its ability to yield larger vegetative or reproductive organs. In controlled growth chamber experiments, a tetraploid turnip (cv. Aijiaohuang, 4n) and its diploid progenitor (cv. Aijiaohuang, 2n) were evaluated for their tolerance to salinity stress via investigations on a group of physiological parameters. The results indicate that the tetraploid turnip exhibit better adaptation to a high concentration salt medium (200 mmol L-1), as evidenced by a less-affected germination rate and a healthier morphological appearance at the seedling stage. Furthermore, an extension of salinity stress up to a certain period of time at the 5-7-leaf stage shows differences between the tetraploid turnip and its diploid progenitor. The former had a higher K+/Na+ ratio in the roots, higher glutathione concentration and antioxidant activities in the leaves, and smaller reductions in photosynthetic capacity in terms of leaf chlorophyll content. Studies on the differences between an autopolyploid and its respective relative, from which the autopolyploid originated, in terms of their tolerance to salinity and/or other abiotic stresses, have remained rather limited. The comparison is interesting due to a homogenous genetic background.
基金This work was supported by the National Natural Science Foundation of China(31801312)the National Key Research and Development Program of China(2017YFD0101600)+1 种基金Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences,the China Agriculture Research System(CARS-18-05)Xinjiang Production and Construction Corps Science&Technology NOVA Program(2020CB029).
文摘Mepiquat chloride(MC)priming alleviates the effects of salt stress during seed germination in cotton(Gossypium hirsutum L.),but the mechanisms underlying its effects are unknown.We found that MC priming increases salt tolerance,as evidenced by marked increases in seed vigor and germination rates,and alleviated salt toxicity by reducing Cl^(−)accumulation in germinating seeds.Consistently,electrophysiological experiments revealed that the seeds with MC priming displayed superior Cl^(−)exclusion ability in the root apex.These beneficial effects of MC priming were abolished by the abscisic acid(ABA)-synthesis blocker fluridone under salt stress.MC priming induced an early response to acclimatization and stress,as indicated by rapidly increasing ABA content during initial exposure to salt stress.Transcriptome analyses revealed that MC priming induced an array of differentially expressed genes(DEGs)in germinating seeds.The most noticeable changes in germinating seeds were MC priming-induced increases in the expression of DEGs encoding components of ABA biosynthesis,ABA catabolism,and ABA signaling pathways under salt stress.MC priming also increased the expression of some DEGs encoding Cl^(−)ion transporters(e.g.CCC,SLAC1/SLAH1/SLAH3,CLC,and ALMT9)in germinating seeds.These results indicate that MC priming-induced ABA contributes to Cl^(−)homeostasis in tissues and acts as a positive regulator of salt tolerance via regulation of Cl^(−)transporters(particularly CCC and SLAC1/SLAH1/SLAH3).Taken together,these findings shed light on the molecular mechanism underlying MC-mediated tolerance to salt stress during seed germination.
基金supported by the Special Fund for Agro-Scientific Research in the Public Interest, China (2009030012-3)
文摘Salinity is one of the major abiotic factors affecting the growth and productivity of crops in Hetao Irrigation District, China. In this study, the salinity tolerances of three local crops, wheat (Triticum aestinum L.), maize (Zea mays L.) and sunflower (Helianthus annuus L.), growing in 76 farm fields are evaluated with modified discount function. Salinity ecological zones appropriate for these local crops are characterized and a case study is presented for crop salinity ecological zoning. The results show that the yield reductions of wheat, maize and sunflower when grown in saline soils are attributed primarily to a reduction in spikelet number, 1 000-grain weight and seed number per head, respectively. Sunflower is the most tolerant crop among the three which had a salinity tolerance index (ST-index) of 12.24, followed by spring maize and spring wheat with ST-Indices of 9.00 and 7.43, respectively. According to the crop salinity tolerance results, the arable land in the Heping Village of this district was subdivided into four salinity ecological zones: the most suitable, suitable, sub-suitable and unsuitable zones. The area proportion of the most suitable zone for wheat, maize and sunflower within the Heping Village was 27.5, 46.5 and 77.5%, respectively. Most of the most suitable zone occurred in the western part of the village. The results of this study provide the scientific basis for optimizing the local major crop distribution and improving cultural practices management in Hetao Irrigation District.
文摘Drought and salinity are the most widespread soil problems, posing a big threat to food security in rice growing regions. The present study evaluated the performance of eleven rice genotypes using morphological and physiological parameters, under induced drought and salinity conditions. The seedlings were raised in 5 kg of homogenous soil in plastic bags in the </span><span style="font-family:Verdana;">greenhouse</span><span style="font-family:""><span style="font-family:Verdana;">. For the drought experiment, each bag was watered with 200 ml of water twice daily until plants reached the five-leaf stage when watering was suspended for 2 weeks for the drought stressed plants but not suspended for the control plants. The experiment was a 2 × 11 factorial and the set up was arranged using the completely randomized design with three replications. Data were taken on Plant height, Number of tillers, leaf length, Number of green leaves, Number of dead leaves, Leaf rolling score (LRS) and Rate of water loss. The salinity experiment was set up in a similar manner except that the plants were irrigated twice a day for 2 weeks with 200 ml of treatment solution containing either 0 mM NaCl or 75 mM and data were collected on plant height, number of tillers, shoot fresh weight, shoot dry weight, Na</span><sup><span style="font-family:Verdana;">+</span></sup><span style="font-family:Verdana;"> and K</span><sup><span style="font-family:Verdana;">+</span></sup><span style="font-family:Verdana;"> concentrations, relative water content and chlorophyll content. Data from both experiments were subjected to Analysis of variance test using the GenStat software 10</span><sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;"> edition and the means separated using least significant difference test. Individual stress response index (ISRI) was calculated for each parameter and the means used in grouping the varieties. Of the genotypes evaluated, four (FARO 44, NERICA 2, NERICA 8 and NERICA 5) were identified as tolerant, two (NERICA 4 and FARO 57) as moderately tolerant, while the rest were found to be sensitive to drought. Equally, two varieties (FARO 44 and RAM 137) stood out in the salinity screening as tolerant varieties, five were moderately tolerant while four (FARO 64, FARO 52, NERICA 2 and FARO 55) were clearly susceptible. FARO 44 is the only genotype that </span><span style="font-family:Verdana;">showed </span></span><span style="font-family:Verdana;">tolerance</span><span style="font-family:""> </span><span style="font-family:Verdana;">to both drought and salinity. The identified drought and salinity tolerant rice genotypes from this study can be recommended as genetic sources for future breeding programs for drought and salinity </span><span style="font-family:Verdana;">tolerance</span><span style="font-family:""> </span><span style="font-family:Verdana;">in rice.