For the large sparse saddle point problems, Pan and Li recently proposed in [H. K. Pan, W. Li, Math. Numer. Sinica, 2009, 31(3): 231-242] a corrected Uzawa algorithm based on a nonlinear Uzawa algorithm with two no...For the large sparse saddle point problems, Pan and Li recently proposed in [H. K. Pan, W. Li, Math. Numer. Sinica, 2009, 31(3): 231-242] a corrected Uzawa algorithm based on a nonlinear Uzawa algorithm with two nonlinear approximate inverses, and gave the detailed convergence analysis. In this paper, we focus on the convergence analysis of this corrected Uzawa algorithm, some inaccuracies in [H. K. Pan, W. Li, Math. Numer. Sinica, 2009, 31(3): 231-242] are pointed out, and a corrected convergence theorem is presented. A special case of this modified Uzawa algorithm is also discussed.展开更多
The preconditioner for parameterized inexact Uzawa methods have been used to solve some indefinite saddle point problems. Firstly, we modify the preconditioner by making it more generalized, then we use theoretical an...The preconditioner for parameterized inexact Uzawa methods have been used to solve some indefinite saddle point problems. Firstly, we modify the preconditioner by making it more generalized, then we use theoretical analyses to show that the iteration method converges under certain conditions. Moreover, we discuss the optimal parameter and matrices based on these conditions. Finally, we propose two improved methods. Numerical experiments are provided to show the effectiveness of the modified preconditioner. All methods have fantastic convergence rates by choosing the optimal parameter and matrices.展开更多
Based on the special positive semidefinite splittings of the saddle point matrix, we propose a new Mternating positive semidefinite splitting (APSS) iteration method for the saddle point problem arising from the fin...Based on the special positive semidefinite splittings of the saddle point matrix, we propose a new Mternating positive semidefinite splitting (APSS) iteration method for the saddle point problem arising from the finite element discretization of the hybrid formulation of the time-harmonic eddy current problem. We prove that the new APSS iteration method is unconditionally convergent for both cases of the simple topology and the general topology. The new APSS matrix can be used as a preconditioner to accelerate the convergence rate of Krylov subspace methods. Numerical results show that the new APSS preconditioner is superior to the existing preconditioners.展开更多
基金Supported by the National Natural Science Foundation of China(11201422)the Natural Science Foundation of Zhejiang Province(Y6110639,LQ12A01017)
文摘For the large sparse saddle point problems, Pan and Li recently proposed in [H. K. Pan, W. Li, Math. Numer. Sinica, 2009, 31(3): 231-242] a corrected Uzawa algorithm based on a nonlinear Uzawa algorithm with two nonlinear approximate inverses, and gave the detailed convergence analysis. In this paper, we focus on the convergence analysis of this corrected Uzawa algorithm, some inaccuracies in [H. K. Pan, W. Li, Math. Numer. Sinica, 2009, 31(3): 231-242] are pointed out, and a corrected convergence theorem is presented. A special case of this modified Uzawa algorithm is also discussed.
文摘The preconditioner for parameterized inexact Uzawa methods have been used to solve some indefinite saddle point problems. Firstly, we modify the preconditioner by making it more generalized, then we use theoretical analyses to show that the iteration method converges under certain conditions. Moreover, we discuss the optimal parameter and matrices based on these conditions. Finally, we propose two improved methods. Numerical experiments are provided to show the effectiveness of the modified preconditioner. All methods have fantastic convergence rates by choosing the optimal parameter and matrices.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 11301521, 11771467, 11071041), the Natural Science Foundation of Fujian Province (Nos. 2016J01005, 2015J01578), and the National Post- doctoral Program for Innovative Talents (No. BX201700234).
文摘Based on the special positive semidefinite splittings of the saddle point matrix, we propose a new Mternating positive semidefinite splitting (APSS) iteration method for the saddle point problem arising from the finite element discretization of the hybrid formulation of the time-harmonic eddy current problem. We prove that the new APSS iteration method is unconditionally convergent for both cases of the simple topology and the general topology. The new APSS matrix can be used as a preconditioner to accelerate the convergence rate of Krylov subspace methods. Numerical results show that the new APSS preconditioner is superior to the existing preconditioners.